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ABSTRACT

India faces a growing number of cardiovascular diseases patients, with over 30 million
currently affected. Diagnosing heart disease is a complex task that requires careful
analysis and understanding of patients through regular check-ups. Early detection can
help patients take precautions and take regulatory measures. The healthcare industry
generates vast amounts of data about patients, making machine learning techniques

crucial for analyzing this data.

A previous heart disease diagnosis system relied on Interval Type-2 Fuzzy Logic
System (IT2FLS), but it had poor recognition accuracy and training time. This research
proposes an efficient heart disease prediction system using modified firefly algorithm
based radial basis function with support vector machine (MFA and RBF-SVM). The
dataset includes three types of qualities: input, key, and prediction characteristics.
Standardization is performed using the min-max standardization approach, followed by
a heuristic approach called MFA to manage large amounts of high-lights and extensive
records. PCA is used to remove highlights, and RBF-SVM is used to classify highlights

as ordinary or heart illnesses.

A PSO algorithm and RBF-based Transductive Support Vector Machines (TSVM)
approach are proposed to intelligently and efficiently predict heart disease. After
normalization, rough sets based attribute reduction using the PSO algorithm is
introduced to find optimal reduction. Finally, classification is performed using RBF-
TSVM to predict heart diseases. An Opposition Based Crow Search Optimization
(OCSO) technique is applied for attribute reduction followed by RBF-TSVM approach.

Metric values are found based on True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). Experimental outcomes show that the proposed
techniques achieve superior performance in terms of accuracy, sensitivity, and
specificity compared to existing methods.As heart disease is the leading cause of death
globally, predicting cardiac disease is a complex task that requires accurate models.
Techniques such as Internet of Things (IoT), cloud computing, machine learning, and
deep learning techniques are used to build accurate models. Web-based healthcare
systems improve the quality of medical diagnostic decisions, and physicians adopt

predictive modeling processes to anticipate clinical risk factors
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CHAPTER-1

INTRODUCTION

1.1 OVERVIEW

In today’s information era, several industries are constantly producing vast quantities
of data. The rapid growth of Al across many fields has been supported by improvements
in hardware that enable the processing of this data and the extraction of significant
insights. In healthcare, the rising demand for medical services and the strain on
healthcare resources due to a growing global population have contributed to the
increasing adoption of Al-based systems. Applications such as diagnostic imaging,
individualized treatment planning, and disease prediction and prevention have emerged
as part of this transformation. These developments collectively form the foundation of

“smart healthcare,” in which AI-driven predictive analytics play a central role.

Smart healthcare differs from traditional healthcare by shifting the focus from
specialists to patients. By integrating advanced intelligent technologies, smart
healthcare aims to build a system centered on patient needs, experiences, and
participation. This paradigm emphasizes data processing, knowledge discovery from
structured and unstructured information, cross-domain insights, and improved decision-
support mechanisms. These components support predictive modeling, adaptive

learning, and dynamic prediction in healthcare environments.

Al applications such as robotic-assisted procedures, disease prediction, and drug
research have demonstrated significant potential in improving healthcare outcomes. A
variety of studies have examined the advantages of Al technologies across multiple
functional areas of smart healthcare. At the same time, the literature highlights
challenges—particularly related to data quality, integration, privacy, and model
reliability—that hinder full-scale adoption across healthcare systems.

The growing adoption of Al across industries has encouraged similar advances in
healthcare. These technologies have the potential to transform many aspects of patient
care and administrative operations. Multiple studies indicate that Al can match or even
surpass human performance in tasks such as disease detection and risk assessment.

However, despite promising results, Al still faces limitations in generalizability and
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clinical applicability, necessitating further research to ensure safe and effective

integration into clinical practice.

Healthcare systems worldwide require improvement to meet the increasing need for
accessible, efficient, and high-quality patient care. Many individuals continue to face
challenges in receiving adequate treatment for chronic illnesses, including heart
disease, cancer, stroke, and diabetes. As healthcare moves toward value-based and
patient-centered care, there is a growing need for approaches that provide personalized,
cost-effective, and coordinated treatment. Al supports this goal by enabling physicians
to access updated diagnostic information, detect abnormalities in imaging data, and
compile comprehensive patient profiles based on clinical history and other relevant

factors.

However, a significant portion of healthcare data nearly 80% exists in unstructured
form. This makes it difficult for clinicians to access complete and organized
information at the point of care. The lack of interoperability among systems, privacy
concerns, and fragmented data storage add to the complexity of clinical decision-
making. These issues highlight the need for modern data-driven approaches that
facilitate precise, timely, and patient-focused care.

The increasing availability of healthcare data and advancements in big data analytics
have enabled the development of successful Al applications for clinical decision
support, diagnosis, and personalized treatment. Healthcare data is generated from
numerous sources, including radiology, laboratory systems, wearable devices, sensors,
physician notes, pathology reports, and clinical records. This diverse information
contains important details such as demographics, medical history, family history,
symptoms, test results, and treatment responses. Facilitating data sharing and

integration across systems is essential for supporting proactive and preventive care.

Although access to integrated health data is often limited by privacy regulations and
compatibility issues among medical devices, machine learning techniques can address
many challenges once sufficient and authorized data becomes available. ML techniques
have the capacity to identify patterns within data and support precision medicine by
tailoring treatment decisions. Predictive models can, for example, assess the likelihood

of hospital readmission in chronic disease patients and support timely interventions.
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Discussions on artificial intelligence continue to expand across scientific and technical
domains. Recent advances in image recognition, natural language processing, and
speech analysis have raised interest in how these tools can enhance healthcare decision-
making. Studies demonstrate that, in specific contexts, Al systems can achieve
diagnostic performance comparable to experienced clinicians. However, realizing the
full potential of Al in healthcare requires overcoming issues related to data quality,

privacy, system compatibility, and responsible deployment.
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1.2 ARTIFICIAL INTELLIGENCE IN HEALTHCARE

Artificial Intelligence (Al) refers to computational systems capable of performing tasks
that normally require human intelligence, such as learning from data, recognizing
patterns, reasoning, and making informed decisions. Modern Al technologies—
particularly machine learning, deep learning, and natural language processing—have
become essential tools for analyzing the large and complex datasets generated in

today’s digital healthcare environment.

In healthcare settings, Al is used to interpret clinical information, support diagnostic
decision-making, predict disease risk, and personalize treatment pathways. Its primary
role is not to replace healthcare professionals but to augment their capabilities by
providing accurate, data-driven insights that enhance clinical judgment and improve
patient outcomes. By analyzing patterns in medical records, imaging data, laboratory
results, and real-time physiological signals, Al systems can assist clinicians in

identifying abnormalities earlier and more precisely than traditional methods.

Al applications in healthcare include early disease detection through medical imaging,
outcome prediction using electronic health records, automated clinical documentation,
and personalized treatment planning. These tools improve efficiency by reducing
administrative workloads, enhancing diagnostic accuracy, and enabling faster decision-
making. As the availability of digital health data continues to grow, Al is increasingly
recognized as a critical component in achieving proactive, patient-centered, and value-

based care.

Key Characteristics of Al in Healthcare

The implementation of Al-based smart healthcare solutions is defined by several core

characteristics:

1. Big Data Processing and Analysis: Healthcare systems generate large volumes of
structured and unstructured data from imaging equipment, wearable devices, laboratory
systems, and electronic health records. Al models process this data to detect patterns,

support clinical insights, and continuously learn from new information.
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2. Augmented Intelligence: Al acts as a support system to enhance the capabilities of
healthcare professionals. By providing accurate diagnostic suggestions, identifying risk
factors, and managing vast patient datasets, Al assists clinicians in making timely and
well-informed decisions. Full automation is limited to conditions where risks are

minimal and human supervision is not critical.

3. Integration of Software and Hardware: Al in healthcare combines software
technologies—such as machine learning, deep learning, and NLP—with medical
hardware including imaging machines, monitoring devices, and robotic systems.
Together, these components facilitate the analysis of both structured and unstructured
data, supporting diagnosis, monitoring, and treatment planning.

1.3 NEED AND RATIONALE OF THE STUDY

Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality
worldwide, imposing substantial human, social, and economic burdens. Early and
accurate prediction of heart disease risk plays a pivotal role in reducing adverse
outcomes through timely clinical intervention, personalized treatment planning, and
effective resource allocation. In many clinical settings, diagnosis and prognosis of
cardiovascular conditions still rely on a combination of physician expertise,
conventional risk scores, and limited diagnostic parameters. These approaches often
underperform in two important ways: (a) they may not capture complex, nonlinear
interactions among clinical variables, and (b) they are limited by incomplete, noisy, or
heterogeneous data sources.

Rapid digitization of healthcare and the increasing availability of electronic health
records (EHRs), physiological time-series (e.g., ECG), laboratory results, and imaging
data create an opportunity to develop data-driven predictive models that augment
clinical decision making. Machine learning (ML) and optimization-guided models can
discover latent patterns and interactions not evident to traditional statistical tools. In the

context of heart disease, such models can:

« ldentify high-risk patients earlier than conventional screening tools, enabling

preventive interventions and follow-up strategies.
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o Improve prioritization and triage in resource-constrained settings (e.g.,
outpatient clinics, emergency departments), reducing delays to care.

« Personalize therapeutic recommendations by combining demographic, clinical,
physiological, and laboratory indicators to produce individualized risk scores.

e Aid clinicians by offering consistent, reproducible risk estimates that
complement clinical judgment, potentially reducing diagnostic variability and

oversight.

However, effective translation of ML/ALI solutions into clinical practice requires more
than high accuracy on benchmark datasets: robustness to noisy / missing data,
interpretable outputs, resistance to overfitting, and reliable generalization across
populations are essential. This motivates the present study: the development of an
integrated, optimized heart disease prediction framework that couples advanced feature
selection and hybrid optimization algorithms (Modified Firefly Algorithm (MFA),
Particle Swarm Optimization with Rough Sets (PSO-RS), Orthogonal Chicken Swarm
Optimization (OCSQO)) with strong classifiers (RBF-SVM, TSVM) to produce accurate,
robust, and practically deployable prediction models. Using a real-world dataset of 303
patients, this research aims to deliver methods that are computationally efficient,
interpretable for clinical use, and validated with rigorous performance metrics relevant
to healthcare settings (accuracy, sensitivity, specificity, AUC, and clinical utility

measures).

1.4 PROBLEM STATEMENT

Despite progress in ML for cardiovascular risk prediction, several persistent problems
reduce the reliability and clinical readiness of existing models. These can be

summarized as follows:

1. Feature-selection inefficiency and redundancy: Clinical datasets often contain
many correlated and irrelevant variables (demographics, biochemical markers,
comorbidities, ECG features). Traditional selection methods (filter/wrapper
methods without global search) either retain noisy features or discard
informative but subtle predictors, harming model performance.

2. Suboptimal hyperparameter tuning and model optimization: Many studies

report models with good average performance but do not employ systematic
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global optimization strategies for classifier kernels and parameters; this leads to
models that are sensitive to initialization and dataset splits.

Poor handling of data uncertainty and incompleteness: Clinical records
commonly contain missing values, measurement noise, and heterogenous
scales. Existing approaches frequently use ad-hoc imputation and normalization
methods that do not address uncertainty propagation through the learning
pipeline.

Limited use of hybrid intelligent frameworks: Few studies combine advanced
metaheuristic optimizers with robust classifiers in a modular pipeline that
jointly optimizes feature selection and classifier parameters. Standalone ML
algorithms or simple ensembles do not exploit the complementary strengths of
metaheuristics (global search) and margin-based classifiers (SVM/TSVM).
Lack of interpretability and clinical explainability: High-performing black-box
models are seldom accompanied by clinically interpretable explanations
(feature importance, decision boundaries, local explanations), restricting
clinical adoption.

Insufficient validation on diverse and adequately sized datasets: Research often
relies on small or publicly available datasets with limited representativeness;
cross-population generalizability and overfitting remain concerns.

Inefficient computational pipelines for real-time/near-real-time use: Methods
that require heavy tuning, long training times, or large computation are
impractical for deployment in hospital settings with constrained computing

resources.

Therefore, the central problem addressed in this thesis can be formulated as:

How can we design a robust, accurate, and computationally efficient heart disease

prediction system that (a) selects the most informative and stable features from noisy

clinical data, (b) optimally tunes classifier parameters using advanced global search

algorithms, and (c) provides interpretable, clinically actionable predictions validated on

a real dataset of patients?

This research focuses on solving the above problem by integrating modified and hybrid
metaheuristic optimizers (MFA, PSO-RS, OCSO) with RBF kernel SVM and
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Transductive SVM classifiers, while emphasizing preprocessing, feature selection, and

rigorous validation to ensure clinical relevance.

1.5 OBJECTIVES OF THE STUDY

Objective 1: To develop an efficient heart disease prediction system using modified

firefly algorithm based radial basis function with support vector machine

To develop an efficient heart disease prediction model by integrating the Modified
Firefly Algorithm (MFA) for optimal feature selection and parameter tuning with an
RBF-SVM classifier. The objective is to enhance diagnostic accuracy and clinical
reliability. Model performance will be assessed using accuracy, sensitivity, specificity,

AUC, and other standard evaluation metrics.

Objective 2: To configuration upgraded expectation of coronary illness utilizing
molecule swarm advancement and harsh sets with transductive help vector machines

grouped

To design a heart disease prediction framework that combines Particle Swarm
Optimization with Rough Set theory (PSO-RS) for feature reduction and applies
Transductive SVM (TSVM) for classification. The objective is to improve uncertainty
handling, utilize semi-supervised learning capability, and achieve more robust

generalization on the available dataset.

Objective 3: To develop Proficient System to Identify Heart Diseases with the Aid of
Artificial Intelligence and Soft Computing Techniques

To investigate OCSO as an advanced metaheuristic technique for optimizing classifier
parameters. This objective involves comparing the performance of OCSO with MFA
and PSO-RS in terms of convergence behavior, robustness, and predictive accuracy

under identical experimental conditions.

Objective 4: To Assist Physicians in Predicting and Diagnosing Cardiovascular

Diseases at An Early Stage Effectively and Accurately
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To develop a complete heart disease prediction pipeline comprising data preprocessing,
normalization, feature selection, optimization, and classification. This includes
evaluating model interpretability, reliability, and clinical applicability to ensure that the
proposed system can effectively support physicians in early diagnosis and clinical

decision-making.

1.6 APPLICATIONS OF AI IN HEALTHCARE

Artificial Intelligence has emerged as a transformative technology in modern healthcare
by enhancing diagnostic accuracy, improving the efficiency of clinical workflows,
supporting therapeutic decision-making, and enabling personalized treatment
strategies. Its applications span multiple domains of medical science, bringing
significant improvements in disease prediction, patient monitoring, drug development,

and clinical operations.

Al for Drug Discovery

Al significantly accelerates the drug discovery process by automating target
identification, predicting molecular interactions, and identifying potential compounds
for clinical investigation. Machine learning models analyze vast biochemical datasets
to repurpose existing drugs and explore novel therapeutic candidates. This reduces
development timelines and costs compared to conventional laboratory-driven
processes. Several leading pharmaceutical companies have adopted Al-driven
platforms for oncology, metabolic disorders, and immunotherapy research,

demonstrating its expanding role in next-generation drug development.
Al in Clinical Trials

Clinical trials involve extensive data management, patient selection, and monitoring,
often making them time-consuming and costly. Al supports these activities by
automating data processing, identifying suitable patient cohorts, predicting trial
outcomes, and improving trial design through real-world data (RWD) analysis.
Intelligent systems can clean, aggregate, and code clinical data with greater accuracy,

reducing manual errors. Al-driven models also enhance cooperation among research
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institutions by enabling secure data sharing, model transfer, and cross-institutional

analytics—thereby accelerating medical research.
Al for Patient Care

Al enhances patient care by analyzing clinical histories, identifying high-risk
individuals, and supporting personalized treatment pathways. Clinical intelligence
systems evaluate electronic health records to provide actionable insights for clinicians.
Examples include early detection tools for maternal health risks, Al-assisted monitoring
systems for chronic disease management, and predictive models that alert clinicians to
potential complications. These systems strengthen early intervention and improve

overall quality of care.
Healthcare Robotics

Al-driven robotic systems assist in rehabilitation, surgery, and patient support.
Exoskeleton robots improve mobility for individuals with spinal or neurological
impairments, while smart prosthetics offer enhanced precision and functional capability
through sensor-driven control. Robots equipped with Al also support post-surgical
recovery, physiotherapy, and assistive tasks, thereby improving patient autonomy and

reducing caregiver burden.

Genomic and Data-Driven Medicine

Genomic data analysis supported by Al enables personalized medicine by uncovering
genetic markers associated with disease susceptibility and treatment response.
Wearable health devices and biosensors continuously collect physiological data,
allowing Al algorithms to anticipate medical conditions, predict disease progression,
and recommend lifestyle or therapeutic adjustments. These advancements help

clinicians offer more targeted and individualized care.
Al-Enabled Diagnostic Tools

Al-powered diagnostic devices such as digital stethoscopes, smart imaging tools, and
pattern-recognition systems analyze physiological signals and medical images with

high accuracy. For example, Al can detect subtle abnormalities in cardiovascular
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sounds, radiology images, or laboratory data that may not be easily visible to human
experts. These tools enhance diagnostic precision, particularly in remote or underserved

regions where specialist availability is limited.

1.7 TYPES OF ARTIFICIAL INTELLIGENCE USED IN HEALTHCARE

Artificial Intelligence in healthcare is implemented through several computational
approaches that support data analysis, diagnosis, prediction, and clinical decision-

making. The most widely used Al types in medical applications include the following:

1. Natural Language Processing (NLP)

NLP enables computers to understand and process clinical text such as electronic health
records, physician notes, laboratory reports, and discharge summaries. It assists in
automated documentation, information extraction, clinical coding, and decision-

support tasks, improving workflow efficiency and reducing manual effort.

2. Machine Learning (ML)

Machine learning algorithms learn patterns from structured clinical data, enabling
disease prediction, risk assessment, and treatment optimization. ML is widely applied
in heart disease prediction, medical imaging, and drug safety analysis. Techniques such
as decision trees, SVM, and ensemble methods form the backbone of ML-based

healthcare analytics.

3. Deep Learning (DL)

Deep learning utilizes multi-layer artificial neural networks to analyze high-
dimensional data such as medical images, physiological signals, and genomic
sequences. Convolutional neural networks (CNNSs) support diagnostic imaging, while
recurrent neural networks (RNNs) and LSTM models assist in ECG signal

interpretation and temporal health data analysis.

4. Rule-Based Expert Systems

These systems use predefined medical rules (“if—then” conditions) to support clinical

decision-making. They provide interpretable recommendations for diagnosis and
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treatment pathways, especially in settings where historical clinical knowledge is

crucial.

5. Al-Driven Automation

Robotic Process Automation (RPA) and intelligent automation streamline
administrative tasks such as appointment scheduling, billing, insurance verification,
and report generation. This reduces workload on healthcare staff and enhances

operational efficiency.

1.8 SCOPE OF THE STUDY

The scope of the present study is clearly defined to ensure focused investigation, avoid
unnecessary expansion, and establish the specific boundaries within which the
proposed heart disease prediction framework is developed and evaluated. This research
concentrates on the design, optimization, and assessment of machine learning and soft
computing-based prediction models using the available patient dataset and selected
computational methodologies. The scope outlines the components included for analysis
as well as the areas intentionally excluded from this thesis.

1.8.1 Included Scope

Dataset and Study Population

This study uses the available dataset consisting of 303 patient records related to heart
disease. Detailed attribute descriptions, distributional characteristics, missing value
patterns, and ethical considerations regarding anonymization and data usage will be
presented in Chapter 3. All preprocessing steps applied to this dataset fall within the
defined scope of the research.

Data Preprocessing Procedures

The study includes data cleaning, handling of outliers, missing value imputation
through statistical or model-based techniques, normalization or standardization, and
encoding of categorical attributes. These steps ensure that the dataset is suitable for the

development of reliable prediction models.
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Feature Selection and Attribute Reduction

The research covers the application of multiple feature selection and reduction
techniques, including the Modified Firefly Algorithm (MFA), Particle Swarm
Optimization with Rough Sets (PSO-RS), and baseline attribute selection measures
such as mutual information and recursive feature elimination. The objective is to

identify compact and clinically meaningful subsets of predictive features.
Optimization Algorithms

This study investigates MFA, PSO-RS, and Orthogonal Chicken Swarm Optimization
(OCSO) for optimizing both feature subsets and classifier parameters. Their

performance, computational efficiency, and stability will be comparatively analyzed.
Classification Models

The primary classification models included in the study are RBF-SVM (optimized
using MFA and OCSO) and TSVM (optimized using PSO-RS). For benchmarking
purposes, classical machine learning methods such as logistic regression, standard

SVM, and random forests may also be employed to provide comparative evaluation.
Evaluation Metrics and Validation Strategy

The performance of the proposed models will be assessed using stratified k-fold cross-
validation, holdout validation, and repeated experiments where required. Standard
evaluation indicators such as accuracy, sensitivity, specificity, precision, recall, F1-
score, AUC, and calibration measures will be used, along with statistical significance

tests like paired t-tests or Wilcoxon signed-rank tests.
Interpretability and Clinical Reporting

The study includes interpretability analysis such as feature ranking, rule-based or
surrogate interpretive models, and discussion of clinical relevance of selected attributes.
Recommendations for presenting model outputs to healthcare professionals are also

part of the scope.
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Implementation and Feasibility Considerations

The study discusses computational requirements, algorithmic complexity, runtime
aspects, and potential integration pathways into clinical decision-support environments.

These considerations help evaluate the practical applicability of the developed system.

1.8.2 Excluded Scope

Large-scale Clinical Trials or Real-time Deployment

The study is limited to retrospective analysis using the provided dataset. Prospective
clinical trials, hospital-level deployment, or real-time integration into medical systems

are outside the scope of this thesis.

High-Dimensional Genomic or Raw Imaging Data

Unless such data are already represented within the available 303-sample dataset, high-
dimensional genomic information or raw medical imaging (such as DICOM image
processing) is excluded. Only structured or derived features present in the dataset will

be utilized.

Regulatory Certification and Legal Compliance Processes

While ethical data usage principles are acknowledged, detailed regulatory approval

activities required for medical device certification lie beyond the present study’s scope.

Commercial Product Development

The research focuses on algorithmic development and experimental validation rather

than commercialization or full production deployment of a medical device.

1.8.3 Assumptions and Limitations

This study assumes that the 303-patient dataset is representative of the population for
which the model is intended. As such, generalization to other populations should be
approached cautiously and validated separately. The moderate sample size may limit

the statistical strength for rare subgroups. Additionally, hybrid optimization models
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may achieve high predictive accuracy but may require supplementary interpretability

measures to ensure clinical acceptance.

1.9 THE FUTURE OF AI IN HEALTHCARE

Dr. Jehi states that research remains the area where artificial intelligence in healthcare
has the greatest potential. Through her clinical experience, she observed that Al still
has much to teach the medical community by uncovering patterns that humans cannot
easily perceive. As an expert studying epilepsy surgery, Dr. Jehi highlights how

machine learning is transforming traditional clinical decision-making.

Previously, surgeons relied on multiple clinical tests—brainwave recordings,
neuroimaging, and specialist interpretations—to determine the brain region responsible
for seizures. These decisions were largely based on individual clinical experience,
which limited the ability to generalize or compare across large patient groups. As a

result, treatment choices for new patients were made with limited collective knowledge.

Machine learning has now enabled the aggregation of patient data into unified
analytical systems. By centralizing and analyzing large volumes of clinical information,
Al helps physicians better understand disease patterns, compare treatment outcomes,
and make more informed decisions. Importantly, the clinical tests themselves have not

changed; rather, Al enhances the depth of insights extracted from these tests.

The goal of ongoing research is to develop more accurate Al-based prediction models
to support medical and surgical decisions in epilepsy and other conditions. Researchers
are working on simplifying these models so they can be integrated into routine clinical
workflows. Using machine learning, Dr. Jehi and her team have identified indicators
associated with surgical complications or recurrence, and automated systems for

detecting and localizing abnormal brain tissue are also in development.

Another area of interest is understanding how a patient’s genetic makeup and brain
characteristics influence seizure behavior and long-term surgical outcomes. Emerging
evidence suggests that genetics plays a significant role in determining the success of
epilepsy interventions. With Al and ML, researchers aim to study larger patient cohorts
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to uncover deeper relationships between clinical features, genetics, and treatment

response.

Overall, the future of Al in healthcare lies in combining clinical expertise with large-
scale data analysis to deliver more precise, personalized, and consistent care. Continued
research and model refinement will help translate these innovations into practical tools
that can meaningfully support clinical decision-making.

1.10 CHALLENGES AND OPPORTUNITIES OF USING AI FOR IMPROVING
HEALTHCARE

Artificial Intelligence (Al) has become an essential component of modern healthcare,
offering improved diagnostic accuracy, faster decision support, and enhanced
efficiency. However, despite these advantages, several challenges must be addressed
for Al systems to be integrated effectively and responsibly within healthcare settings.
These challenges arise from ethical, technical, organizational, and clinical factors and
directly influence the reliability, acceptance, and long-term sustainability of Al-driven

prediction systems.

A major concern relates to ethical and privacy issues, particularly around patient
autonomy, informed consent, and secure handling of sensitive medical information.
Since Al systems rely on large, high-quality datasets, ensuring privacy-preserving data
sharing and compliance with regulatory frameworks remains a critical requirement.
Healthcare data is often fragmented, incomplete, and non-standardized, leading to
difficulties in achieving high model performance, interoperability, and reliable

generalization across patient populations.

The rapid expansion of biomedical knowledge further challenges clinicians, as the pace
of new scientific insights exceeds their ability to manually interpret and apply them in
practice. Al tools can support this process, but their successful integration requires
robust validation and user-friendly interpretability. Additionally, the rise in
multimorbidity complicates the clinical decision-making process, as traditional single-
disease guidelines are insufficient, creating a need for advanced Al models capable of

managing complex interactions.
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Another major issue concerns the fairness, transparency, and explainability of Al
models. Bias in training datasets may produce unequal or inaccurate predictions for
certain demographic or clinical groups. Clinicians also require clear and interpretable
outputs to maintain trust and ensure appropriate use of model recommendations.
Responsibility and accountability for Al-generated decisions remain ambiguous,
raising concerns about professional liability, especially when Al errors might affect

patient outcomes.

On the technical side, many healthcare institutions lack the required computational
infrastructure and interoperable electronic health records needed for seamless Al
deployment. The “black-box” nature of advanced machine learning models further
limits adoption, as clinicians and administrators prefer systems that provide traceable
reasoning. Moreover, limited digital literacy within healthcare environments affects the

willingness and ability of practitioners to adopt Al-based tools.

Despite these challenges, Al presents substantial opportunities for transforming
healthcare. Predictive analytics can support early detection, risk stratification, and
timely intervention, thereby improving patient outcomes and reducing healthcare costs.
Al-driven decision support systems can enhance the efficiency of clinical workflows,
enable personalized treatment recommendations, and assist in managing complex or
high-volume data. When properly validated and implemented with strong ethical
safeguards, Al has the potential to support clinicians, strengthen diagnostic accuracy,
and contribute to more reliable and patient-centered healthcare systems.
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Fig. 1.2 Challenges in healthcare Al described.

1.11 THE BENEFITS OF USING AI IN HEALTHCARE AND HOSPITALS

Artificial intelligence (Al) refers to the capability of computational systems to perform
tasks that traditionally required human intelligence, such as speech recognition,
decision-making, and language translation. Machine Learning (ML), a major subfield
of Al, enhances this capability by enabling systems to learn from large datasets and
solve complex problems using data-driven algorithms. Together, Al and ML
significantly improve the efficiency and effectiveness of healthcare processes by
enabling rapid data processing, pattern recognition, and evidence-based insights.

Al technologies now support various areas of medical practice such as diagnostic
imaging, neurology, emergency care, and administrative services. These systems

analyze large clinical datasets in the background and enhance patient care even before
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individuals arrive at a healthcare facility. Their integration encourages clinical teams to

reconsider existing workflows and adopt more efficient, data-driven approaches.

In healthcare, Al systems have demonstrated the ability to interpret certain forms of
medical imaging—such as CT and MRI scans—with high accuracy. Al tools, including
emerging generative models, continue to evolve and show potential for contributing to

clinical decision-support systems, diagnostic interpretation, and predictive modelling.

Al is also being applied to accelerate biomedical research by enabling faster analysis
of high-dimensional data such as genetic sequences, molecular interactions, and
physiological markers. The increasing availability of biological data supports advanced
Al-driven methods that improve understanding of disease mechanisms and inform
diagnosis, treatment planning, and follow-up care. As healthcare continues to evolve,
these technological developments require clinicians to adopt new skills related to data
interpretation and computational tools.

Al-driven methods enhance diagnostic precision by offering rapid and accurate analysis
of medical images, allowing early identification of conditions such as fractures, cancer,
and vascular abnormalities. In time-sensitive cases such as stroke, accelerated

evaluation supports faster clinical decision-making and improved outcomes.

Rapid Diagnosis

Al algorithms can process imaging data with high speed and accuracy, enabling early
detection of abnormalities and reducing diagnostic delays. This leads to quicker
initiation of treatment, reduced patient anxiety, and improved overall satisfaction with

care.

Assistance in Surgery

Al-enabled robotic systems support minimally invasive surgical procedures by
enhancing precision and offering real-time feedback based on intraoperative data.
These systems assist clinicians in navigating complex anatomical structures and

reducing surgical risks.
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Improved Accessibility of Care

Al-enabled telemedicine platforms expand access to healthcare services for individuals
in remote or underserved areas. Through virtual consultations, automated symptom
guidance, and remote monitoring, patients can receive timely clinical support without

geographical limitations.
Patient Support and Self-Management

Al-powered chatbots and virtual assistants help patients manage health-related tasks by
providing reminders, answering queries, and suggesting self-care practices. These tools

support patient engagement and continuity of care outside traditional clinical settings.

1.12 USE OF AI IN HEALTHCARE

What we have discussed so far is how Al is bringing about change and improvement in
the healthcare sector. Next, we'll look at several practical applications of Al in

medicine:

Collaborative effort and making choices: It is essential for healthcare practitioners to
work together in teams in today's healthcare systems. This calls for open and honest
communication, team decision-making, coordinated activities, and regular evaluations
of success. As mentioned in, Al chatbots may help with medical appointment
scheduling and coordination, reminders, and symptom-based condition notification to

clinicians.

As previously said, technological breakthroughs such as health monitoring systems
powered by artificial intelligence may greatly benefit the elderly. These systems
guarantee prompt delivery of treatment, free up healthcare practitioners to give more
comprehensive care outside of regular office hours, and encourage self-management.
For instance, as mentioned in, sensor technology may streamline self-monitoring for
heart failure patients by using user-friendly gear. There are a number of health-related
technologies that might manage medical students' and practitioners' laboratory
procedures. As stated in, a virtual reality simulator may help inexperienced surgeons
hone their skills in a controlled environment, where they can rehearse treatments in

advance and plan for any contingency, ultimately leading to safer, more accurate
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surgeries. Furthermore, as previously said, the public's view of healthcare is evolving
due to technological developments. As previously mentioned, Al is also finding
applications in the control of processes, image analysis, virtual assistants, robotic
surgery, and clinical decision support. Possibilities in artificial intelligence are detailed
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Fig. 1.3 Potential applications of artificial intelligence in healthcare.

Better patient outcomes and lower healthcare costs are the benefits of early illness
identification and progression tracking made possible by artificial intelligence (Al) in
the context of personalized medicine and predictive analytics. Also, Al may help with
therapy development, which is great for healthcare innovation and research. There are
several unique prospects for the use of Al to greatly enhance the efficacy and efficiency
of patient care. To better understand which patients are most likely to experience a

decline in health and which ones are more at risk of problems, predictive analytics may
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be used. Healthcare practitioners may enhance patient outcomes and forestall the

development of serious conditions by acting early.

Pharmaceutical research and development: AI offers enormous promise for
streamlining and improving pharmaceutical research and development. The possibility
of using virtual screening to examine massive volumes of data on medication
interactions and discover novel therapeutic targets is one such option. This has the
potential to significantly shorten the time it takes to find new drug candidates, which
in turn may reduce the cost of drug development. Also, Al may look at data on
medication prospects to find the best compounds to develop further and look into ways

to repurpose current pharmaceuticals for new applications.
1. Al in Drug Discovery and Development

There would be no healthcare system without the pharmaceutical business. Being a
leading beneficiary, their work in medicine development enables clinicians to treat

patients, which has the potential to save lives.

One of the most prominent applications of artificial intelligence (Al) in healthcare is
the pharmaceutical industry's heavy investment in R&D for the purpose of finding and
creating new medications. Aurtificial intelligence (Al) technology may greatly improve
the speed and efficiency of the pharmaceutical drug development pipeline, which is

now characterized by a high reliance on human labor.

The first medication to be completely Al-designed has made it to human clinical trials,

thanks to generative Al-driven biotech businesses like Insilco Medicine.

Here are a few important points that point to the significant role that Al may play in

the pharmaceutical industry:

« Atrtificial intelligence systems can sift through mountains of biological data, such
as genetic sequences, molecular models, and results from clinical trials, to find new

medicines.

o It is possible to precisely identify the disease targets using Al-based predictive
modeling tools. It makes it easier to analyze patient data, such as genomes and clinical

records, in order to create customized medicines that are specific to each patient.
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« By allowing the repurposing of pharmaceuticals via the examination of current
drugs' chemical structures and biological effects, this method significantly reduces the

time spent producing new treatments.

« Al models may analyze the chemical qualities and biological interactions of drug
candidates, anticipate their possible side effects, and eliminate the possibility of safety
concerns during clinical trials, all with the goal of lowering the risk of toxicity and bad

consequences.

« Finally, artificial intelligence is changing the face of clinical trials by making
"digital twins,” or digital copies, of each patient. All of them act as living computer
models that mimic normal and abnormal human physiological and pathological
functions. It allows for predictive and tailored insights all the way through a clinical

study.
2. Al in Personalized Medicine

Precision medicine, sometimes called customized medicine, is an alternative to
traditional medicine's one-size-fits-all approach. It entails creating a unique treatment
plan for each patient by examining their medical history, genetic information, lifestyle

choices, and other relevant data.

Unlike conventional medicine, which primarily aims to alleviate symptoms, precision
medicine tailors its approach to each patient based on their unique requirements. To
enhance treatment results while minimizing unwanted effects, a data-driven strategy is

used, which involves assessing numerous factors concurrently.

In addition, by using wearables or remote sensors, real-time monitoring provides
ongoing insights on the patient's health condition and response to therapy. Improving
patient care is made possible by prompt interventions and modifications to treatment

regimens.
3. Al in Medical Imaging

When evaluating a wide range of medical images—including X-rays, MRIs, CT scans,
ultrasounds, and more—the precision of the diagnosis is crucial. Even while

radiologists are quite good at interpreting these pictures, they are still human and may

41



make mistakes. Furthermore, this procedure may be laborious, particularly in cases
when picture anomalies need meticulous examination to precisely pinpoint the root

cause.

To teach Al to correctly identify patterns or irregularities, however, hundreds of photos
with varied issues are sent into the system. They won't be able to take the position of
radiologists entirely, but they may help them save time and be more precise in their

diagnosis by catching every information that has to be considered.
4. Al in Genomic Medicine

With genetic medicine, Al elevates individualized therapies to a whole new level. To
begin, genetic data is very complicated and contains a large quantity of information;

thus, sophisticated computing techniques are required for its analysis.

Consumption of time will persist even with these instruments. Al-powered algorithms
sift through the available genomic data in search of genetic markers linked to certain

features, illnesses, or treatment reactions.

In addition, clinicians may use genetic data to create prediction models that Al can use
to determine an individual's susceptibility to particular illnesses or the effectiveness of
certain therapies. This enables them to suggest better lives or targeted medical

treatments to lower the likelihood of certain illnesses.
5. Al in Robotic Surgery

My imagination immediately goes to a sci-fi scenario where surgeons use robotic arms
controlled by a computer to do less intrusive and more accurate procedures on patients.
I am no longer dreaming about this. While operating from a control console, surgeons

are assisted by surgical robots such as the da Vinci Surgical System.

Both patients and physicians favor minimally invasive techniques that are precise
because they increase the success rate of surgery. Improved patient outcomes are the
end result of robotic surgical systems driven by artificial intelligence that allow

surgeons to execute complicated operations with more accuracy, efficiency, and safety.
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6. Al in Patients’ Assistance

Virtual assistants like this simplify healthcare for everyone involved. The function of

a virtual assistant is as follows:

o They aid patients by responding to inquiries, serving as gentle reminders, and

giving emotional support.

o They help with appointment scheduling, patient record organization, and enabling

easy access to medical information, among other things.
e They make healthcare information and resources easily accessible to patients.

» Using the data collected from your wristwatch, they may assess your activity levels

and provide advice on how to maintain a healthy lifestyle.
7. Al in Oncology

In addition to other uncommon illnesses, cancer is one that might benefit from Al's use
in both diagnosis and medication development. An example of an Al application in

oncology might be:

. Recognition (of kinds, stages, and health issues) or accurate/early diagnosis
using precise analysis of medical pictures (e.g., CT scans, X-rays, MRIs, and more).

. Creating an individualized treatment strategy by sifting through mountains of

data on a patient's health, genetics, pathology findings, and more.

. Analytics that may foretell the patient's reaction to drugs, side effects, and other
factors related to the chosen chemotherapy treatment or alternatives.

. Tailored suggestions for cancer treatments, including kinds of treatments, dose
quantities, and more, to maximize therapy efficacy with minimum risk of adverse

effects and drug overexposure.
8. Al in Remote Patient Monitoring (RPM)

Using Al for RPM is like knowing what's happening in your hour, except instead of

you, healthcare providers can know your vitals like blood pressure, respiratory rate,
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and more from anywhere thanks to the internet of things. We've already seen the power

of the internet of things.

A smartwatch or other wearable device may monitor the vitals that are specifically
being monitored by a healthcare professional, as well as general vitals that provide a
picture of the patient's health as a whole, such as blood pressure and heart rate. An Al-
powered mobile app is synced with the devices and scours the gathered data for any

suspicious patterns.

The tool also provides doctors with access to these datasets. The app will notify the
doctor if it detects anything suspicious, either via pattern analysis or any unexpected
increases from the patient's specific baselines. This will allow the doctor to promptly

address the matter.
9. Al in Mental Health Support

When it comes to Al and healthcare, it's not just about physical health; Al has also

proven very beneficial for mental health.

Many people with mental health concerns go undiagnosed or untreated until it's too
late, which may have devastating consequences, including terrible results like suicide.
People with mental health issues may suffer in silence for a variety of reasons,
including a lack of understanding about the gravity of their disease and the stigma

associated with seeking treatment.

Consequently, family ones and healthcare professionals may be ignorant of the
individual's challenges until the problems reach a critical stage, at which time it is too

late to do anything about it.
A few key points illustrating the applications of Al in mental health are as follows:

e Algorithms trained by machines may spot trends that can indicate mental health

issues like bipolar disorder, depression, or anxiety, allowing for quicker treatment.

o People dealing with mental health issues have constant access to virtual assistants

and chatbots driven by artificial intelligence.
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« Artificial intelligence systems assess a person's propensity for suicidal thoughts and
actions by analyzing risk variables such social isolation, drug misuse, past suicide

attempts, and behavioral changes.

« Natural language processing tools powered by artificial intelligence examine audio
and text recorded during counseling, support group, and therapy sessions to derive

valuable insights on patients' attitudes, feelings, and treatment outcomes.
10. Al in Clinical Documentation

In a hectic medical practice, doctors waste time that might be better spent diagnosing
patients by typing or, worse, writing down details about their symptoms, medical

history, and possible treatments.

The doctor-patient communication may be transcribed and analyzed by online or
mobile apps or even search engine extensions that use artificial intelligence to suggest

possible treatment plans.

Our team recently developed on a feature called "Scribe™ that incorporates Al into
clinical documentation as part of our project Sully.ai, an Al-powered all-in-one tool for
physicians. It goes so far as to provide (or rather produce) a clinical strategy for the

physicians after the diagnosis is made.
11. Al in Fraud Detection

With its share of false invoices, needless treatments, and other forms of insurance claim
fraud, the healthcare industry is a major player on a worldwide scale. Medical
providers and hospitals submit hundreds of claims to healthcare insurance companies
daily for services rendered to patients. These firms are finding it more challenging to

identify warning signs due to the high volume.

In order to identify any fraud, Al-powered fraud detection software compares the
provided facts to the claim and looks for warning signs. When it detects claims that
don't add up, it notifies the relevant insurance agency to look into them further. The

insurance firm saves a significant amount of money by taking this proactive strategy.
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1.13 CHAPTER SUMMARY

Chapter 1 provides the foundational context for the study by outlining the growing
role of Artificial Intelligence (Al) in modern healthcare and its potential to transform
diagnostic processes, predictive modelling, and patient care. The chapter highlights
the increasing burden of cardiovascular diseases and the limitations of traditional
diagnostic approaches, establishing the need for more accurate, data-driven prediction
systems. It also emphasizes why Al, with its ability to identify complex nonlinear
relationships in clinical data, is well-suited for improving heart-disease prediction

accuracy and supporting early clinical interventions.

The chapter clearly identifies the rationale of the study, the problem addressed, and
the specific research gaps in existing literature—such as inefficient feature selection,
incomplete handling of uncertain data, limited parameter optimization, and lack of
interpretable models. Based on these gaps, the objectives of the research are defined,
focusing on developing optimized predictive models using hybrid algorithms like
MFA, PSO-RS, and OCSO integrated with RBF-SVM and TSVM classifiers.

Furthermore, the chapter discusses the scope, assumptions, limitations, challenges,
and benefits associated with Al applications in healthcare. It also introduces the wide
range of Al-enabled tools and techniques being used across clinical domains. Overall,
Chapter 1 establishes the motivation, significance, and direction of the thesis,
providing a clear platform for the detailed methodology and experimental design
presented in subsequent chapters.
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CHAPTER-2

LITERATURE REVIEW

This chapter presents a concise and structured review of existing research on artificial
intelligence (Al) and machine learning (ML) in healthcare, with emphasis on predictive
modelling for cardiovascular disease. The selected studies demonstrate how Al has
evolved from basic computational techniques to advanced clinical decision-support
systems capable of analyzing complex medical data. By examining past work on
diagnostic applications, predictive analytics, optimization algorithms and healthcare
informatics, this review identifies the strengths, limitations and research gaps in current
Al-based healthcare solutions. These insights form the foundation for the proposed

optimized predictive models developed in this study.

Jiang et al. (2017) describe artificial intelligence (Al) as the emulation of human
cognitive capabilities such as learning, reasoning, and decision-making through
computational models. Their work documents some of the earliest Al systems deployed
in oncology, neurology, cardiology, and stroke care, demonstrating that Al can analyse
structured clinical databases as well as unstructured information such as radiology
reports and physician notes. The authors show that these systems significantly improve
diagnostic confidence and prognostic estimation while reducing manual workload.
However, they also emphasise key challenges including model interpretability,
integration into clinical workflows, and the need for continuous validation to ensure

reliability across diverse patient populations.

Yu et al. (2018) provide a broad and foundational review of advances in Al and their
biomedical applications, noting how progress in machine learning algorithms, digital
records, and high-resolution biomedical sensors has enhanced clinical decision support.
Their work highlights that Al can uncover subtle, nonlinear relationships in high-
dimensional datasets—an essential capability for complex diseases such as
cardiovascular disorders. Nevertheless, the authors caution that large-scale adoption
requires addressing regulatory constraints, ethical considerations, data privacy issues,
and the financial burden associated with deploying Al technologies in clinical

environments.
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Murali et al. (2018) position Al as a rapidly expanding subfield of computer science
that increasingly outperforms human experts in specialised diagnostic tasks. Their
review underscores applications in neurological disorders, diabetes, cardiovascular
disease, and various cancers, showing how Al models can detect nuanced trends within
patient data and identify early indicators of disease. However, they argue that despite
the promising performance, robust clinical validation and transparent model behaviour

are critical prerequisites for safe clinical integration.

Haleem et al. (2019) identify five major Al technologies—machine learning, natural
language processing, robotics, expert systems, and deep learning—and summarise their
ten key applications within healthcare. These include clinical decision support,
personalised therapy selection, infection surveillance, hospital workflow optimisation,
and predictive analytics. Their findings show that Al enhances decision-making in
complex clinical situations, but they also emphasise the need for clinician acceptance,

training, and strong governance frameworks to ensure responsible deployment.

Bohr et al. (2020) highlight how big data and machine learning permeate modern
healthcare, supporting tasks across the full value chain—from patient registration and
administrative documentation to image analysis, predictive diagnostics, and ambient
assisted living. They argue that Al systems augment human capabilities rather than
replace clinicians, enabling them to make faster, more informed decisions while

reducing cognitive overload.

Tadiboina et al. (2021) extend this view by examining Al adoption across the life
sciences industry, healthcare providers, and insurance payers. They describe the diverse
uses of Al in administrative automation, patient engagement, therapeutic adherence
monitoring, diagnostic recommendations, and claims management. Their work
concludes that while Al will primarily complement healthcare professionals, several
operational roles will undergo substantial transformation due to automation and

predictive analytics.

Reddy et al. (2020) describe the broader ecosystem of Al in healthcare, discussing its
applications in medical diagnosis, population health monitoring, genomic prediction,
and administrative optimisation. They report significant investments by governments,

universities, and technology firms into Al-driven health innovations. However, they
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also emphasise that many stakeholders still lack clarity regarding AI’s limitations,
operational requirements, and ethical implications, which remain barriers to widespread

adoption.

G.M. et al. (2021) define healthcare Al as “augmented intelligence,” highlighting its
purpose of supporting rather than replacing clinicians. Their review covers Al
applications for diagnosis, prognosis, and therapy planning, as well as advanced
algorithms for medical image processing, feature extraction, and patient-care
optimisation. Their findings support the growing consensus that Al can enhance
diagnostic speed, reduce variability in interpretation, and improve patient outcomes
when appropriately integrated.

Raj et al. (2023) present Al as a rapidly maturing discipline capable of transforming
multiple domains of healthcare, including cancer detection, neurological assessment,
cardiovascular disease prediction, and diabetes management. They also demonstrate
that Al can accelerate drug discovery pipelines, clinical trials, and personalised

treatment recommendations by efficiently analysing large biomedical datasets.

Within this broad landscape, the present research specifically targets Al-based
predictive systems for cardiovascular disease, focusing on optimised SVM and TSVM
classifiers enhanced through Modified Firefly Algorithm (MFA) and Particle Swarm
Optimization (PSO) for attribute reduction. Unlike many of the reviewed studies that
discuss Al generally, this work develops and evaluates hybrid optimisation-driven
classification models using structured clinical datasets (1000-5000 records from the
Cleveland Heart Disease Dataset). The goal is to enhance diagnostic accuracy,
minimise false positive/negative rates, and provide clinicians with a reliable,

interpretable tool for early heart disease detection and personalised risk assessment.

Jimma et al. (2023) conducted a bibliometric analysis of 5,019 Al-in-healthcare
publications from 2000 to 2021 and reported an exponential surge in research output
after 2012. This rapid growth was driven by advances in machine learning, electronic
health records, natural language processing and the increasing availability of clinical
data. They note that major disease areas—COVID-19, diabetes, mental health and

cancer—dominate global publications, demonstrating Al's expanding relevance across
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clinical domains. Their findings show how Al research has transitioned from isolated

pilot experiments to a core component of mainstream medical innovation.

Amit et al. (2022) reviewed more than 4,000 Al-healthcare papers published in 2021,
mapping the field’s evolution into three major hotspots: predictive analytics, medical
imaging and clinical decision support systems. Their analysis indicates that Al models
increasingly focus on early detection, risk stratification and automated diagnosis—all
of which align closely with the predictive modelling goals of the present research. The
breadth of methodological experimentation they document (e.g., SVMs, deep learning,
hybrid approaches) reflects the same direction pursued in this thesis through MFA-
optimised RBF-SVM and PSO-optimised RBF-TSVM.

Nkhoma et al. (2024) examined the economic and strategic potential of generative Al,
estimating nearly one trillion dollars of unrealised global value. They argue that
generative Al and advanced ML models will reshape patient communication, clinical
documentation and workflow automation as part of the transition to Industry 4.0 and
5.0 healthcare systems. Their conclusions reinforce the need for Al systems capable of
improving efficiency and decision-making—an outcome demonstrated in this thesis,
where the hybrid MFA-RBF-SVM and PSO-RBF-TSVM models achieve superior
accuracy, sensitivity and specificity for heart-disease prediction compared with
traditional IT2FLS.

Panch et al. (2018) link the rise of Al to global pressures such as ageing populations,
rising healthcare expenditure and productivity deficits. They suggest that intelligent
systems could make healthcare more equitable and sustainable by supporting universal
health coverage and improving clinical responsiveness. However, they caution that
poor deployment may replicate past failures of digital health initiatives. Their
discussion highlights the need for validated, interpretable and robust predictive
models—criteria addressed in this thesis by systematically comparing IT2FLS with two
Al-optimised models that significantly reduce FPR and FNR across multiple dataset

sizes.

Adeoye et al. (2024) review Al's expanding role in modern medical practice, including
diagnostic classification, therapy recommendation and patient interaction systems.

They show that machine-learning algorithms often outperform human decision-making
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in narrow clinical tasks—but emphasise ongoing issues such as bias, confidentiality
and the need for clinician oversight. Their findings align with the methodological focus
of this research: deploying supervised learning models such as RBF-SVM and TSVM,
enhanced through MFA and PSO, to improve reliability while reducing

misclassification in heart-disease prediction.

The present thesis directly contributes to this global trend by developing and validating
two advanced Al-based predictive methods MFA-RBF-SVM and PSO-RBF-TSVM
specifically for heart-disease prediction. The results show measurable improvements
over the baseline IT2FLS in accuracy, sensitivity, specificity, and error-rate reduction
(FPR and FNR), demonstrating how optimisation-enhanced ML models can strengthen

predictive healthcare systems aligned with worldwide Al developments.

Alloghani et al. (2020) explain that healthcare data exists in heterogeneous formats
such as medical images, physiological signals, clinical text and structured EMR
databases. This diversity necessitates the use of multiple ML techniques including
CNNs, deep learning models, SVMs and traditional neural networks. Among these,
SVMs remain widely used for disease diagnosis in areas such as stroke, cancer and
neurology, often achieving accuracy levels comparable to expert clinicians. This
observation aligns with the present thesis, where RBF-SVM and RBF-TSVM serve
as the core classifiers, strengthened through MFA and PSO to enhance diagnostic

performance for heart disease.

Agarwal et al. (2022) provide an overview of Al, ML and deep learning, emphasising
their ability to recognise complex patterns within high-dimensional clinical datasets.
They also outline the importance of ML and NLP-based systems in disease detection
and classification. Their discussion supports the methodological motivation in this
research: adopting optimised machine-learning pipelines to improve prediction

accuracy, minimise errors and enhance interpretability in clinical settings.

G. M. et al. (2021) distinguish between major Al algorithms, detailing feature
extraction, selection techniques and disease-specific applications. They highlight the
necessity of proper preprocessing and model-tuning strategies—principles applied

directly in this thesis through min—-max and Z-score normalization, attribute
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reduction using MFA and PSO, and model calibration for SVM and TSVM

classifiers.

Furizal et al. (2023) review ML in disease prediction and personalised therapy,
demonstrating that CNNs, SVMs, RF, k-NN and DT often exceed 90% accuracy in
cancer detection and classification tasks. They note that high performance depends
strongly on high-quality labelled datasets and appropriate feature selection. This aligns
with the findings of the present study, where MFA-based and PSO-based attribute
reduction improved classification performance across all dataset sizes by removing

redundant and weakly correlated clinical attributes.

Nikam et al. (2024) compare deep learning and classical ML for analysing EHRs,
imaging and omics data. They observe that deep learning captures non-linear
relationships effectively but requires significant computational power and strong
regularisation to avoid overfitting. Their analysis highlights why SVM-based classifiers
remain relevant and efficient for structured clinical data such as the Cleveland Heart

Disease Dataset used in this thesis.

Mavani et al. (2024) conduct a review of Al for disease prediction and personalised
medicine, identifying persistent limitations such as biased datasets, insufficient external
validation and regulatory ambiguity. Their observations reinforce the methodological
rigor adopted in this thesis—evaluating models across multiple dataset sizes (1000—
5000 records) and comparing three independent classification systems (IT2FLS, MFA—
RBF-SVM and PSO-RBF-TSVM) to ensure reliability and generalisability.

Garg et al. (2022) investigate hybrid swarm-intelligence algorithms in healthcare
analytics, showing how optimisation methods such as firefly, PSO and OCSO improve
model efficiency by navigating complex parameter spaces. Their findings directly
support the hybrid approach proposed in this thesis, where Modified Firefly Algorithm
(MFA) and PSO significantly enhance SVM/TSVM performance, resulting in higher
accuracy, sensitivity, specificity and lower FPR/FNR compared to the baseline IT2FLS

method.
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Datta et al. (2019) describe the growing use of Al in prediction, diagnosis, treatment
planning and chronic disease management, demonstrating how computational models
can identify clinically significant associations within complex biomedical data and
support experimental decision-making. Haleem et al. (2019) emphasise Al’s role in
clinical decision support across ten high-impact use cases, including infection
monitoring, personalised therapy and automated digital examination, showing its

potential for improving the accuracy and speed of clinical assessments.

Sharma et al. (2020) review AI’s evolution in healthcare diagnostics, including its
contributions to medical imaging, drug discovery and disease prediction. They
highlight the substantial accuracy gains achieved by Al models, while underscoring the
need for ethical integration, data privacy protection and clinician trust. Eskandar et al.
(2023) add that modern Al systems exceed 90% accuracy in radiological disease
identification through advanced segmentation and classification methods, although

they warn that narrow training datasets may compromise generalisability.

Francis et al. (2023) expand on Al systems deployed for cancer lesions, lung nodules,
thyroid abnormalities, COVID-19 detection and dermatological analysis using
multimodal imaging such as MRI, CT and histology. They also highlight AI’s emerging
use in psychotherapy and neuropsychiatric care, revealing the depth and diversity of
diagnostic applications. Similarly, Joseph et al. (2023) show how ML-based diagnostic
imaging tools assist clinicians by detecting subtle anomalies earlier than conventional

methods, improving both diagnostic precision and intervention timelines.

Frank et al. (2024) discuss the convergence of machine learning, NLP and computer
vision in advancing diagnostic accuracy, case management and automated reporting.
They note that while these systems enhance workflow efficiency, they raise ethical
concerns regarding bias, fairness and privacy. Khinvasara et al. (2024) link Al-driven
analytics with big data and EHR systems, which enable improved disease prediction,
outcome modelling and personalised treatment plans, while emphasising responsible
governance. Jadhav et al. (2023) further demonstrate AI’s value in early disease
detection and predictive modelling, including through virtual health assistants that

extend diagnostic capabilities beyond clinical environments.
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Khinvasara et al. (2024) highlight Al in healthcare analytics, linking big data, deep
learning and EHRs to improved diagnosis, outcome prediction and customised
treatment. They emphasise that biases and privacy concerns must be actively managed
for Al to be responsibly deployed in medical imaging and beyond.

Jadhav et al. (2023) discuss AI’s contributions to image-based diagnosis and
predictive modelling, stressing that Al tools can assist in early detection across a range
of conditions. They also show how Al-driven virtual health assistants extend diagnostic

support beyond traditional clinical settings.

For this thesis, these diagnostic and imaging advances motivate the use of Al classifiers
capable of early and accurate risk prediction for heart disease, even when working with

tabular clinical data rather than images.

Naqvi et al. (2023) position artificial intelligence as a foundational pillar for achieving
the healthcare “quadruple aim”—enhancing population health, improving patient and
provider experience, and reducing overall costs. Their work highlights how predictive
analytics supports early diagnosis, treatment planning and administrative optimisation,
while underscoring the necessity of trustworthy, transparent and safe Al systems in
clinical settings. This perspective aligns strongly with the goals of heart disease
prediction, where accurate early detection directly contributes to improved outcomes

and reduced long-term healthcare burden.

Shuford et al. (2024) place considerable emphasis on Al-driven predictive analytics
and intelligent decision-support systems. They show that machine learning models
leveraging patient-specific clinical data can forecast health outcomes, personalise
treatment pathways and enable continuous remote monitoring. However, they stress the
importance of responsible deployment, noting that predictive systems must comply

with ethical standards, regulatory policies and model transparency requirements.

Ali et al. (2024) further explore Al-based risk prediction, resource optimisation and
therapy planning. Their findings indicate that early disease identification through Al
significantly improves clinical outcomes while lowering healthcare expenditure.

However, they caution that prediction models must undergo rigorous validation,
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fairness testing and bias mitigation to ensure reliability—principles that guide the

validation strategy in the present thesis.

Walter et al. (2024) expand the discussion by examining Al and ML in preventive
medicine, particularly for early detection of conditions such as heart disease, diabetes
and various cancers. They describe the growing influence of wearable devices and
continuous monitoring systems that feed real-time data into predictive models. They
also highlight ethical concerns surrounding surveillance, patient autonomy and data

privacy, issues relevant to Al deployment in large-scale screening programmes.

Babu et al. (2024) focus specifically on predictive analytics for disease detection,
showing how ML and DL algorithms extract patterns from multimodal data—EHRS,
imaging, genomics and clinical variables—to forecast disease progression and support
personalised treatment planning. They note that integration into clinical workflows
remains challenging due to interoperability, clinician acceptance and model
interpretability.

Nnamdi et al. (2024) emphasise predictive analytics as a catalyst for improved resource
allocation and enhanced patient outcomes. They demonstrate how Al models can
reduce hospital readmissions, prevent complications and support timely interventions.
Such benefits are particularly relevant to cardiovascular risk prediction, where early
identification of high-risk individuals can reduce mortality and long-term healthcare

expenditure.

Hossain et al. (2024) contribute an economic perspective, showing that Al-based
predictive systems can reduce operational costs by approximately 25% and lower
readmission rates by 15-20% when integrated into hospital workflows. Their findings
support the financial viability of deploying predictive analytics systems, which is
important when considering real-world adoption of heart disease prediction models like
MFA-RBF-SVM and PSO-RBF-TSVM.

Yasmeen et al. (2024) explore the role of Al in improving healthcare prediction
through personalised treatment pathways and chronic disease monitoring. They present

case studies where ML algorithms significantly enhance management of long-term
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diseases, but they also highlight risks associated with algorithmic bias and over-reliance

on automated systems.

Pasupuleti et al. (2024) discuss Al and big data analytics in predictive healthcare,
covering early diagnosis, personalised treatment, robotic surgery and remote patient
monitoring. They emphasise the importance of data governance frameworks such as
GDPR and HIPAA, particularly when Al models rely on sensitive clinical information.

Finally, Walter et al. (2024) and Bobet et al. (2024) extend predictive analytics into
chronic disease management, illustrating how continuous monitoring and long-term
prediction models can identify deterioration early, guide preventive interventions and
reduce complications. Their findings reinforce the value of predictive modelling in

diseases like cardiovascular disorders, where early intervention is often life-saving

Pallavi et al. (2022) discuss the expanding role of artificial intelligence within digital
health ecosystems, particularly in clinical decision support systems (CDSS) and
medical imaging applications. Their review demonstrates how Al-driven tools enable
clinicians to rapidly access patient-specific evidence and enhance diagnostic accuracy
by detecting subtle imaging patterns that may not be easily visible to human experts.
These capabilities proved especially valuable during the COVID-19 pandemic, when

rapid and reliable diagnostic support was essential.

Hasan et al. (2023) examine Al within the broader domain of health informatics, which
includes health information systems, telemedicine, consumer health informatics and
cybersecurity. They emphasise that Al facilitates participatory healthcare by
strengthening communication between patients and clinicians, and by enabling
personalised, data-driven decision-making. However, they underline that issues related
to privacy, data governance and secure data-sharing frameworks remain central

challenges for widespread adoption.

Adrah et al. (2024) focus on Al applications in health information systems, including
CDSS, virtual assistants and predictive analytics platforms. They draw attention to the
need for responsible and transparent Al—advocating for fair machine learning,

federated learning and bias-aware algorithms—particularly in light of vulnerabilities
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exposed during the COVID-19 crisis. They argue that trust, explainability and

governance frameworks must develop in parallel with technical innovation.

Kejriwal et al. (2022) analyse the exponential growth of healthcare data generated
through EHR systems, imaging modalities and clinical treatment protocols. They
describe how Al, robotics, 10T and deep learning tools can automate routine processes,
enhance data organisation and reduce clinician workload. Nevertheless, they insist that
human oversight is essential to ensure that automated systems remain clinically safe,

explainable and ethically sound.

Saxena et al. (2024) explore Al and big data analytics in mobile health (m-health),
showing how large volumes of sensor-generated and behavioural data from
smartphones and wearable devices can support personalised interventions, genetic
therapy and continuous remote monitoring. They note that such systems face
computational and data-quality challenges, often requiring sophisticated preprocessing
and optimisation techniques—an area directly relevant to the optimisation strategies

used in this thesis.

Khan et al. (2020) present a systematic review of Al-enhanced m-health systems,
particularly in resource-constrained settings. They propose Al-driven models for
efficient resource management, improved data routing and informed decision-making
in mobile environments. Their findings show that Al can significantly enhance the
reach and scalability of healthcare services, making it a viable option for remote

diagnostics and chronic disease monitoring.

Tak et al. (2024) examine Al-enabled EHR systems in the United States, demonstrating
how Al reduces the documentation burden, improves interoperability and generates
real-time predictive alerts indicating patient deterioration or risk of complications.
Their work highlights the need to address ethical issues such as algorithmic bias and

unequal access, ensuring that predictive systems benefit all patient groups equally.

Chen et al. (2024) emphasise Al’s transformative role in telemedicine and remote
patient monitoring. Their study shows that predictive analytics enhances proactive care
by identifying patterns of deterioration before symptoms escalate. They argue that Al-
enabled telehealth platforms improve access and efficiency, especially for populations
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with limited mobility or access to traditional clinical services, but they also stress the

importance of governance frameworks for deployment at scale.

Iseal et al. (2024) investigate intelligent tools integrated into hospital management
systems (HMS), including Al-based scheduling, patient-flow optimisation and resource
allocation systems. Their findings demonstrate that Al can substantially enhance
operational efficiency, reduce waiting times and improve hospital throughput.
However, they note that successful adoption requires investment in digital

infrastructure, workforce training and change management strategies.

Roy et al. (2020) examine the deployment of Al within the Indian healthcare
ecosystem, with a particular focus on enhancing access to affordable and quality care
across rural and underserved regions. Their analysis shows that Al is increasingly used
across descriptive, predictive and prescriptive analytics, supporting tasks such as
outbreak detection, triaging, diagnosis and treatment planning. However, they
emphasise that India requires stronger ethical and regulatory frameworks addressing
consent, risk, bias and data integrity—issues that directly shape the responsible use of

Al-based predictive models such as those developed in this thesis.

Anwar et al. (2022) provide a multi-domain review of Al applications in radiology,
cardiology, ophthalmology and drug development. They illustrate how Al improves
precision in diagnostics and therapeutic planning by mimicking core cognitive
functions such as perception and reasoning. Their findings demonstrate that Al not only
assists clinicians in identifying diseases but also enhances records management and
workflow efficiency, reinforcing AI’s dual role in both patient-facing and

administrative healthcare operations.

Bobet et al. (2024) focus specifically on chronic disease management—especially
diabetes and cardiovascular disease—where predictive analytics plays a key role. They
highlight how continuous data from EHRS, wearable sensors and remote monitoring
platforms enables early detection of risk conditions, personalised interventions and
long-term disease management. These insights strongly align with the objectives of this
thesis, which uses Al models (MFA-RBF-SVM and PSO-RBF-TSVM) to predict heart
disease risk with higher accuracy, thereby supporting earlier intervention.
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Walter et al. (2024) (as discussed in Section 2.5) emphasise AI’s importance in
preventive strategies, particularly for chronic illnesses such as heart disease, cancer and
diabetes. Their review shows that Al can detect early-risk patterns before symptoms
manifest and can personalise preventive measures. This supports the rationale for using
Al-based classifiers in cardiovascular risk prediction, where early detection

significantly impacts patient outcomes.

Chanchaichujit et al. (2019) analyse the role of Al in tuberculosis (TB) control and
management through a case study in Thailand. They demonstrate how Al optimises TB
diagnosis, enhances patient screening and improves public health surveillance.
Although TB is a different domain, their work reinforces the broader capability of Al
to support large-scale health monitoring and strategic health planning—an approach

that can be extended to cardiovascular disease prediction systems.

Islam et al. (2024) present a broad review of Al applications across medical imaging,
virtual care, rehabilitation, drug discovery and EHR management. They identify major
ethical and social issues such as privacy, fairness, autonomy and transparency, arguing
that effective governance mechanisms are crucial for the sustainable use of Al in
healthcare. Their emphasis on governance is relevant to this thesis, which also relies on

sensitive clinical data and must adhere to ethical standards for predictive modelling.

Alkuwaiti et al. (2023) discuss Al applications in telehealth, pharmaceutical
innovation, clinical research, adherence monitoring and rehabilitation. They highlight
how Al played a crucial role during the COVID-19 pandemic in improving diagnostic
workflows, supporting remote consultations and accelerating drug-development
pipelines. Their findings show that Al improves healthcare efficiency—but only when

supported by appropriate ethical and technical safeguards.

Ankolekar et al. (2024) analyse Al and predictive modelling during the COVID-19
pandemic, arguing that Al-enabled learning health systems (LHS) could have better
supported the integration of data, knowledge and clinical practices. They propose Al-
driven strategies for epidemic prediction, vaccine-effectiveness monitoring and variant
surveillance. Their work underscores the need for predictive Al systems that are
adaptive, data-efficient and capable of continuous learning—principles reflected in the

optimisation methods used in this thesis.
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Santamato et al. (2024) investigate AI’s contributions to healthcare operations and
crisis management from 2019 to 2023, including its role during COVID-19. They
identify key operational themes—quality assurance, resource management, innovation,
safety and emergency response—and show that Al enhances strategic planning and
decision-making. However, they also raise concerns regarding privacy, interoperability
and sustainable integration, highlighting the challenges of embedding predictive

analytics into real-world health systems.

Attrey et al. (2024) explore the role of 5G-enabled machine learning systems in
healthcare, with a special focus on the Indian context. They show how next-generation
networks enable real-time analytics, remote diagnostics and advanced monitoring.
Their recommendations outline barriers such as limited infrastructure, data governance
issues and lack of awareness. As predictive models evolve—such as the MFA-RBF-
SVM and PSO-RBF-TSVM systems developed in this thesis—they will increasingly
depend on such high-speed, low-latency networks for deployment in mobile and

telehealth environments.

Nkhoma et al. (2024) examine the transformative potential of generative Al (GenAl)
in healthcare, arguing that GenAl can augment medical knowledge work, automate
documentation, improve communication and support clinical decision-making. They
position GenAl within broader Industry 4.0 and 5.0 paradigms, where human-machine
collaboration becomes integral to healthcare operations. However, they caution that
governance, workforce readiness and legal frameworks must evolve in parallel to

ensure safe adoption.

Yang et al. (2022) introduce Explainable Al (XAl) as a critical response to the “black-
box” nature of deep learning and advanced machine learning models used in medicine.
They argue that interpretability is essential for clinician trust, regulatory approval and
safe decision support. XAl allows healthcare professionals to understand how a model
reaches its prediction—an increasingly important requirement for predictive heart
disease models like MFA-RBF-SVM and PSO-RBF-TSVM.

Chen et al. (2024) discuss the rapid advancements in Al products, data processing
technologies and deep learning architectures, noting that many of these developments
now target healthcare applications. They highlight significant improvements in
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diagnostic speed, accuracy and workflow efficiency but emphasise that societal and
technical challenges—ethical risks, bias, regulatory wupdates and system

interoperability—must be addressed continuously.

Attrey et al. (2024), as referenced earlier, connect the deployment of ML-based
healthcare systems with emerging 5G infrastructures, enabling real-time analytics,
remote monitoring and continuous patient engagement. These developments will be
particularly important for future cardiovascular predictive models, which may depend

on mobile health environments and large-scale patient data streams.

Santamato et al. (2024) evaluate AI’s influence on strategic planning, operational
efficiency and crisis management within healthcare administration. Their study
integrates predictive modelling with SHAP-based explainability techniques to show
how Al enhances quality assurance, optimises resource allocation and strengthens
emergency response systems such as those deployed during the COVID-19 pandemic.
At the same time, they highlight concerns around privacy, algorithmic transparency and
the ethical implications of automation—issues that must be addressed when deploying

Al-powered predictive systems in real-world hospitals.

Bitkina et al. (2023) conduct a PRISMA-guided systematic review of artificial
intelligence applications in healthcare IT, narrowing more than 700 studies to 89 high-
quality sources. Their analysis maps core research subfields—including clinical
decision support, intelligent documentation, workflow automation and predictive
analytics—and identifies a recurring gap between Al prototypes and deployable
healthcare solutions. They emphasise the necessity of multidisciplinary collaboration,
integrating expertise from clinicians, data scientists, engineers and policymakers to

transform experimental models into sustainable, real-world systems.

Tak et al. (2024), discussed previously in Section 2.6, further demonstrate how
embedding Al models within Electronic Health Record (EHR) systems improves
clinical documentation, real-time risk prediction and patient management at an
organisational scale. They note that Al-enabled EHRs reshape healthcare workflows by
reducing administrative burden, improving interoperability and enabling proactive

patient alerts. These findings are directly relevant to heart-disease prediction
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frameworks, where seamless integration with EHR platforms is key to clinical

adoption.

Iseal et al. (2024) investigate intelligent tools—including Al, machine learning,
optimisation models and predictive analytics—within hospital management systems
(HMS). They highlight improvements in administrative automation, patient-flow
regulation, resource scheduling and overall hospital efficiency. However, they also
point out limitations such as data fragmentation, infrastructure costs and the need for
rigorous evaluation of risks associated with automated decision-making. Their insights
align closely with the need for interpretable, reliable and cost-efficient predictive
systems like the MFA-RBF-SVM and PSO-RBF-TSVM models proposed in this

thesis.

Garg et al. (2022) (see Section 2.3) demonstrate how bio-inspired optimisation
algorithms, including Firefly, PSO and OCSO, can address high-dimensional, complex
parameter spaces in healthcare analytics. Their findings support the thesis’s
methodological choice to use swarm-intelligence optimisation (MFA and PSO) to

enhance feature selection and classification accuracy in heart-disease prediction.

Pulimamidi et al. (2023) review the adoption of Al technologies in leading hospitals
and conclude that Al is increasingly used for diagnosis, clinical decision support,
administrative automation and personalised treatment planning. They report generally
positive attitudes among healthcare stakeholders but note persistent concerns about
integration challenges, transparency, algorithmic fairness and equity in Al-driven
systems. These concerns underscore the importance of designing interpretable and

ethically robust prediction models.

Alsaeed et al. (2024) explore the integration of Al tools into nursing practice,
particularly for risk assessment, documentation assistance, outcome prediction and
workload reduction. Their findings suggest that Al can significantly improve nursing
efficiency and patient safety. They recommend incorporating Al and health informatics
education into nursing curricula to develop a workforce capable of safely using
predictive technologies. This perspective reinforces the need for user-friendly,
clinically interpretable predictive systems, such as those developed in the present

research.
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Abbas et al. (2023) review the transformative potential of Al in diagnostic support,
administrative automation, personalised treatments and predictive analytics, but
emphasise that significant ethical and regulatory barriers continue to hinder full-scale
adoption. They argue that issues such as data privacy, informed consent, model
transparency and algorithmic fairness must be addressed before Al tools can be reliably
deployed in real-world healthcare environments. Abbas et al. (2024) extend this work
by highlighting that although Al can enhance outcomes and reduce operational costs,
these benefits can only be realised within strong legal and ethical frameworks that

govern data handling, liability and integration with clinical workflows.

Udegbe et al. (2024) analyse both the advantages and limitations of Al adoption, noting
that challenges in data privacy, cybersecurity, legal responsibility and interoperability
create major risks in clinical settings. They recommend establishing universal
interoperability standards, robust cybersecurity mechanisms and ethical governance
structures to ensure that Al systems remain safe, accountable and trustworthy. Islam et
al. (2024), in their broader evaluation of Al applications, reinforce these concerns by
identifying autonomy, equity, transparency and cost as major obstacles to adoption.
They advocate for precise governance mechanisms to protect patient safety and

maintain confidence in Al-led decisions.

Olawade et al. (2024) provide a systematic review demonstrating that while Al tools
can achieve high diagnostic accuracy, unresolved concerns persist regarding data
quality, model interpretability, algorithmic bias and legal accountability. They argue
for rigorous validation, continuous monitoring and the integration of human oversight
to ensure safe deployment. Willow et al. (2023) similarly recognise AI’s value in
diagnostic workflows and administrative streamlining but warn that unresolved privacy
issues, regulatory friction and challenges in integrating Al with legacy systems pose

significant implementation risks.

Godala et al. (2024) emphasise the need for long-term economic evaluations of Al in
healthcare and call for structured training programs to prepare clinicians and
administrators to work effectively with Al tools. They argue that standardised
guidelines and governance frameworks are essential to ensure equitable, safe and
ethical use of Al systems. Mashabab et al. (2024) adopt a critical approach, presenting

case studies where Al succeeds and fails in clinical environments. Their findings
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highlight ethical concerns such as algorithmic bias, privacy violations and ambiguous

lines of responsibility—factors that could undermine trust if not properly addressed.

Lainjo et al. (2024) summarise the benefits and risks of Al adoption across diverse
healthcare settings, noting improvements in diagnostic accuracy and workflow
efficiency but also persistent concerns around privacy, fairness and inconsistent
regulatory environments. They emphasise the need for high-quality, diverse datasets
and responsible data-sharing mechanisms to ensure equitable model performance. Patil
(2024) focuses specifically on legal responsibility and the doctor—patient relationship,
arguing that new regulatory frameworks and continuous oversight are required to
manage algorithmic bias, ensure accountability and preserve patient trust. Collectively,
these studies highlight that while Al offers unparalleled opportunities for predictive
healthcare—including cardiovascular risk prediction—its success depends on

transparent, ethical and accountable deployment.

Patil (2024) focuses explicitly on legal responsibility, liability, algorithmic bias and
doctor-patient relationships. They call for new regulatory frameworks, systematic
monitoring of Al tools and strategies to address bias and maintain trust, arguing that Al

must remain a tool under human oversight.

Samreen et al. (2018) provide an early examination of machine learning in
personalised medicine, showing how ML-based decision-support systems can enhance
diagnostic precision and improve treatment planning. Their findings underscore the
importance of data-driven approaches in managing complex clinical conditions, a

principle that directly supports Al-driven cardiovascular risk prediction.

Yu et al. (2018) and Jiang et al. (2017), as discussed in Section 2.1, show how
algorithms such as SVMs, neural networks and deep learning models can analyse
structured and unstructured data for disease prediction and prognosis. Their
frameworks have been widely applied in cardiology and stroke care, demonstrating the
viability of Al for predicting cardiovascular events and supporting early intervention.
Samajdar et al. (2024) reinforce this by offering a high-level perspective on Al in
diagnosis, monitoring and treatment. They note that predictive models can greatly assist

clinicians but must undergo rigorous evaluation before clinical deployment.
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Srivastava et al. (2023) examine the use of Al and ML in medical data storage,
retrieval and analysis, highlighting their use in diagnostic support, drug prescription
optimisation, mental health assessment and imaging. They argue that some algorithms
already approach or surpass clinician-level performance, raising important ethical and
sociological considerations. Fatima et al. (2024) analyse Al-driven systems for early
diagnosis, personalised treatment, drug discovery and robotic surgery, emphasising the
importance of interdisciplinary collaboration and cautioning against the risks of bias
and confidentiality breaches.

Jadhav et al. (2023), as discussed in Section 2.4, illustrate how Al models can support
early detection and personalised care by analysing imaging data, biosignals and virtual
health interactions. These approaches can be adapted for cardiovascular disease
prediction, where early identification of abnormalities is crucial. Bobet et al. (2024)
expand this work by showing how chronic disease management can be enhanced
through Al-driven predictive analytics, particularly for diabetes and cardiovascular
diseases. Continuous monitoring and real-time risk assessment support proactive

interventions that reduce long-term complications.

Babu et al. (2024) review Al-based predictive analytics for early illness detection and
management, emphasising their utility for diseases requiring long-term monitoring,
such as cardiovascular conditions. Walter et al. (2024) similarly highlight the role of
predictive analytics in preventive medicine, noting the increasing use of Al for early
detection of heart disease, diabetes and cancer. They emphasise the importance of
identifying high-risk patients early and supporting personalised preventive

interventions.

Nnamdi et al. (2024) and Naqvi et al. (2023) link predictive analytics to the healthcare
“quadruple aim”—Dbetter outcomes, improved clinician and patient experience, and
reduced cost. Their findings reaffirm that Al-based cardiovascular prediction systems,
like those developed in this thesis (MFA-RBF-SVM and PSO-RBF-TSVM), directly
contribute to operational efficiency, risk reduction and improved population health

outcomes.

Taken together, these studies indicate that although Al and ML have been widely

applied to diagnosis, imaging and chronic disease management, there is still limited
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work that combines advanced optimisation algorithms (MFA, PSO-RS, OCSO) with

SVMI/TSVM classifiers on structured clinical datasets for heart disease prediction in

specific populations such as Indian patients. This gap forms the core motivation for the
hybrid MFA+RBF-SVM, PSO-RS+RBF-TSVM and OCSO-optimised models

developed in this thesis.

2.LITRATURE REVIEW SUMMARY TABLE

Table 2.1: Comparative Summary of Existing Studies

Study

Dataset Used

Method Used

Limitation
Identified

Jiang et al. (2017)

Clinical data

ML + rule-based Al

Limited
interpretability

Ethical + workflow

Yu et al. (2018) Biomedical datasets | ML/DL .
issues
Haleem et al. Multiple domains ML + NLP Lack of
(2019) P standardization
Bohretal. (2020) | EHR +imaging | ML Limited parameter
optimization
Frank et al. (2024) | Medical imaging CNN + NLP Overfitting, no

generalization
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Table 2.2: Comparative Analysis of Key Al and ML Studies Relevant to Predictive

Heart Disease Modelling

ML/AI Dataset / L
Author & Techniques Clinical Key Findings Limitations
Year . Reported
Used Domain
Improved early i
Healthcare detection, Eé?]'cceilns data
Aldali et al. | General Al | decision- service fivac '
(2024) methods, ML making, optimisation, P Y,
. . . regulatory
diagnosis personalised )
) . issues
diagnostics
e it
Yousef Al for drug | Clinical trials, | . ' | generalisation,
. : improves
Shaheen et al. | discovery, ML, | patient  care, N accuracy
: . monitoring, o
(2021) analytics medical records validation
enhances
C needed
insights
Supports
Diagnostic diagnosis, Privacy issues,
Abbas et al. | ML, predictive | support, enhances regulatory
(2023) analytics personalised outcomes, hurdles,
therapy, admin | automates integration gap
admin tasks
COVID-19 . .| Data shortages,
; Fast diagnosis, hical
Chan et al screening, chatbot triage ethica
"| CV, NLP, ML | telehealth, ' | concerns,
(2023) supports :
remote adoption
L telehealth X
monitoring barriers
HIS,  clinical Streng?hens Handling
. . CDS, improves | unstructured
Hasan et al. | Al in HI, ML, | images, .
- data handling, | data,
(2023) NLP telemedicine, .
enhances complexity,
m-health . :
mobile health privacy
Enhances
imaging .

. ML, DL for | Medical accuracy, aids Needs rglla}ble
Pallavi et al.|. . Lo di ' data, limited
(2022) imaging & imaging, CDS, | diagnosis, adoption in

CDS digital health supports .
. small clinics
pandemic
response
Improves Bias risks,
DL, NLP, | Automation, patient  care, | privacy
Wu et al dicti di . Kl b
(2024) predictive iagnostics, workflows, concerns,  jo
models planning diagnosis displacement
accuracy fears
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Chronic Better disease
diseases identification Dataset
Datta et al.| ML, DL, Al-| .. N . | dependence,
. diagnosis, personalised
(2019) based detection | .. low
tissue care, drug | . -
o . interpretability
engineering discovery
Medical SVM  widely
Alloghani et | CNN, SVM, imagin used, Al | Regulatory
al. (2020) NN, DL ging. outperforms issues, data bias
stroke, cancer
humans
Improves
Imading. dru prediction, Acceptance
Sharma et al. | ML, DL, disc?)vegr,y 9| reduces error, | challenges,
(2020, 2023) imaging Al diagnostic tools supports !ntegratlon
treatment issues
planning
Enhances
- Surgery surgical !Z)ata accuracy
Kumar et al. | Predictive . " . Issues,
: diagnostics, precision,
(2023) analytics, ML . workflow
monitoring reduces .
- adaptation
complications
Early
Aftab et al. I\/IL,_ _ S_urgery, re_all; gompl_lcatlon I-_Ilgh crc])st(,jreal-
(2024) monitoring time risk | detection, time hardware
systems assessment improves requirement
patient safety
Early risk
Preventive prediction, Explainability
Naqvi et al. | Predictive healthcare, reduced cost, | required,
(2023) analytics, ML | chronic improved governance
diseases population gaps
health
Identifies high-
Bobet et al. | ML for chronic D_|abetes, hea_rt risk  patients, Limited dataset
. disease, public | supports R
(2024) disease ) diversity
health preventive
interventions
Enables early
Yasmeen et al. | ML, predictive _Chronlc d'agnOS'.S’ Bias, privacy
. illnesses, CVD | personalised
(2024) modelling o . challenges
prediction care, real-time
monitoring
. . Enhances
Diagnostics, di -
. surgical 1agnosis, Legal gaps
Olawade et al. | Al algorithms, ; robotic A
. robotics, . data  scarcity,
(2024) predictive tools assistance, :
treatment . bias
athways op(_ergtlonal
P efficiency
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Supports RPM, | ..
: : High
Islam et al Imaging, early_ _dlsease computational
"| ML, NLP, DL | telehealth, drug | prediction, .
(2024) . cost, uncertain
discovery EHR .
. effectiveness
automation
Supports
. ML, Al for Prec_ls!on genomic Needs more
Samajdar et . medicine, analysis, .
personalised 0 experimental
al. (2024) treatment optimises L
care . ; validation
planning personalised
treatment
CVvD risk | Accurate risk | Dataset
Srivastava et | ML for | prediction, prediction, imbalance,
al. (2023) prediction chronic disease | supports limited
management clinicians generalisation
Improved
. . Lack of
Jadhav et al. ML, DL Hear_t _dlsease accuracy using optimisation
(2023) prediction structured
. methods
clinical data

2.2 CRITICAL ANALYSIS OF REVIEWED LITERATURE

The reviewed literature demonstrates that Artificial Intelligence (Al) has become
deeply embedded in modern healthcare, with extensive applications in diagnostics,
medical imaging, clinical decision support, telehealth, predictive analytics and
personalized medicine. Although significant advancements have been made, a closer

evaluation reveals several important observations.

First, many studies (Bohr et al., 2020; Sharma et al., 2020; Wu et al., 2024) highlight
the strong performance of ML and DL models in disease diagnosis, yet the majority
rely on large, high-quality datasets that are not consistently available across global
healthcare systems. This raises concerns regarding model generalizability and real-
world applicability. Second, while methods such as CNNs, SVMs, RF, and DL
architectures are widely used, several authors (Alloghani et al., 2020; Mavani et al.,
2024) report operational challenges such as data heterogeneity, model interpretability
and insufficient clinical validation. Thus, despite high reported accuracies, practical

deployment remains limited.

Another major limitation across studies is insufficient focus on optimization
techniques. Very few reviews have explored hybrid models that integrate optimization
algorithms (e.g., Firefly, PSO, OCSO) with classifiers such as SVM/TSVM. Most
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authors employed standard ML models without improving hyperparameter tuning,
feature selection or convergence behaviour significantly. In addition, although some
studies (Naqvi et al., 2023; Yasmeen et al., 2024) discuss predictive analytics, only a
small subset specifically address cardiovascular risk prediction using structured clinical
data.

A recurring theme across literature is the lack of explainability and trustworthiness in
Al-based systems. Ethical, legal and governance issues such as bias, privacy concerns,
regulatory uncertainty and lack of transparency were frequently highlighted (Abbas et
al., 2023; Olawade et al., 2024; Islam et al., 2024). These concerns become even more
critical in life-threatening conditions such as heart disease, where clinicians require

interpretable and reliable predictions.

Finally, although many studies discuss Al applications globally, limited research has
been conducted on Indian patient populations. Datasets are often small and imbalanced,
leading to reduced model generalization. This emphasizes the need for population-

specific, optimized predictive models capable of handling real clinical variability.

2.3 RESEARCH GAPS

Based on the critical evaluation of literature, the following key research gaps have

emerged:

Gap 1: Limited Use of Hybrid Optimization Techniques in Predictive Healthcare

Most existing studies rely on traditional ML/DL models without integrating
optimization algorithms such as MFA, PSO-Rough Set or OCSO. Very few works have
examined their combined effect on feature selection, parameter tuning and classifier

performance.

Gap 2: Lack of Research on SVM/TSVM with Optimization for Heart Disease

Prediction

Although SVM is widely used in healthcare, its enhanced variants (TSVM with RBF
kernel) have rarely been optimized using advanced swarm intelligence techniques.

Hence, their potential remains unexplored.

70



Gap 3: Insufficient Studies Using Structured Clinical Data for Cardiovascular

Prediction

Most studies focus on imaging or large EHR datasets. Very limited research has used
structured risk-factor data (age, cholesterol, BP, sugar levels, lifestyle parameters) for

heart disease prediction—especially in a hybrid optimization—classification pipeline.

Gap 4: Absence of Models Tailored to Indian Patient Populations

Most studies use Western datasets (e.g., UCI Cleveland, MIMIC, NHS datasets). There
is very little research applying Al models to Indian datasets, which have different

demographic, lifestyle and genetic patterns.

Gap 5: Lack of Explainable and Clinically Interpretable Al Models

Many studies achieve high accuracy but lack interpretability, making clinicians hesitant
to adopt them. Very few studies integrate explainable ML/XAI with predictive cardiac
models.

Gap 6: Need for End-to-End Predictive Pipeline

Existing studies evaluate isolated components (e.g., imaging, diagnosis, risk scoring)

but lack a complete pipeline that includes:

o Data preprocessing and normalization
« Attribute reduction

o [Feature optimization

o Classifier optimization

« Performance evaluation (accuracy, sensitivity, specificity)

Gap 7: Limited Comparative Assessment Across Multiple Optimization Approaches

No existing study compares MFA, PSO-Rough Set and OCSO for the same dataset to

determine the best optimisation method for heart disease prediction.

These gaps clearly justify the need for the proposed hybrid MFA-SVM, PSO-RS—
TSVM and OCSO-TSVM heart disease prediction models.
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2.4 SUMMARY OF LITERATURE REVIEW

The literature review shows that Al has significantly enhanced healthcare through
diagnostic imaging, early disease detection, telemedicine, predictive modelling and
personalized care. Advanced ML and DL techniques such as CNNs, SVMs, RF, and
neural networks are highly effective in medical applications, with reported accuracies
often exceeding traditional statistical methods. Telehealth and HIS integrations have
enabled real-time monitoring and decision support, while predictive analytics has
demonstrated strong potential in preventing chronic diseases and reducing healthcare

burden.

However, despite the progress, several challenges persist, including data fragmentation,
lack of interoperability, ethical concerns, model bias and limited clinical explainability.
More importantly, heart disease prediction using optimized hybrid models remains
underexplored. Only a few studies have addressed optimization algorithms, and almost
none have combined MFA, PSO-RS and OCSO with RBF-SVM or TSVM classifiers.
Moreover, there is a lack of population-specific research, particularly for Indian

datasets, indicating a significant gap in personalized cardiovascular prediction.

Overall, existing literature confirms both the importance and urgency of developing
robust, optimized, interpretable Al-based heart disease prediction systems—a gap that

the present thesis aims to fill.
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CHAPTER-3

DEVELOP A REGULAR FLY MODEL FOR EFFECTIVE PREDICTION OF
HEART DISEASES, ANATOMY, AND SUPPORT VECTOR MACHINE, AND
ENHANCE CORONARY DISEASE PREDICTION USING VECTOR
MACHINES: IMPROVING CORONARY PREDICTION USING FLY
ALGORITHM AND SVM

This chapter presents the overall research methodology adopted for developing an
effective heart-disease prediction system. It outlines the structured approach used to
process the dataset, select significant features, optimize classifier parameters, and build
the predictive models. The focus of this chapter is to describe how the study was
designed, what methodological steps were followed, and why these steps were
necessary to address the challenges present in clinical data. The subsequent sections
explain each component of the methodology in detail, including preprocessing, feature
selection, optimization strategies, classification techniques, and evaluation procedures.
This chapter therefore provides the foundational framework on which the experimental

analysis in Chapter 4 is built.

3.1 METHODOLOGY OVERVIEW

The research methodology adopted in this study follows a structured, multi-stage
framework designed to develop a highly accurate and reliable heart-disease prediction
system. This framework combines advanced data preprocessing techniques, hybrid
feature-selection strategies, metaheuristic optimization algorithms, and robust
machine-learning classifiers. Each component of the methodology is formulated to
address the key challenges commonly found in clinical datasets, including missing
values, nonlinear feature interactions, mixed data types, redundant attributes, and
limited sample size. By systematically addressing these challenges, the proposed

methodology ensures improved model accuracy, stability, and interpretability.

The process begins with comprehensive data preprocessing, where missing values are
appropriately imputed, outliers are detected and treated, categorical features are
encoded, and numerical attributes are normalized. These steps ensure that the dataset is

clean, consistent, and suitable for machine-learning analysis. Once the data is prepared,
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feature selection and dimensionality reduction are performed using hybrid optimization
techniques. The Modified Firefly Algorithm (MFA) and Particle Swarm Optimization
with Rough Set Theory (PSO-RS) are employed to identify the most relevant and
informative clinical attributes. These methods help eliminate noise and redundancy

while retaining essential features that contribute to accurate prediction.

After feature selection, the methodology incorporates algorithmic optimization to
enhance classifier performance. Two machine-learning classifiers—Radial Basis
Function Support Vector Machine (RBF-SVM) and Transductive Support Vector
Machine (TSVM)—are utilized for prediction. The MFA and Orthogonal Chicken
Swarm Optimization (OCSO) algorithms are used to fine-tune key SVM
hyperparameters such as C and y, whereas PSO-RS is applied for optimizing TSVM
parameters. This integrated feature-selection and parameter-optimization approach

ensures that both classifiers operate at their highest generalization capability.

The optimized features and tuned classifiers are then used for model training and
validation. A stratified k-fold cross-validation approach is adopted to maintain balanced
class representation and avoid biased performance estimates. The models are evaluated
using clinically relevant metrics such as accuracy, sensitivity, specificity providing a

comprehensive assessment of the proposed system’s diagnostic effectiveness.

Finally, the methodology includes comparative evaluation and statistical validation to
verify performance improvements over baseline techniques. Statistical tests are applied
to confirm the significance of the results. Overall, this methodological framework
ensures a robust, optimized, and clinically meaningful heart-disease prediction system

that can support decision-making in real healthcare environments.
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3.2 FLOWCHART OF THE PROPOSED SYSTEM

The flowchart illustrates the complete operational workflow of the proposed heart-
disease prediction system, presenting each methodological stage in a clear and
sequential manner. The process begins with the acquisition of the dataset, which forms
the foundation for all subsequent computational procedures. To ensure uniformity and
eliminate scale-based distortions, the raw data undergoes normalization using the min—
max technique, allowing all attributes to be mapped within a standardized range.
Following normalization, the Modified Firefly Algorithm (MFA) is applied for attribute
reduction, where redundant, noisy, or less informative features are systematically
removed. This step not only simplifies the dataset but also enhances computational
efficiency and improves the quality of model learning. After the attribute reduction
phase, the remaining significant features are further transformed using Principal
Component Analysis (PCA). PCA extracts the most meaningful components from the
dataset, reduces dimensionality, and strengthens the feature set by retaining maximum

variance.

The refined set of PCA-derived features is then used for the classification stage, where
the Radial Basis Function Support Vector Machine (RBF-SVM) is trained to
distinguish between heart-disease patients and normal subjects. The RBF kernel is
specifically chosen due to its strong capability to model nonlinear patterns commonly
found in clinical datasets. By integrating systematic preprocessing, intelligent feature
reduction, and an optimized classification mechanism, the workflow ensures that the
predictive model operates with high accuracy, reliability, and robustness. Ultimately,
the flowchart encapsulates the streamlined and coherent progression of the system—
from data preparation to final decision making—demonstrating how each step

contributes to the development of an effective heart-disease prediction model.
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Figure 3.1: Flowchart of the Proposed System
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3.3 DATASET DESCRIPTION

The performance and reliability of any predictive healthcare model depend significantly
on the quality and characteristics of the dataset used for training and evaluation. In this
study, the heart-disease dataset comprising 303 patient records is employed to develop
and validate the proposed MFA-RBF-SVM, PSO-RS-TSVM, and OCSO-RBF-SVM
predictive frameworks. This dataset has been widely used in cardiovascular research
due to its balanced combination of demographic, clinical, physiological, and

laboratory-related features that collectively influence heart-disease risk.

3.3.1 Source of Dataset

The dataset originates from clinical examinations and laboratory investigations
conducted on actual patients. It is a standardized and frequently used dataset in
cardiology-based machine-learning research, making it suitable for benchmarking and
comparative analysis. The dataset is openly available for academic use and does not
contain any personally identifiable information, ensuring ethical compliance and data
privacy.

3.3.2 Dataset Size and Structure

o Total number of samples: 303

e Number of predictor variables: 13

e Number of output classes: 1

o Type of problem: Binary classification (0O = no heart disease, 1 = heart disease)
o Nature of data: Structured tabular dataset with mixed numerical and categorical

variables

The dataset presents moderate complexity, which is ideal for evaluating hybrid

optimization-driven machine-learning methods.
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3.3.3 Attribute Description

The dataset contains attributes that represent known cardiovascular risk factors. The list

of features is provided below

Table 3.1 Attribute Description

No. Attribute Description Type
1 Age Age of patient in years Numerical
2 Sex 0 = Female, 1 = Male Categorical
3 CP Chest pain type (0-3) Categorical
4 Trestbps Resting blood pressure (mm Hg) | Numerical
5 Chol Serum cholesterol (mg/dl) Numerical
6 FBS Fas_tlng blood sugar > 120 mg/dlI Categorical
(1 =true)
7 Restecg Resting ECG results Categorical
8 Thalach Maximum heart rate achieved Numerical
9 Exang Exercise-induced angina (1 = yes) | Categorical
10 | Oldpeak ST depression induced by exercise | Numerical
11 | Slope Slope of the peak exercise ST Categorical
segment
Number of major vessels colored .
12 | Ca by fluoroscopy (0-3) Categorical
Thalassemia (0 = normal, 1 = .
13 | Thal fixed defect, 2 = reversible defect) Categorical
14 | Target Heart-disease diagnosis (0 = no Binary

disease, 1 = disease)
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3.3.4 Statistical Summary of Attributes

To understand the data distribution and detect potential preprocessing needs, summary

statistics are computed for numerical variables.

Table 3.2 Statistical Summary of Attributes

Attribute Mean Std. Dev. Min Max
Age 54.37 9.08 29 77
Trestbps 131.69 17.60 94 200
Chol 246.26 51.83 126 564
Thalach 149.61 22.87 71 202
Oldpeak 1.04 1.16 0 6.2

3.3.5 Class Distribution

Heart-disease datasets often suffer from class imbalance, impacting classification

models.
Table 3.3 Class Distribution
Class Description Count
0 No heart disease 138
1 Heart disease 165

3.3.6 Dataset Challenges

The dataset presents several challenges that justify the need for hybrid optimization
techniques. It contains missing values and outliers—especially in cholesterol and
resting blood pressure—which can distort model learning. Nonlinear relationships
among clinical attributes further complicate classification, while the mix of numerical

and categorical features requires appropriate encoding. Some features may also be weak
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or redundant, potentially reducing model accuracy if not properly selected.
Additionally, the dataset’s limited size increases the risk of overfitting, making careful
parameter tuning essential. These challenges highlight the importance of applying
MFA, PSO-RS, and OCSO to improve feature selection, parameter optimization, and

overall model performance.
3.4 THE FIREFLY ALGORITHM

The Firefly Algorithm (FA) is a meta-heuristic optimization method inspired by the
bioluminescent communication of fireflies. In nature, fireflies produce flashes of light
primarily for mating signals, and the brightness of these flashes determines the insects’
attractiveness. This natural behaviour is modelled mathematically in FA, where each
firefly represents a candidate solution, and its brightness corresponds to the quality of

the solution.
Light Intensity and Distance

The perceived brightness diminishes with distance according to the inverse-square law:

1

2
J.ri.-’

I(r)

In addition, atmospheric absorption further reduces brightness as distance increases.
These properties enable fireflies to communicate effectively within a limited range—a

concept adapted in FA to control attraction between candidate solutions.
Attractiveness and Movement
Two key components define FA behaviour:

1. Variation in Light Intensity

2. Attractiveness Based on Proximity

If firefly i is less bright than firefly j, it moves toward j. The attractiveness 3 decreases
exponentially with distance:

80



B(r) = 50€_F’T2

Distance between fireflies is computed using Euclidean distance:

rij = ||z — =]

The movement of firefly i toward firefly j is defined as:

z\ :z:f-'{) l ;5’06_”’"';‘-./‘(;%” :L‘E”) b e

e o =randomization parameter

e ¢ =random vector

However, traditional FA has limitations: the brightest firefly may move randomly and
lose brightness, thereby slowing convergence. This limitation motivates the Modified

Firefly Algorithm described in later sections.
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3.5 NORMALIZATION USING MIN-MAX NORMALIZATION

A large number of Al computations examine data focus highlights in an effort to

uncover data drifts. However, problems arise when the highlights have very different

sizes.
Un-normalized Houses
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Figure 3.2 Data Set of House

By standardizing, we want to ensure that all data points are on the same scale and that
each component is given the same weight. Below is an image that shows the same

housing data that has been standardized using min-max standardization.
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Normalized Houses using min-max normalization
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Figure 3.3 Normalized Houses using min-max normalization

° MIN-MAX Normalization

Among the many methods for standardizing data, min-max standardization is among
the most well-known. The element's base estimate becomes zero, its maximum value
becomes one, and all other values become decimal numbers between zero and one for

each component.

For example, since it falls between 20 and 40, 30 would be reduced to about 0.5 if the
element's base estimate was 20 and its maximum value was 40. The following is the

equation

Value — min
max — min
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Un-normalized Houses
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The x-axis remains troublesome, while normalizing resolved the y-axis squishing issue.
Since the y-axis may vary by 1, while the x-axis can only differ by 0.4, the y-axis would
clearly take centre stage in any comparison of these points. The purpose of
normalization is to prevent numerical errors when computing and to prevent the

dominance of aggregate properties at larger numerical scales over those at smaller ones.

A popular technique, Min-Max Normalization, is used in this study. By discovering, it

converts a view v of the remarkable dataset to v' within the range of [new_ min;

new_max|.,

Years old (normalized)

Figure 3.4 Normalized and Un-Normalized Houses
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V — Vi
) IT111
max min

New min and new max provide the range of values for the progress dataset in this
case. In this test, we're connecting new max= 1 and new min= 0. The modified

datasets are then used for the property decreasing system after normalization.
3.6 ATTRIBUTE REDUCTION BASED ON MODIFICATION IN THE
FIREFLY ALGORITHM
Each firefly represents a candidate solution vector

T = [T, Tiz,y - -+, Tid)

Brightness (objective value)

Brightness is proportional to the fitness of solution xi:
I; = f(z;)

For feature selection, the fitness combines accuracy and number of selected features:

|Sil
||

F(z;) = a(1 — Acc(z;)) + B

where

e Acc(xi) = classification accuracy using subset SiS_iSi
e |Sil = number of selected features
o |F||= total features

o B =weighting constants (o-+B=1\alpha+\beta=10-+p=1).

Attractiveness

Attractiveness of firefly j to firefly iii at distance rij is:

2

B(rij) = Boe "
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With
rij = ||z — zj]|2

Where B0 is initial attractiveness and vy is the light absorption coefficient.

gttt =gt 4 Boe—?"'a‘(m;‘- z!) + as

where

e { = iteration index
e « = randomization parameter

e ¢! =random vector (e.g. uniform in [0.5, 0.5]).

For binary feature selection, a sigmoid or threshold function is applied:

S 1, ifsigmoid(z}') > 7
. 0, otherwise

with 7 € (0, 1).

Algorithm workflow:

1. Initialize firefly population with feature subsets.
2. Evaluate brightness using RST dependency.

3. Move fireflies according to MFA rules.

4. Apply directional update to brightest firefly.

5. Repeat until convergence.

6. Return optimal reduct.
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3.7 ATTRIBUTE REDUCTION BASED ON ROUGH SETS

Efficient attribute reduction is essential for building an accurate and computationally
efficient heart disease prediction model. Medical datasets often contain redundant,
irrelevant, or weakly correlated features, which may negatively influence classifier
performance. To overcome this challenge, the proposed work integrates Rough Set
Theory (RST) for evaluating feature significance and a Modified Firefly Algorithm
(MFA) for searching the optimal attribute subset. The innovation of this method lies in
the modification of the classical Firefly Algorithm: the brightest firefly (representing
the best feature subset) is restricted to move only in directions that improve its fitness,
avoiding random deterioration and significantly improving convergence and reliability.
This is particularly important when working with high-dimensional clinical datasets

where optimal feature selection directly impacts prediction accuracy.

3.6.1 Rough Set Theory for Attribute Reduction
Rough Set Theory (RST) is a mathematical tool used to reduce attributes without
requiring any preliminary information, such as probability or membership values.

Given a decision table:

t+1
i

v;i ™t = wv; + c1r1(pbest; — x;) + cora(gbest — xt)

T=(U,AU {D})

Where:
- U = Universe of objects
- A = Set of conditional attributes

- D = Decision attribute
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The dependency degree of D on C € A is defined as:

y_C(D) =[POS_C(D)| /U]

Where:

POS C(D) = U (C(d)), foralld € D

A subset C’ is a reduct if:

v_{C3(D) =vy_C(D)

and removing any attribute from C’ decreases the dependency.
Thus, RST provides a mathematical basis for verifying whether selected attributes

preserve classification quality.
3.4.2 Limitations of the Classical Firefly Algorithm

While the Firefly Algorithm is a powerful meta-heuristic optimization technique, its

classical form suffers from two major drawbacks when applied to healthcare data:
1. Random Movement of the Brightest Firefly

In standard FA, even the best-performing firefly may move randomly. This can degrade
its brightness (solution quality), slow convergence, and reduce the chances of reaching

the optimal feature subset.
2. Premature Convergence

Medical datasets often contain correlated attributes. FA may get trapped in local optima

and fail to explore promising regions effectively.

To address these limitations, the proposed method introduces a direction-controlled
movement mechanism, which significantly enhances both convergence and solution

stability.
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3.8 PRINCIPAL COMPONENT ANALYSIS (PCA)
A principal component analysis (PCA) system's final output is a set of vectors in a space
with dimensions shifted from one to another. Principal Component Analysis (PCA) is
an element extraction approach that yields new highlights that are a linear mix of the
underlying highlights; it uses this method to extract a reduced dimensional element
subset. Its ultimate objective is to ensure that k is less than d by mapping all instances

Convert the provided dataset from a d-dimensional space to a k-dimensional subspace.

The Principal Components (PC) are the k-new dimensions that are created, and each
PC is coordinated to achieve the maximum change possible, excluding the difference
that is already reflected in all of its initial segments. Thus, the main section accounts
for the most difference, while each subsequent component accounts for a smaller

estimate of volatility. The following is a way to refer to the Principal Components.

Let the dataset be represented as:
X =[x1,x2, ..., xn]"T

where each xi has d features.

Step 1: Standardize the Dataset
X'ij = (xij - Wj) / o]

Step 2: Compute the Covariance Matrix

S = (1/(n-1)) * (X"T X)

Step 3: Eigenvalues and Eigenvectors

S*ei=M*el

Step 4: Construct the Transformation Matrix

W=]Jel,e2, ..., ek]

Step 5: Transform the Dataset
Z=XW
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3.5.3 Interpretation of Principal Components

PCi=ail x1 +ai2 x2 + ... + aid xd

Here, PC; Principal component I,

Xj — original feature ,,j ;

aj — numerical coefficient for Xj.

The following procedure may be used to calculate the primary components:
1. Take the data input and compute the S-covariance matrix.

2. Determine the eigenvalues and eigenvectors of S and arrange them in decreasing

order according to the eigenvalues.

3. Using the preset number of components (eigenvectors), create the actual

transition matrix.

4. Finally, to get a lower-dimensional representation, multiply the initial feature

space by the obtained transition matrix.

3.9 MACHINE FOR SUPPORT VECTOR FUNCTIONS (RBF-SVM)
° Basics of SVM

A maximum separating hyperplane is built by mapping the input vector to a higher
dimensional space. On each side of the data-splitting hyperplane, two parallel
hyperplanes are drawn. A hyperplane that optimizes the distance between two parallel
hyperplanes is termed the separating hyperplane. As a starting point, SVM uses

(X1,¥1):(X2,¥2)s-- - -(Xns¥Yn) - Xj €R", y; € {+1,—1}.

Here X is the input feature vector of j sample and yj is the output index which is +1 or

-1. SVM uses a hyperplane to split the positive and negative cases as

wx+b=0,weR" .beR
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There is a gap between the positive and negative instances.

maximisation algorithm, SVM determines the optimal hyperplane.

w.x+b=1

w.x+b=0

w.xt+b=-1

Using a margin

O Positive

£y Negative @

Support vectors

Figure 3.5 Support Vector Machines

wox , +b>1—&

A

w..x ;+b —1+

i

To minimise the

restrictions of (2).

1 > : u _
‘2‘”“" +CYE,
j=1

objective function stated in (3), we must take into account the

Both the margin size and the misclassification are indicated by the first and second

components, respectively, of Eqn. (3). In this case, the cost of unmet limitations is

represented by the changeable positive number C.
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If the situation is linearly separable, the decision function f(x) = sgn(g(x)) is provided

as

1
g(x) = | 2 AYX.x+b
=1

The decision function in non-linear situations is provided by

/
g(x) = Z/liyiK(xi X)+b
=l

where K K(x1 .x) is a kernel function given by

K(xix) = (xi .x + 1)°

. Radial Basis Function (RBF)
. Radial Functions

Starting with a basic issue and using great approaches, their reaction monotonically
lowers (or grows), which is their characteristic highlight. In a direct model, the
parameters (such as the inside of the separation scale and the precise condition of the
spread capacity) remain constant. For scalar inputs, a common radial function is the

Gaussian, which looks like:

x=c) C)

’/'

h(x) = exp(————

The characteristics of this object are its centre (c¢) and radius (rr). With a centre of zero

and a radius of one, a Gaussian RBF is shown in Figure 3.6 . As one moves out from
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the centre, the radius of a Gaussian RBF monotonically shrinks. With scalar input, on

the other hand, a multiquadric RBF is

Jr+(x—c)

7

h(x) =

. xlyl . X2,y2 x3.y3. x4.y5. x5,y5.

Figure 3.6 Fitting a straight line to a bunch of points is a kind of parametric
regression where the form of the model

]
~

ro
o
o
&
o
]

Figure 3.7 Gaussian (left) and Multiquadric RBFs
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° RBF Neuron Activation Function

In RBF networks, each neurone analyses data based on a percentage of how similar it
is to its model vector, which is drawn from the training set. Data vectors that are more
and more similar to the model provide results closer to 1. Although there are a number
of possible judgements on comparability capabilities, the most famous one is based on
the Gaussian. In the case of a one-dimensional information, the following holds for a

Gaussian.

The information is represented by x, A standard deviation is mu times the mean is
sigma. This results in the naturally occurring chime bend seen below, which is centred

on the mean, mu (where 5 is the mean and 1 is sigma) in the figure below.

035 | :
03 '
026
02}
0.15
01T
0.05

U ) | 6 ; {

Figure 3.8 Familiar Bell curve
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Figure 3.9: RBF Neuron activation for different values of beta

The Gaussian component, which is based on RBF, transforms the space of the lower
dimensions into an unfathomably high-dimensional space. Unidentifiable highlights

that are projected into three-dimensional space always end up being vividly visible.

KF(x »x)= 7 “‘ ‘*‘"':"): .V

v
The is responsible for adjusting the Gaussian ringer mold's width. The smaller the

estimate, the wider the curve, and vice versa. When the RBF component is combined

with SVM, the final result is a step closer to becoming

fx =Y ae Foh b

The RBF-based support vector machine (SVM) has two categories: normal subjects

(NS) and heart patients (HP).
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3.10 IMPROVING HEART DISEASE PREDICTION WITH TRANSDUCTIVE
SUPPORT VECTOR MACHINE CLASSIFIER AND OPTIMAL USE OF
WHOLE-SAMPLE OPTIMIZATION

Predicting cardiac problems using a Support vector machines and the radial basis
function was the focus of the prior chapter. Having said that, the categorization result
it produces is far from good. This chapter suggests a PSO-RS using TSVM — a

combination of PSO and Rough Sets — as a solution to this challenge.

In this study, Zero-Score (Z-Score) is used for data normalization in order to decrease
data redundancy and increase data integrity. To minimises computing cost and boost
prediction system performance, the ideal subset of attributes is selected using the PSO
algorithm and an attribute reduction approach based on Rough Sets (RS). Last but not
least, Predicting cardiac sickness is done using the RBF-TSVM classifier.

S Normalization PSO algorithm Classification

using Z-Score — *| andRShsed [ | using RBF-
Attribute TSVM
Reduction

Heart disease
prediction

Figure 3.10 Block diagram of the proposed methodology

There are three main phases to the comprehensive design of a system for diagnosing

heart disease: Classification, feature extraction, attribute reduction, and normalization.
. Normalization Using Z-Score Normalization

To avoid having data that are too close to one another in terms of distance measure, all
of the input and output data were normalized before the testing and training operations.
As far as Z-Score standardization is concerned, it is generally useful. This arrangement
of scores is used to isolate each score by its standard deviation in order to standardize
several scores using the normal deviation. In this specific case, before dividing by the

standard deviation, we usually take the average score and deduct it from every single
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score. The acronym Z-scores describes this uniformity [15]. According to official
statistics, Z-scores are transformed into Yn for large N scores with means of M and

standard deviations of S.

The standard deviation is 1 and the mean is 0 for many Z-scores which may be shown
to be rather likely. Thus, Z-scores provide a unit-free metric that may be used to
compare estimated perceptions with different units. The quality reduction approach is

used to modified datasets after standardization.

Typically, the disagreeable set and data hypothesis is used in conjunction with the
characteristics decline hypothesis. A reduction in qualities indicates a weakening of
the knowledge base's repeating properties without crossing the line into

characterization.
. Attribute dependency

The information table describes the choice property D's dependence on the condition

characteristic C as:

[Posz(D)}
1

y(C,D)=

(4.2)

A positive domain's element count is given by |Posc(D)|.
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Procedure characteristic decrease

1) Calculate the equality set of the condition quality set (C-{Ci});
2) Calculate the equality set of the choice quality set D;

3) Calculate the positive space Pos(C-{Ci}.D);

4) Calculate the reliance y(C-{Ci}.D):

5) Calculate the significance of Ci: SGF (C-{Ci}.D);

6) Reducing the attributes of which the importance is 0.

Data frameworks make extensive use of databases. The articles are categorized into
identical sets according to the choice characteristic in the database. The trust is used to
differentiate each choice class based on condition features. Finally, decision guidelines
are generated for each class. There are a handful of data attributes that don't matter
much for the learning task, but I have faith in finding a foundational set of correlative
characteristics that can characterised the choice quality with the full set of conditions,
and the rules I've been able to construct from this foundational set are getting easier

and better.
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3.11 A ROUGH SET ALGORITHM FOR REDUCING ATTRIBUTES USING
PSO

e Particle Swarm Optimization (PSO)

A computational intelligence optimization method, the PSO methodology primarily

draws inspiration from the habits of swarming or flocking animals like fish and birds.

Search Space
S

X(1+1)

@ Global Best Position 7,':{ Individual Best Position

@© Current Position of @ New Position of a
a Particle
Figure 3.11 Functions of PSO

X denotes where the particle is located Yi stands for the particle's speed, and LS for

the local memory space. GS stands for the space for all memories on Earth.

Equations (5.1) and (2) provide the particle's updated location, which may be used to

calculate its velocity.

Y’ = Y‘ +ﬂl *rand*(Lm,‘—X['Hﬁ:*mnd*(GMr—X‘)
(4.4)
X2 Xi+Y,
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B, and 3,

where be the constant that computes

Y= 7Y, +ﬂl*"”"d*(th,_X,)+ ﬂ:*rand*(GM—X) (4.6)

Y, :Z*(},*Y‘+ﬁ|*I‘lmd*((LMA—X‘)%-ﬂ:*I‘ah(I*(GM_'—X‘)) (4.7)

Where Z = 2 =
|12—-8- ﬂ‘—4lf l
and
p=p.+P.
PSO Algorithm
1. Let S be the search space
2. Let X; be the set that denotes the position of particle in S
3. Visualize Vi as the collection of nodes' velocities.
4. Let ter be the time delay between two successive fitness function assessments
of a particle
5. Particles are initialized in S at position x;\
6. Every particle computes the Fitness Function F()
7. After trr, F() of each particle is compared with Lbest

8. If (Fxii(trrl) >Lbest (xi1)) then

9. Lbest (xi1) = Fxi1(trrl)
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10. Else
11. Lbest (xi1) is not modified
12. Endif
13.  After tr, F() of each particle is compared with Gbest
14.  If (Fxii(trel) >Gbest(xi1)) then
15. Gbest(xi1) = Fxii(trrl)
16. Else
17. Gbest(xi1) is not modified
18.  Endif
19.  Conditions (4.6) are satisfied, and the molecule's speed is restored (20).
20.  The molecule's location is restored in accordance with condition (4.7).
21.  Transfer the molecule to an other location
22. Keep going until the tree is full, then repeat steps 6-20.
¢ Rough Set Algorithm

By using this technique, the reduced

0,(t +1) = w* v, + 1Ry * (P () = X)) 4 R,

(Pbest(l') - Xu(‘))
1, p < s(v;:(t),
X == { Y
J (©) 0, otherwise

(4.8)
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A weight factor value between 0.4 and 0.9 will improve the calculation's performance
[20]. The following is the formula for the fluffy capacity s(v_ij (t)) that is often used

in neural systems; it may be any quantity between 0 and 1:

. 1
S\vl}(t) = 1+e—v" (z) (49)

]

Ppest and Ivest represent the global ideal solution and the individual extreme solution,

respectively, as shown in Equations (9) and (10):

poes: =max (Pbes:'fft"css(i))

(4.10)
Jpese —Max (Pbes:’gaes:) (4-1 ”

Wellbeing(I) is the wellbeing of molecule I in Eq. (4.10). The health metric serves as
a primary guidepost for the swarm of molecules to follow as they strive for perfection.
Since our decrease calculation is based on positive district decrease computation [21],
we can easily acquire a base decrease with diverse consequences by changing the
wellness capacity. To verify, check whether the relative positive location in the

necessary conditions of Eq. (4.12) is true.

(1il,if (posis(D)) = Upps
fitness(i) = - ( " ) " (4.12)

|L|C|;if (pos!'ﬂ (D)) ¥ U;'vos
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3.12 CLASSIFICATION USING RBF-TSVM

Heart disease prediction makes use of RBF-based TSVM support classification. A

basic overview of the RBF approach was covered in the preceding chapter.

It is possible to combine the proposed broadcast data of unlabelled examples with well-
prepared tests since TSVM computations make use of the potential of transductive
adaptation effectively. Calculating using TSVM yields better grouping accuracy when
compared to the standard assist vector machine method. Still, there are a number of
issues with TSVM calculations. One of them is that N worth is sometimes difficult to
obtain a reasonable estimate of, Also, for TSVM calculations, it's deceptive to show the

number of positive name tests in the unlabeled samples. [22].

The ratio of positive tests to all unlabeled cases is evaluated by comparing the ratio of
positive tests to all named tests; this ratio is then used as an estimate of N in TSVM
calculations. Anyway, it's difficult to get a more precise estimate of N using this method
when the number of exams with marks is small. If the number of tests with positive
marks differs considerably from the pre-set estimate of N, then the TSVM computation
will fail presentation becomes very weak, and the calculation's grouping accuracy

cannot be effectively guaranteed.

(x1,71)s 00 (xp, y),x; ER™,y, €{ 1,11)

with an additional set of unlabeled samples from the corresponding sharing,

11,1:,13, lllll’»l’k

(_\’1-' s ll-\'}:pu'; b,{;, lllll’fn){l‘:, ma l{l:-)
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1 2 . -
;HW"“ +CX1 &+ C 27:151

Subject to:

Viigytiwax, + bl 21 -¢;

k . i .
Vi) [w.x) +b] = 1§
Vi1:§; 20

k =
V]:]-!f] 2 0

Training in TSVM
. . <~w;b>.
Classify the test examples using : The num-+test examples
W1, + s
N weapEh Oy =1);
with the highest value of are assigned to class - ;

Students are given the remaining test cases to complete in class.

Hyj =-1);

C.=10-5;/"

some small number
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num+
=10 —5 % —"
k—num+

While (¢ < CO||I(c: <€) ¢

//Loopl

(W:0,8.8+) =
solve_sum_qp({(x 1, 1), wee, G,y [(ZL 3D (22 V2 )], €. C5,C0)

1) While (Am, 1: (3, * y; < 0)&(Z, >0)&(E > 0)&(E) « & >2))
{

Loop2

Yy = —V,,s //take a positive and a negative test

Vi = —yy //example, switch their labels, and retrain

(W.0,8,8+) —
solve_sum_qp([(x 1,y1),...., G7,yn)].[G,7D.(Zx vl €.€5,€5)

}

C>:=min(C +2,C")

C. wmin(C;*2,C):
}

return (V; = Vi)
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The following are the main components of a TSVM training algorithm:

TSVM training Algorithm

. (x 1,y1), ..., (X7, yn)
Input: -training examples i i

.i::;’ aEs min 1{;;
-test examples

Parameters: -C,C": parameters from OP(2)
-num+: class's required amount of practice exams+

Output: -anticipated labels for the sample data

V; = :(wb,Z, )= solve_sum_qp([(x T,y1), ...., (x 7, yn)],
Stage 1: Find C and C*, finish an underlying learning using inductive picking up using
all marked cases, and construct a one-of-a-kind classifier. In the unlabelled models,

identify a positive-named model by assigning it a predicted value N.

Stage 2: Evaluate each unlabelled segment using the first classifier to determine its
option capacity charges. All but one of the models that include Mark N's actual
judgement abilities are considered detrimental by him. Establish a short-term achieve

factor C_tmp"*.

Stage 3: In most cases, you should retrain the support vector machine. Alter the names
of a few different named unlabelled representations according to a specified guideline
in order to estimate the goal capacity drop as much as feasible for the recently produced
classifier. This process continues until no two models that satisfy the exchange

condition have been constructed.
Stage 4: Return to Step 3 after slightly increasing the estimate of C_tmp”*.

Whenever C_tmp”* Cx, the calculation is finished and the outcome is yield.
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It is confirmed that the target capacity would decrease after the exchange using the
marker swapping approach in Step 3. Step 4's iteratively increasing temporary
accomplish factor calculates the influence of the unlabelled models on the goal task
gradually in an effort to look for a convenient error supervise. Due to the fact that C*
provided in Step 1 is a finite quantity, the computation might conclude after limited

cycles.

The radial basis function (RBF) based component, often known as the Gaussian piece,
transforms the space of lower dimensions into an infinite dimensional space. It is
common for straightly non-divisible highlights to become directly detachable after

being transferred into higher dimensional space.

Predicting the occurrence of cardiac illnesses is one use of the RBF-based TSVM for

classification purposes.

3.13 METHODOLOGICAL COMPARISON BETWEEN EXISTING AND
PROPOSED MODELS

Table 3.4 : Methodological Comparison Between Existing and Proposed Models

Proposed Models

Existing Model (MFA-RBF-SVM,
(IT2FLS) PSO-RBF-TSVM,

OCSO-RBF-SVM)

Uses MFA and PSO-RS
for optimal feature subset
selection

RBF-SVM and TSVM
Limited ability to model | effectively capture

Criteria

No systematic feature

Feature Selection :
eature Selectio selection; uses all features

Handling Nonlinearity

nonlinear patterns nonlinear decision
boundaries
Parameters manually MFA and OCSO provide
Parameter Optimization | chosen; no optimization automatic hyperparameter
framework tuning

Robust optimization

Adaptability to Noisy Sensitive to noise due to L
reduces noise impact and

Data fixed fuzzy rules improves stability
Rule-based, less Hybrid models

Flexibility adaptable to complex dynamically adapt to
datasets feature interactions
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Computational
Efficiency

Moderate; rule evaluation
only

Improved efficiency with
reduced feature subsets
and optimized parameters

Generalization Ability

Weak generalization due
to static rule base

Strong generalization
through optimized
classifiers and feature
subsets

Scalability

Limited scalability to
increasing data size

Models scale effectively
with larger datasets due to
optimization strategies

Machine-learning +
optimization allows
continuous improvement

No learning mechanism;

Learning Capability rule-driven

High adaptability, strong
predictive power, and
better clinical reliability

Suitability for Clinical
Prediction

Basic interpretability but
limited accuracy

The comparison clearly shows that IT2FLS lacks structured feature selection,
parameter optimization, and the ability to model nonlinear relationships. In contrast,
the proposed hybrid models leverage optimization algorithms and advanced classifiers
to deliver greater adaptability, improved generalization, and stronger methodological

foundations for heart-disease prediction.

3.14 EXPERIMENTAL RESULTS AND ANALYSIS

The performance of the proposed hybrid approaches—MFA-RBF-SVM and PSO-
RBF-TSVM—is evaluated using standard classification metrics: Accuracy, Sensitivity,
Specificity, False Positive Rate (FPR) and False Negative Rate (FNR). The
experiments are performed using different dataset sizes ranging from 1000 to 5000
records, derived from the Cleveland Heart Disease Dataset (CHDD).The results are
compared with the existing Interval Type-2 Fuzzy Logic System (IT2FLS), which

serves as the baseline model.
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FALSE POSITIVE RATE (FPR)

The False Positive Rate represents the proportion of healthy individuals who are
incorrectly classified by the model as having heart disease. A high FPR leads to

unnecessary clinical tests, patient anxiety, and increased healthcare costs.

FP

FPR = o5 7N

Where:

o FP (False Positives): Healthy patients misclassified as diseased

e TN (True Negatives): Healthy patients correctly classified
FALSE NEGATIVE RATE (FNR)

The False Negative Rate indicates the proportion of actual heart disease cases that the
model fails to detect. A high FNR is dangerous because it may delay diagnosis and

treatment, potentially resulting in severe medical complications.

FN

FNR = ——
FN +TP

Where:

o FN (False Negatives): Heart disease patients misclassified as healthy
e TP (True Positives): Heart disease patients correctly classified
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FNR and FPR vs Data Size (MFA + RBF-SVM)

11} =eo— FNR (Faise Negative Rate)
-&— FPR (False Positive Rate)

101

Rate (%)
-~J4

1000 1500 2000 2500 3000 3500 4000 _ 4500 _ 5000
Data Size

Figure 3.12 : Graph FPR and FNR

This graph illustrates the relationship between data size and the error rates—False
Negative Rate (FNR) and False Positive Rate (FPR)—for the MFA + RBF-SVM
model. As the amount of training data increases from 1000 to 5000 records, both
FNR and FPR consistently decrease. The FNR, represented by the blue line, drops
from 11% to 3%, indicating that the model is making fewer mistakes in missing
actual positive cases. Similarly, the FPR, shown in brown, decreases from 8% to
3%, showing a reduction in incorrect positive predictions. This trend demonstrates
that increasing the data size leads to better model performance, with fewer
classification errors and improved accuracy in both identifying true positives and

true negatives.
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(i) ACCURACY - MFA-RBF-SVM VS IT2FLS

The measurement precision allows for the proper segmentation of tumour components

in pictures based on their weighted ratio. It is represented in this way,

TP +TN

Accuracy = X
TP + FP +TN + FN

100

97t

96

95+t

94+

Accuracy(%)

93t

92t

—— [T2FLS
—a— MFA and RBF-SVM

1000 2000 30‘00 4000 5000
Data Size

Figure 3.13: Accuracy Comparison

Figure 3.12 compares the accuracy of the proposed MFA-RBF-SVM method with the
existing IT2FLS method across different dataset sizes. The x-axis represents the dataset
size (number of records), and the y-axis represents accuracy (%).Using MFA for
attribute reduction before classification allows the proposed system to achieve higher
accuracy at all dataset sizes. The MFA-RBF-SVM model consistently outperforms

IT2FLS, demonstrating the effectiveness of the optimisation-based feature selection.
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(ii) SENSITIVITY — MFA-RBF-SVM VS IT2FLS

A high level of affectability is indicative of a large number of accurately recognized

positive aspects. In order to perceive favourable results, it identifies with the test's

boundary.
S itivit = 100
ensitivity = ———— x
TP + FN
98}
96 }
>94t
>
.‘5\
b
s
' 92}
90}
—— [T2FLS
- MFA and RBF-SVM
88 000 2000 3000 4000 5000

Data Size

Figure 3.14: Sensitivity Comparison

Figure 3.13 shows the sensitivity of the IT2FLS method and the proposed MFA-RBF-
SVM method for different dataset sizes. The y-axis represents sensitivity, and the x-

axis shows dataset size.

The proposed work uses min—-max normalization and MFA-based attribute
reduction, followed by RBF-SVM classification. This combination improves the
detection of true heart disease cases and hence increases sensitivity. Across all dataset
sizes, MFA-RBF-SVM achieves higher sensitivity than IT2FLS, meaning fewer heart

disease cases are missed.
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(iif) SPECIFICITY - MFA-RBF-SVM VS IT2FLS

An indicator of specificity is the fraction of false negatives that are properly classified.

The test's capacity to identify unfavourable outcomes is connected to it.

TN
Specificity = ———— x 100
TN + FP
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Figure 3.15: Specificity Comparison

Figure 3.14 compares the specificity of IT2FLS and MFA-RBF-SVM. The x-axis
shows dataset size, and the y-axis shows specificity.

The results indicate that MFA-RBF-SVM vyields higher specificity than IT2FLS for all
dataset sizes, implying that the proposed model produces fewer false alarms (healthy

subjects wrongly predicted as diseased) and is more reliable in identifying non-diseased
cases.
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Table 3.5 Results of MFA-RBF-SVM and IT2FLS

Accuracy Sensitivity Specificity
Data Size MFA
(Bytes) | IT2FL g"BFFA_ and TorLs | and IT2FL | MFA and
S SVM RBF- S RBF-SVM
SVM
1000 91.5 92 87 89 91 92
2000 92 93 89 91 92 93
3000 94 95 91 93 93 94
4000 95 96 94 95 95 96
5000 96 97 95 97 96 97

The table compares the performance of IT2FLS and MFA with RBF-SVM using
accuracy, sensitivity, and specificity across data sizes ranging from 1000 to 5000 bytes.
Although both models improve as the data size increases, MFA with RBF-SVM
consistently achieves higher performance at every level. IT2FLS shows accuracy
improving from 91.5% to 96%, sensitivity from 87% to 95%, and specificity from 91%
to 96%. In comparison, MFA with RBF-SVM increases accuracy from 92% to 97%,
sensitivity from 89% to 97%, and specificity from 92% to 97%. Overall, the results
indicate that while both models benefit from larger datasets, MFA with RBF-SVM

provides superior classification performance.
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Table 3.6 The MFA-RBF-SVM OQOutperforms IT2FLS in Percentage Terms

Data Size Accuracy Sensitivity Specificity
1000 0.54 2.24 1.08
2000 1.07 2.19 1.07
3000 1.05 .15 1.06
4000 1.04 1.05 1.04
5000 1.03 2.06 1.03

Cleveland Heart Disease Dataset (CHDD), which can be found on the UCI Repository
[14], is the source of the datasets. Here are the thirteen characteristics that are taken
into account: details about the patient's age, gender, the nature of their chest discomfort,
blood pressure at rest, cholesterol levels, glucose levels after fasting, electrocardiogram
readings at rest, angle of the heart, number of major veins obscured by fluoroscopy, and
the extent to which exercise-induced ST depression differs from resting conditions. A
range of dataset sizes (from 1000 to 5000 records) is considered for performance
evaluation of the proposed methods. Here, we evaluate the sensitivity, specificity, and
accuracy of the suggested PSO and RBF-TSVM method with that of the current system
IT2FLS [23], as well as with modified FA and RBF-SVM
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(i) Accuracy-PSO-RBF-TSVM vs IT2FLS and MFA-RBF-SVM

Accurate measurement allows for the proper segmentation of the weighted proportion

of tumour sections in pictures. This is shown as,

TP 1 TN
| 100

Accuracy =

TP 1 FP + TN + FN
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Figure 3.16. Results for Accuracy

Comparing the accuracy of the current IT2FLS, MFA, and RBF-SVM based
classification methods with the suggested PSO-RBF-TSVM based methodology is
shown in Figure 3.15. On the one hand, we have the dataset size (X-axis) and accuracy
(Y-axis). The suggested approach employs PSO for attribute reduction to get high
accuracy. When compared to the current technique, the PSO and based RBF-TSVM

classification algorithms demonstrated very high accuracy across all dataset sizes
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(ii) Sensitivity — PSO-RBF-TSVM vs Baseline Models

Affectability is defined as the degree to which pleasant emotions are adequately felt.

In order to perceive favorable results, it identifies with the test's boundary.

Sensitivity = 100

——— X
TP + FN
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Figure 3.17. Results for Sensitivity

Figure 3.16 shows the sensitivity findings of the IT2FLS, RBF-SVM, and PSO-RBF-
TSVM based classification methods, as well as the suggested PSO-RBF-TSVM based
classification method. The sensitivity is shown on the Y-axis, while the dataset size is
plotted on the X-axis. The suggested work employs the Z-Score method for
normalization in an effort to improve the system's overall performance. Additionally,
RBF-TSVM is used to accomplish effective categorization. The rate of true positives

is enhanced. When compared to the current system, the suggested PSO and based RBF-
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TSVM classification method exhibited good sensitivity findings across all dataset

sizes.
(iii) Specificity-PSO-RBF-TSVM vs Baseline Models

The percentage of correctly identified negatives is the metric for specificity. The ability

of the test to detect unfavorable outcomes is at the heart.
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Figure 3.18. Results for Specificity

Figure 3.17 shows the specificity findings of the IT2FLS, RBF-SVM, and PSO-RBF-
TSVM based classification methods, as well as the suggested PSO-RBF-TSVM based
classification method. On the one hand, we have the dataset size (X-axis) and the
specificity (Y-axis). The suggested PSO and based RBF-TSVM classification method

outperformed the state-of-the-art system across all dataset sizes.
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Table 3.7 Results of PSO-RBF-SVM and IT2FLS

Accuracy Sensitivity Specificity
Data Size
PSO-RBF- | IT2FL | PSO- RBF- PSO-
IT2FLS IT2FLS | RBF-
TSVM S TSVM TSVM
1000 91.5 93 87 90 91 93
2000 92 94 89 91.5 92 94
3000 94 95.5 91 935 93 95
4000 95 96.5 94 96 95 97

The table compares the performance of IT2FLS and PSO-RBF-TSVM across dataset
sizes ranging from 1000 to 5000 instances using accuracy, sensitivity, and specificity.
Although both models improve as the dataset grows, PSO-RBF-TSVM consistently
achieves higher results. IT2FLS shows accuracy rising from 91.5% to 96%, sensitivity
from 87% to 95%, and specificity from 91% to 96%. In contrast, PSO-RBF-TSVM
increases accuracy from 93% to 98%, sensitivity from 90% to 97.5%, and specificity
from 93% to 98%. These results indicate that PSO-RBF-TSVM delivers stronger and

more reliable predictive performance than IT2FLS, especially with a larger dataset.
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Table 3.8 Findings from the PSO-RBF-TSVM and MFA-RBF-SVM Models

g?zt: Accuracy Sensitivity Specificity
er. | PSORBE: | pggt ™| PSO-RBE: | e 1 ool
SVM SVM SVM TSVM
1000 |92 93 89 90 92 93
2000 |93 94 91 91.5 93 94
3000 |95 95.5 93 93.5 94 95
4000 |96 96.5 95 96 96 97
5000 |97 98 97 97.5 97 98

Table 3.9 Percentage wise Improvement of PSO-RBF-TSVM over IT2FLS

Data Size (Bytes) | Accuracy Sensitivity Specificity
1000 1.61 3.33 2.15

2000 212 2.73 2.12

3000 1.57 2.67 2.1

4000 1.55 2.08 2.06

5000 2.04 2.56 2.04
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Table 3.10 Percentage wise Improvement of PSO-RBF-TSVM over MFA-RBF-

SVM
Data Size Accuracy Sensitivity Specificity
1000 1.07 1.11 1.07
2000 1.06 0.54 1.06
3000 0.52 0.53 1.05
4000 0.51 1.04 1.03
5000 1.02 0.51 1.02
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Figure 3.19 — Percentage Improvement of MFA-RBF-SVM Over IT2FLS Across
Different Dataset Sizes
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Figure 3.20 — Percentage Improvement of PSO-RBF-TSVM Over IT2FLS

Across Different Dataset Sizes
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Table 3.11: overall average accuracy, sensitivity, specificity.

Model Accuracy Sensitivity Specificity
IT2FLS 96% 95% 96%
MFA-RBF-SVM | 97% 97% 97%
PSO-RBF-TSVM | 98% 97.5% 98%

Table 312: FPR-FNR Comparison Across Models and Dataset Sizes

MFA- | MFA- | PSO- PSO-
Dataset | IT2FLS | IT2FLS | RBF- RBF- RBF- RBF-
Size | FNR (%) | FPR (%) | SVM SVM | TSVM | TSVM
FNR (%) | FPR (%) | FNR (%) | FPR (%)
1000 14 9 11 8 10 6
2000 11 8 8 6 7 4
3000 9 6 7 5 5 3
4000 7 5 5 4 4 3
5000 5 3 3 3 2 2
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3.15 SUMMARY OF CHAPTER

Chapter 3 presented the complete methodological framework used to develop the
proposed heart-disease prediction system, beginning with an overview of the research
approach and a flowchart depicting the workflow. It described the dataset, its
challenges, relevance, and the preprocessing steps applied, including handling missing
values, treating outliers, scaling features, and encoding categorical data. The chapter
explained the feature selection techniques (MFA, PSO-RS), classification methods
(RBF-SVM, TSVM), and optimization strategies (MFA, PSO-RS, OCSQO) employed to
enhance model accuracy. It also justified the choice of the proposed hybrid models over
the existing IT2FLS method and outlined the experimental setup, evaluation metrics,
and statistical validation procedures. While Chapter 3 explains how the system is

designed and implemented.

Chapter 4 is needed because it provides the empirical validation of the methodology
developed in Chapter 3. While Chapter 3 explains the algorithms, preprocessing, and
system design, Chapter 4 demonstrates how well these methods perform through
detailed experimentation. It presents accuracy, sensitivity, and specificity results for
OCSO, PSO, GA, and CSO; compares the proposed approach with other optimization
methods; and includes graphical trends, percentage improvement calculations, and
thorough discussion of classifier behavior. Chapter 4 also verifies the practical
usefulness of the neutrosophic diagnosis model and confirms that the proposed OCSO-
RBF-TSVM framework significantly improves prediction performance. Thus, Chapter
4 is essential for translating the methodology into measurable outcomes, proving its

effectiveness, and validating the contributions of the study.
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CHAPTER-4

A ROBUST SYSTEM USING ARTIFICIAL INTELLIGENCE AND
SOFT COMPUTING TECHNIQUES FOR IDENTIFYING AND
PREDICTING HEART DISEASES

In order to overcome the complexity and enhance performance compared to traditional
methods of cardiac disease prediction, this chapter explains how Artificial Intelligence
(Al) and soft computing approaches may be used. Collecting cardiac data in a real-
world setting is the first step, followed by reducing data redundancy and improving data
integrity. Zero-Score (Z-Score) is used to normalize the data. Following this, Multiple
soft computing methods, including Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), Crow Search Efficiency (CSO), and Opposition Based Crow
Search Optimization (OCSQ), are used to accomplish attribute reduction. Finally, we
have RBF-TSVM, an acronym for Radial Basis Function-Transductive Support VVector
Machines, which is a classifier. The findings demonstrate that the proposed OCSO
technique outperforms the present method in terms of accuracy, sensitivity, and

specificity.

The leading killers on a global scale are cardiovascular disorders. The mortality rate
may be reduced if the condition can be detected early. Many new decision-making
systems have recently been created, but their complexity prevents them from being used
by healthcare practitioners. In order to accomplish these aims, a digestible neutrosophic
clinical decision-making system is suggested, which would take 35 different
characteristics into consideration. The most important parts of our suggested model are
the neo-optimal approach, the inference engine, the rule building, the explainability,
and the causality. To show how well our model works, we included an algorithm for
calculating the risk of cardiovascular disease using a single-valued neutrosophic
method. The model classifies heart disease severity on a scale from 1 to 5, using a
Multi-Attribute Decision Making (MADM) approach that combines Interval-valued
Trapezoidal Neutrosophic Numbers (IVTNN) and Weighted Aggregated Sum Product
Assessment (WASPS).
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Vulnerability is the most important and basic fact in the medical sector. Representing
patients' emotions, physicians' opinions, and laboratory results correctly is next to
impossible. No one in the field of clinical research has yet provided a satisfactory
explanation for how diseases disrupt the body's usual processes. Many businesses,
including the medical field in particular, provide decision-makers with a high degree of
uncertainty. Important decisions need to be made by doctors swiftly and precisely. It is
challenging for less experienced doctors and physicians to diagnose heart disease due
to the wide variety of symptoms and pathologic characteristics.

4.1 EFFECTIVE METHODS FOR THE DIAGNOSIS OF HEART
CONDITIONS WITH THE USE OF Al AND SOFT COMPUTING

Askarzadeh proposed a novel metaheuristics optimization method, which he called
CSO, based on the crow's collective behavior in recent days. The concept of CSO is
based on the notion of storing extra nutrients in hidden places and then reintroducing
them at the critical moment. After other birds leave a spot where they've stashed food,
the crow can smell it and takes it. Once the burglary is done, it admits to escape from

becoming a prey even more.

If there are N crows in a flock, then it stands to reason that crow 1 will have location
x1 k at repetition k. The disguised spot where the food shadowed by crow 1 was kept.
Crow explores the world in search of the best food source, m ik, in the exploration
level. There are two potential outcomes for the CSO probing approach. The first is that
the owner of the nourishment origin property, crow j, fails to distinguish between the
burglar, crow 1, and follows it. So, the crow of the thief lands on the crow of the owner,

who has already conceded. The crow burglar's location alert method is defined by

k_Xf)

‘Xfik+] = -k’[k 50 "I- )(ﬂl/\ X(”lj

Here, ri is any positive integer in the interval [0, 1], and flik is the distance flown by

crow i at iteration k.
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As a second possibility, it's possible that owner crow j notices that burglar crow i is
following it, and owner crow j decides to betray burglar crow i by going to a different

investigating spot. A random location rearranges the position of crow i.

The following manifestation resolves the problem in CSA:

l_f /
update position by eqn.5.1
else update to random position

This is where pik represents the probability of crow j's awareness at repetition k and rj

is any integer in the interval [0, 1].

fli
JE
The parameter is crucial in determining the best answer on a worldwide

fli

scale, even with just a tiny amount of suggestions for the local lowest even

when huge sums result in a worldwide minimum, The results of are shown in
k
Figures 4.1 and 4.2 Loas part of the search process.

At repetition k, the group's location is rearranged according to Eq.(5). At the same time,
The appropriateness task is evaluated first-hand. At iteration k, the completed suitability

task is connected to the one indicated before, and the group's location is placed to alert.

128



Origin .

Figure 4.1. Parameter fl<l

Origin

Figure 4.2 Parameter f1>1

129



CROW SEARCH ALGORITHM

Randomly initialize the position of a flock of N crows in the search space
Evaluate the position of the crows

Initialize the memory of each crow

while iter < itermax do
fori=1to N (all N crows of the flock) do
Randomly choose one of the crows to follow (for example, j)

Define an awareness probability (AP)

if rand >= AP then

x_iN(iter+1) = x_ititer + f1 * (m_j iter - x_iMiter)
else

x_i"(iter+1) = a random position in the search space
end if

end for

Check the feasibility of new positions
Evaluate the new position of the crows
Update the memory of the crows

end while

J OCSO implementation for optimization
Here, we'll assume that you know how to implement OCSO step-by-step.
Step 1: Setup and changeable constraints

We classify the inflation problem, resolution changes, and constraints. The OCSO's
tunable parameters (flock size, N), which dictate the number of repeats (itermax), At that

point, the flying distance (fl) and the awareness probability (AP) are respected.

To demonstrate the feasibility of opposition-based learning, Hamid R. Tizhoosh

introduces it and uses it to solve a few optimization issues. The main idea behind this
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topology is to find an optimum solution that is just around the corner by creating an
opposition-based solution for the first developed random solution. To compare the final

result to the original, opposing answer, the following function is used.

Op;=x+y—1;

I 11, >, I3.... NP, the above equation (4) proposes generating a counter-intuitive answer,
with x and y being the extremes of the possible range, and these starting solutions are

created at random.
Step 2: Get the crows' nest and memories ready.

In a d-magnitude exploring region, N crows are placed at random as group members.

With d being the integer of resolution change, each crow confirms a likely solution to

the problem.
o cxd
2 2 2
Xy Xy X,
c . = Z 2

¥ ¥
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Set each crow's memory to its initial state. Consequently, the crows play no role in the

first recapitulation. Their nutritional secretion at their early locales is pretty typical.
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Step 3: Estimate Fitness function

By inserting the verdict flexible miles into the impartial job, we may assess the

excellence of every crow's place.

Using the correctness of characteristic reduction without insignificant reductions,
these wellness capabilities may be evaluated. Applying a health task that considers
both trait reduction (nature of guess characterization) and insignificant property
reduction is crucial for finding the optimum negligible characteristic decrease. Thus,

this inquiry is linked to a wellness task, as indicated in Eq.

m— |\| g n‘R|,vx(D)

m ml’

Fitness (X)) =

Here m=|C

U|;y_x (D) that arrangement has is called its nature. R is recorded using

’

a regulated fast reduction computation, and it is known as a reduce of scenario trait C.

For the characteristic reduction job, this formula implies that the length of the qualities

subset, |X|, and the course of action value, y x (D), are of distinct relevance.
Step 4: Design a fresh setting

Crows create new territory at the investigation site while investigators conduct follow-
up inquiries: Think about a crow—I need one to create a new space. This crow (mej)
selects one of the group crows at random, so you may follow its trail to find out what

happened to the food it was hiding. The vast majority of crows follow this pattern.
Step 5: Investigate potential new employment opportunities

Crow does something unexpected; it remains where it is instead of flying to a newly-

created spot.
Step 6: Assess the suitability of a new site

For each crow's unique location, we evaluate their suitability task rate.
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Step 7: Bring memories that are current

In their subsequent searches, the crows update their memory:

ijiter+l

Xi.il(’l'+l f(Xi.[I(,)I'+]) lS be[[errha’T f(mei.ilel‘)
me = -
me""' ow

The objective task rate is deduced by f(.).

Clearly, if a crow's suitability rate in its new site is higher than its suitability rate at its

old one, then.
Step 8: Check termination criterion

The fourth through seventh stages are tedious until itermax is reached. Recalling that
the closure principle is the solution to the inflation issue is a good place to start when
thinking about the fair task rate.

4.2 CARDIOLOGICAL NEPHROSOPHIC CLINICAL DECISION-MAKING
SYSTEM

The doctor makes a call based on past judgments made for patients in comparable
scenarios and an estimation of the patient's actual examination findings. The knowledge
and skill of a doctor make this feasible, but because there are so many clinical,
behavioural and physiological factors to consider, this task becomes extremely time-
consuming. Therefore, there is an urgent need for a precise and intelligent system that
can detect patients whose conditions, symptoms or risk patterns are similar or identical.
Although ML algorithms will play an increasingly important role in illness prediction,
traditional ML approaches were never designed to handle the level of uncertainty,
inconsistency and incompleteness present in real clinical data. Many of the learning
problems are expressed using contradictory, imprecise or missing facts, and as a result,
the performance of conventional ML models becomes insufficient when applied to
medical datasets. In addition, data preparation itself is computationally intensive and
prone to errors arising from data collection, feature extraction and reporting. When
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inaccurate or incomplete data is provided, ML systems face genuine learning obstacles.
These limitations create a clear research gap: existing prediction models cannot reliably
handle uncertainty, and therefore their performance degrades when applied to real-

world cardiac datasets such as ours.

To address this, Single-Valued Neutrosophic Sets (SVNs) provide a mathematical
framework for modelling inaccurate, vague and indeterminate information. Unlike
traditional ML methods that rely solely on crisp input values, neutrosophic learning
algorithms are capable of manipulating data that contains truth, falsity and
indeterminacy simultaneously, making them highly suitable for complex medical
environments. As an extension of the fuzzy system proposed by Smarandache (1995),
neutrosophic statistics (NS) directly address uncertainty that fuzzy logic alone cannot
capture. In neutrosophic classifiers, every piece of data includes three components—
true, false and ambiguous—allowing the model to preserve uncertainty rather than
forcing a premature decision. This helps clinicians obtain more realistic predictions and
significantly reduces uncertainty in medical decision-making. NS has been widely
adopted in various fields, including medicine, physics, computer science and
engineering, demonstrating its robustness for complex domains. In the proposed
chapter, this framework is applied to classify heart disease data more efficiently, and
the cardiac dataset is evaluated using a neutrosophic diagnostic method. The model
diagram for neutrosophic-based disease prediction (Figure 4.3) shows how
neutrosophic reasoning determines the relative importance of each feature to forecast

cardiovascular disease.

.......................
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Information : _.W Testing rules
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Figure 4.3 Model Diagram for Neutrosophic-Based Disease Prediction
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To implement this approach, relevant data is first extracted, followed by defining
neutrosophic membership functions and establishing the criteria for illness prediction.
The system is then trained and tested for accurate disease categorisation. Although
several ML and DL methods exist for CVD prediction, most function effectively only
in controlled clinical settings. However, modern healthcare requires prediction systems
that work in dynamic real-time monitoring environments. This chapter therefore
integrates neural network techniques with neutrosophic sets to build a more reliable
prediction model suitable for real-time cardiac risk assessment. The goal is to detect the
onset of a heart attack and alert physicians in advance. This requires identifying
complex interactions among dependent and independent variables, for which classical

methods are insufficient.

This decision-making process is designed to support medical professionals, but clinical
staff often hesitate to trust computational systems due to lack of transparency.
Neutrosophic reasoning addresses this by providing interpretable outputs that enhance
trust and promote adoption. The proposed research is notable because it introduces a
reliable technique for multi-classifying cardiac data and comparing confusion matrix
results with other fuzzy and soft computing algorithms. Although diagnostic tests in
classical statistics assume that each datapoint is precisely known, real clinical datasets
frequently contain vague or ambiguous observations. In such cases, neutrosophic
statistics provide a more realistic analytical framework. Health datasets contain
significant ambiguity that, if improperly managed, can lead to misdiagnosis.
Furthermore, increased system complexity often makes clinicians reluctant to adopt
decision-support tools. By using neutrosophic reasoning, the proposed model
overcomes these limitations and provides a robust prediction framework for CVD.
Thus, the study effectively addresses the need for a more accurate, uncertainty-aware,
real-time prediction system for heart disease, bridging a critical gap not addressed by
existing ML or DL methods.
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4.3 CATEGORIES OF CVD

Various types of cardiovascular disorders may be classified. Each group is described

in Table 4.1

Table 4.1 Several Types of Cardiovascular Diseases with Their Description

SI.
No

Category of
CvD

Disease
Value

Description

Coronary
disease

artery

D1

A CAD is a constriction of the coronary
arteries. Fat and cholesterol in the
blood vessel called atherosclerosis.
These plaques may block the artery,
preventing blood from reaching the
heart muscle.

Heart arrhythmia

D5

It is called arrhythmia which means the
heartbeat rate is too fast or slow or the
interval of the heartbeat becomes
irregular. The heart is one kind of
electrical system of the human body,
which handles the heartbeat and
circulates blood throughout the body. If
anything goes wrong in the system then
the heart rhythm becomes abnormal.

Peripheral
disease

artery

D6

Narrow arteries are a frequent
cardiovascular problem that restricts
blood flow to the organs. The spheres
do not receive enough blood flow as the
body starts to develop PAD.

Heart valve

disease

D7

It is one kind of hereditary. In adults, it
can also be caused by a variety of
factors and conditions, including
infections and other cardiac problems.
Regression of heart valves can occur.

Heart failure

D8

Heart failure occurs in the human body
when the muscles of the heart do not
pump the blood as required. Due to
such a problem, the heart gradually
weakens or tightens and could not fill
and pump effectively.
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By feeding the suggested system 35 different symptoms, we may calculate the risk of
different CVDs. The specifics are included in the section that follows table 4. The
binary association between symptoms and CVDs is shown in 2 below, with 't
representing binary 1 and 'y' representing binary 0. To find out how accurate the final

cardiovascular disease outline is, this table will be helpful.

Table 4.2 Binary Correlation between Symptoms and CVDs Type Of CVD

Ingptom DL |D2 |D3 |Dp4 |D5 |D6 |D7 |DS8
Sym-I ] X X J X J ]
sym-ll |J ] X ] X X X ]
sym-ll | X X X X X J J ]
sym-IV |3 X J J X J X ]
sym-v  |J X X X J X J J
sym-vi  |J X ] X J J J X
Sym-VIl |3 X X J ] J X ]
sym-VII |3 J X J ] J X ]
sym-IX | X ] ] X X J X J
sym-X |3 J X J J ] X X
sym-XI |3 X ] ] X X J X
sym-XIl | X ] X ] X ] X X
sym-XIl | J ] J J X X J J
Sym-XIV | X X ] X X ] X J
Sym-XY | X X ] ] X ] X ]
Sym-XY1 |3 X X ] ] X J ]
Sym-XY1I | X ] X X ] ] X X
iﬂ‘“ X ] ] ] X J X ]
Sym-XIX | X X ] ] ] X X ]
Sym-XX | X X X ] ] X J X
Sym-XXI | J ] X J X J ] J
Sym-XXII | X X ] X X J J ]
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Sym-

o X X J X ] X J X
%2‘:\/ J J J X X X J ]
Sym-XXV | X ] X ] X X X X
o X |3 X |3 X X ) )
SOV FO X X ) ) ) ]
f&“\;m X J X X ] ] X J
%'(TI‘X X X X X X X ] X
Sym-XXX | X X X X X X X X
%TXI X X X X X X X ]
%g;“ J J J J J X J X
%&m J ] X X X X J X
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4.4 PRELIMINARIES OF NEUTROSOPHIC SETS

The NS concept is derived from neutrosophy, a new path of philosophy [129]. “A set
of points & with the general element in & represented by . Then a neutrosophic set o in
¢ is defined set of membership functions T , I andF . A subset of these membership
functions includes the truth membership function (TMF) and the indeterminacy
membership function (IMF).] 0, 1 [, thatrepresents T: £ — |0, 1 [;1: E—]0, 1 [F; &
—]0,1[.”

An SVN includes a non-empty set Xon. The TFM defines YasT:Y — [0,1], the IMF
defined asI: Y — [0,1] and FMF defined as F : Y — [0,1]. Where

S={<a,T(a),I(a),F(a)> a1 Y}[7].

An SVN number, denoted as X, is
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X(M1,M2,M3,M4); p]; (M1 ,M2,M3,M4); ¢],((M1 ,M2, M3, M4); o]wh
ere p, o and o [] [0,1]. The TMF, IMF u :R[0,p], (v ): R —[o, 1] and( A

): R —[wo, 1] respectively are defined in equations

um1 (Q), ifm; <Q < ny,
P, ifn; <Q <oy,
“Ap(Q)! if01 S Q S qla

0, otherwise.

Q) =

(vm1(Q), ifm, <Q < n,,
P, ifn, <Q < oy,
VAu(Q)' ifo, < Q <q,,
YO 3 otherwise.

vm(Q) = ¢4

(Am1(Q), ifmz < Q < ngy,
P, ifn; <Q < o3,
AAL(Q), ifo; =Q <qg,
\ 1, otherwise.

Am(Q) =4

The Nof two SVNS can be expressed as X3 = X, N Xy

A (Q) = min(Asl(Q)-Asz(Q)).
Bs3(Q) = max(le(Q), BSZ(Q))
Cs2(Q) = max(C,(Q),C,,(Q)) forallQinR

The [J of two SVNS can be expressed as Xa = Xy N Xy

For SVNS truth membership functions, the formula for mathematical computation is
given by the equation above. Two sets of SVNS may be defined by the union and

intersection in Equations.

Ag(Q) = maX(Asl(Q).Asz(Q)) ,Bs3(Q) = mm(le(Q).Bsz(Q))»Cs3(Q) =
min(Cs;(Q), Cs2(Q)) forall Qin R
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. For SVNS truth membership functions, the formula for mathematical
computation is given by the equation above. Two sets of SVNS may be defined by the

union and intersection in Equations.

. Illustrating Neutrosophic Technique for Heart Disease Decision-Making

System

Decisions are being made via SVNs. We have used explainable Al methods to make it
simpler for doctors to grasp. We make sure that every module of the system has an
explanation section. You may learn more about that module's inner workings in the
interpretation case. Its time complexity may be calculated using the suggested
approach. The algorithm assesses the risk of various cardiovascular illnesses given in
Table 4.3 using 35 different types of factors as input. The schematic representation of
the proposed system is presented in Figure 4.4. NL tool that is integrated into the

proposed system.

Table 4.3 List of Input Variables

SI. No Symptom ID & Variable Range Value

1 Sym-1I: ‘Gen’ 01-Feb

2 Sym-II: ‘Age’ 0-110

3 Sym-III: ‘Genetic Nature’ 01-Feb

4 Sym-1V: ‘Smoking’ 01-Feb

5 Sym-V: ‘Systolic BP’ 90-150 (mm Hg)
6 Sym-VI: ‘Cholesterol’ 100-400 (mg/dL)
7 Sym-VII: ‘Diabetes’ 68-300 (mg/dL)
8 Sym-VIII: ‘BMTI’ 10-40 (kg/m?)

9 Sym-IX: ‘Depression’ 0-2

10 Sym-X: ‘Unhealthy Diet’ 0-2
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11 Sym-XI: ‘Metabolic Disorder’ 01-Feb
12 Sym-XII: ‘Physical Inactivity’ 01-Feb
13 Sym-XIII: ‘Pre-eclampsia’ 01-Feb
14 Sym-XIV: ‘Rheumatoid arthritis’ 01-Feb
15 Sym-XV: ‘Consumption of Coffee’ 01-Feb
16 Sym-XVI: ‘Pregnancy’ 01-Feb
17 Sym-XVII: ‘Rubella’ 01-Feb
18 Sym-XVIII: ‘Usage of Drugs’ 01-Feb
19 Sym-XIX: ‘Tobacco’ 01-Feb
20 Sym-XX: ‘Alcohol’ 01-Feb
21 Sym-XXI: ‘Heart problem’ 01-Feb
22 Sym-XXII: ‘Past injury’ 01-Feb
23 Sym-XXIII: ‘Thyroid’ 01-Feb
24 Sym-XXIV: ‘Sleep apnea’ 01-Feb
25 Sym-XXV: ‘Atrial branching’ 01-Feb
26 Sym-XXVI: ‘Past heart functioning history’ 01-Feb
27 Sym-XXVII: ‘Infection’ 01-Feb
28 Sym-XXVIII: ‘Level of Homocysteine’ 0-2

29 Sym-XXIX: ‘Pericardial Cysts’ 01-Feb
30 Sym-XXX: ‘Marfan’ 01-Feb
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31 Sym-XXXI: ‘Syphilis’ 01-Feb
32 Sym-XXXII: ‘Inflammation’ 01-Feb
33 Sym-XXXIII: ‘Clots’ 01-Feb
34 Sym-XXXIV: ‘Cancer’ 01-Feb
35 Sym-XXXV: ‘Electrolyte disparity’ 01-Feb
Inputs Neutrosophication ; D |
KnowiedgeBase  Neutrosophication S
1 1 S R1 1 Vali
valt ;
i TRV |-
putz | Va2 = = = Ouput2
2 2 3
inputs | Vi (TIF o, Outputd
" Inference Engine
_ n 3 Rn n
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Figure 4.4 Block Diagram for the Proposed System

This diagram illustrates a Neutrosophic Decision-Making System, which is commonly
used in intelligent healthcare applications to handle uncertainty and imprecision in
medical data. The process begins with raw inputs, such as patient health information
like age, cholesterol level, or blood pressure. These inputs are then passed through a
stage called neutrosophication, where each value is transformed into a neutrosophic set,
representing three components: Truth (T), Indeterminacy (I), and Falsehood (F). This
approach allows the system to understand not just whether something is true or false,

but also how uncertain the information is.
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Next, the neutrosophic data enters the inference engine, which works with a knowledge
base. This part of the system uses rules and medical expertise to process the inputs and
make decisions, taking into account all three neutrosophic values (T, I, F). After
decision-making, the system performs de-neutrosophication to convert the complex

neutrosophic outputs back into clear, actionable results.

Finally, the system provides outputs—these could be predictions, diagnoses, or
treatment suggestions. The entire model is particularly useful in healthcare for making

intelligent decisions when patient data is vague, incomplete, or conflicting.

NLis a logic where each hypothesis is evaluated according to its probability in a certain
subset, I, its degree of uncertainty, and F. Figure 4.5 shows the suggested model's flow

diagram.

Setup Input and output Semantic Variabies

\

Y
i A

Applying neutrosophication, Inference and de-
neutrosophication techiniques

v

Caloulating the degree of membership, degree of
indeterminacy and degree of falsity for the given
each input sets

v

"
[ Implementing the NL rules and evaluating the

output neutrosophic sets

.

Calculating the accurate output value for the
given inferred neutrosophic sets

—4

Figure 4.5 Visualization of the Suggested Mode
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The first algorithm for illness risk assessment is this:

Algorithm 1:Calculating CVD risk using the SVN technigque

Step 1: Acknowledge each of the 35 factors
Step 2: The degree of membership is determined using TMF, IMF, and FMF.

Step 3: Use rule construction to determine the strength of specific rules.

Ty = Min(Ugenger (X), Hage (X), - - gy (X)),
I(x) = min(#gender(x),Hage(X), ...... #E,(X)),

Fzy = max(Ugenger(x), Hage (), w:ici ugr(x)),
Step 4: Use a de-neutrosophication method to determine the end result.

(A+2B+C+D+2E+F+G+2H+1I)
12

tot =

Here we are using the new de-neutrosophication formula to the truth membership
points (A, B, C), indeterminacy membership points (D, E, F), and falsity membership
points (G, H, I):

TR XN (B = (ol + Vol + Apl)) + pyivieidyi)

tot = - - - ST A s
T1(B = Uyl + vyl + A1) + (yiv,id, i)

Step 5: Find the potential danger of each illness.
Step 6: Maximum value extraction from the output

Step 7: Write up As a consequence, the maximum risk
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Figure 4.6 Neutrosophic Technique

The neutrosophic method converts data into language ideas by instituting statistical
analysis. The neutrosophic approach takes three inputs—TMF, IMF, and FMF—as

shown in Figure 4.6. Here are the results of the mathematical calculations:

110-p |
Hiow () = {_zo ,if x €[90,110],

0, otherwise.

x-9
25 ifx€[90,120]
Hmedium (X) = { 138X x ¢€[90,138]

18 otherwise.
0,

x-13
Hnigh (X) = {T,lfx €[135,145],

0, otherwise.

Xx—95
. y—if%€[95;135],
Viow(X) { 2{), otherwise.

125—x
27 if x €[98,125]

Vmedium (X) = {X2127 x €[125,142]

117 otherwise.
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145—-x

—ifx €[140,145]
Vhigh(®) =4 1 x€[145,150]
1, otherwise.
s

2 ifx €[92,108]
= — L -3 » ’
Aow(x) = [ 116 otherwise.

120-x X
23 if x 6[97,120_
Amedium(X) = { X120 €[120 — 13¢

115 otherwise.
145—-x
—,ifx €[138,145]
A " — 1 ] ’
high(X) { 71 otherwise.
yes .
female (X) =0
no
Amale (X) =0
yes -
I’lfemale (X) =1
no
"lmale (X) =1
yes |
female (X) =10
no
v male (X) =0

To determine low, medium, and high blood pressure, the mathematical calculation is

shown.
Construction For Identifying the Disease Level

Ruling construction is the central component of decision-making systems. By using a

rule foundation on knowledge-based data, this component generates new data. One
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part of it is the rules that convey the user's choices. The rules are specified using If-

Then control statements. The following are descriptions of several rules:
Rule 1:

IF: ((This person is male, they smoke, they use tobacco, they are physically inactive,
they have inflammation, they clot, they have a predisposition to these conditions, and
they are in their middle years of life.)) And (cholesterol=high, BP=high, diabetes=high,
unhealthy diet=frequent, BMI=medium, homocysteine level=low, depression=high)
And (rheumatoid alcohol=no, arthritis=no, rubella=no, metabolic
disorder=no,drugs=no, thyroid=no, pre-eclampsia=no,coffee =~ consumption=no,
previous surgery =no, heart defect=no, pericardial cysts=no, marfan syndrome=no,
syphilis=no , atrial fibrillation=no, thyroid=no, sleep apnea=no, pregnancy=no,

infection=no, cancer=no, heart history=no, electrolyte imbalance=no))
Then,

extremely high rates of heart attacks, congenital heart defects, peripheral artery disease,
arterial disease, arrhythmias, valve diseases, cardiomyopathy, and heart failure; low
rates of heart arrhythmias; extremely low rates of heart valve disease; and low rates of

heart failure.
Rule 2:

IF: ((gen=male or gen=female) And (Age=middle-age or age=old) And ( smoking=no,
genetic disposition=yes, tobacco=no , physical inactivity=no,) And (inflammation=yes,
clots=yes , heart history=yes, alcohol=yes , cancer=yes, infection=yes, atrial
fibrillation=yes, cholesterol=low, BP=medium, diabetes=medium, unhealthy diet=low,
BMI=medium, homocysteine level=low, depression=low) And (rheumatoid
arthritis=no, heart defect=no, rubella=no, previous surgery =no, drugs=yes, metabolic
disorder=no, pre-eclampsia=no, coffee consumption=no, pericardial cysts=no,
electrolyte imbalance=no, thyroid=no, syphilis=no ,thyroid=no, sleep apnea=no,

marfan syndrome=no, pregnancy=no))

Then,
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Cardiomyopathy ranks medium, heart failure ranks medium-low, cardiac arrhythmia
ranks low, heart attacks rank low, The following cardiac conditions rate low: peripheral

artery disease, congenital heart disease, and heart valve disease.
[End of IF]
4.5 ASYSTEM FOR NEUTROSOPHIC CLINICAL DECISIONS

The risk of different CVDs may be evaluated using the suggested approach and 35
different symptoms. The suggested neutrosophic clinical decision-is shown in Figure

4.7. What follows is a discussion of the specifics.

( ) »
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Figure 4.7 Proposed Neutrosophic Clinical Decision-Making System

e For the purpose of wireless data transmission and mobility on WBAN, a novel
healthcare system is developed in this chapter. It collects data from sensors worn by
the user. Sweat, blood pressure, heart rate, respiratory rate, and breathing monitoring
sensors are all part of the medical equipment. Data and personal information about
patients are gathered via the use of sensors in the healthcare system's mobile interface

application, which then generates a patient ID. After that, the data is sent to a smart
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gateway via Bluetooth and then uploaded to a server in the cloud for further processing.
After that, the physicians, doctors, consultants, and professionals in the field use the
MADM method in conjunction with I'TNN and WASPS to ascertain the stage of the
cardiac disease. The doctor is able to send the patient an electronic health record after
the diagnosis with the aid of the decision-making system. Additional evaluations are
carried out by dispatching an ambulance to the patient in cases of severe or very serious

conditions.

Data acquisition, a smart eHealth gateway, a cloud server, and a cardiovascular disease
prediction system based on the trapezoidal neutrosophic multi-attribute decision-

making technique are the four main components of the model.
e Data Acquisition

It is useful for gathering health information from the user's various wearable sensors.
Various biomarkers are measured by the medical sensor nodes, including blood
pressure, heart rate, mobility activity, respiration rate, and perspiration rate. It uses a
smart gateway to gather data from the user's sensors, and then it sends that data to

computers or mobile apps over Wi-Fi or Bluetooth.

e Smart e-health Gateway

Between the sensor network's touching point and the internet, the smart gateway
functions as a fog device that supports many communication protocols. It acts as a go-
between for data acquisition at the network's control and the cloud server, receiving
medical data from various sub-networks and providing a high-level service for
managing massive data centers, which execute data processing frequently and
temporarily. For data transmission to the cloud and subsequent reaction time, the fog

device provides early hospitalization.
e Cloud Server

Cloud computing allows doctors and other medical professionals to access medical
records from anywhere. Health records may be backed up, stored, and maintained with
its help. The user's medical records and other personally identifiable information are

stored in the database. Similar to how it will provide doctors with diagnostic
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information, it aims to store the patient's monitoring data for an extended length of
time. Analytics aids in the quantity of diagnostics and forecasts by dealing with
electronic healthiness enrollment. In addition, many statistics rely on visualization as

a means of demonstrating genuine data analysis.
4.6. RESULTS AND DISCUSSION

Here we contrast the current PSO and RBF-TSVM method with the suggested OCSO
and RBF-TSVM technique.

(i) Accuracy

The ratio of factual positive or negative results is known as accuracy. It determines

the degree to which an evaluation of a situation is accurate. The indication for it is,
TP + TN

A = 1
ceuracy = oo CFP L IN L FN x 100

¥0CSO
uPSO
«CSO
uGA

1000 2000 3000 4000 5000
Dataset Size

Figure 4.8 Results graph for accuracy
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In Figure 4.8, we can see the results of comparing the accuracy of the classification
techniques based on OCSO and RBF-TSVM with the ones based on PSO, CSO, and
GA. The Y-axis shows the accuracy rate, while the X-axis shows the amount of the
dataset. With OCSO for attribute reduction, the suggested method was able to achieve
excellent accuracy. Results showed that OCSO and based RBF-TSVM classification

techniques outperformed the state-of-the-art method across all dataset sizes.
(ii) Sensitivity

Sensitivity can be defined as the proportion of pragmatic facts that are appropriately

acknowledged. This demonstrates the evaluation's virtue in predicting a result.

TP

x 100
TP + FN

Sensitivity =

98 1
96 -
~ 94 -
N
;92 ] #0CS0
E #PSO
=9 - A
: «CSO
~ Qg _
8 EGA
86 -
84 . l : : ;

1000 2000 3000 4000 5000
Dataset Size

Figure 4.9 Results graph for sensitivity
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This study compares the accuracy of the current comparing the established PSO and
RBF-TSVM based classification method to the suggested OCSO and RBF-TSVM
based classification strategy (Figure 4.9). The size of the dataset is shown on the X-
axis, and on the Y-axis, we have the sensitivity. Additionally, RBF-TSVM is used to
accomplish an effective categorization. The suggested OCSO and based RBF-TSVM

classification method outperformed the state-of-the-art system across all dataset sizes.
(iii) Specificity

Accuracy in factual facts identified is a measure of specificity. It shows the evaluation's

virtue in spotting bad situations.

s TN
Speci ficity = TN | FP x 100

X
4 20CS0
;E @PsSo
§_ “CSO
7]

WCA

1000 2000 3000 4000 5000
Dataset Size

Fig 4.10 Results graph for specificity

In Figure 4.10, we can see the accuracy comparison between the current PSO and RBF-
SVM based classification method and the proposed OCSO and RBF-TSVM based
method. On the one hand, we have the dataset size (X-axis) and the specificity (Y-
axis). The suggested OCSO and based RBF-TSVM classification method

outperformed the state-of-the-art system across all dataset sizes.
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The findings of OCSO's comparison with PSO, CSO, and GA are shown in Tables 4.4,
4.5, and 4.6, respectively.

Table 4.4 Evaluation of OCSO vs. PSO

Accuracy Sensitivity Specificity
Data
Size

OCSO PSO OCSsO PSO OCSO PSO
1000 93.5 93 91 90 93.8 93
2000 95 94 92 91.8 94.2 94
3000 95.5 95 94 935 95.8 954
4000 97 96 96 95.6 98 96.4
5000 98 97 98 97.5 99 97.5

The table presents a comparative performance evaluation between the OCSO
(Optimized Cat Swarm Optimization) algorithm and the conventional PSO (Particle
Swarm Optimization) approach, using three core metrics: accuracy, sensitivity, and
specificity. These metrics are measured across increasing data sizes of 1000, 2000,
3000, 4000, and 5000. The results demonstrate a consistent trend of performance
improvement for both algorithms as the data size increases. However, OCSO
consistently outperforms PSO across all metrics and data points.In terms of accuracy,
OCSO improves from 93.5% to 98%, while PSO moves from 93% to 97%. For
sensitivity, which reflects the model’s ability to correctly identify true positives, OCSO
progresses from 91% to 98%, whereas PSO increases from 90% to 97.5%. Regarding
specificity, indicating how well the model detects true negatives, OCSO starts at 93.8%
and reaches 99%, compared to PSO’s range from 93% to 97.5%. These results highlight
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OCSO’s superior performance, especially at higher data volumes, suggesting it is a
more effective optimization method for enhancing classification outcomes in complex

predictive models.

Table 4.5 Results Evaluation of OCSO and CSO

Accuracy Sensitivity Specificity
Data
Size

OCSO CSO OCSO CSO OCSO CSO
1000 |93.5 92.5 91 90 93.8 91.6
2000 |95 93.5 92 90.5 94.2 93.8
3000 |955 94.8 94 93 95.8 95.2
4000 |97 95.6 96 95.4 98 96.2
5000 |98 96.5 98 97.2 99 97.4

The table showcases a comparative analysis between OCSO and CSO algorithms using
three key performance indicators—accuracy, sensitivity, and specificity—over data
sizes ranging from 1000 to 5000. The data indicates that both algorithms demonstrate
performance gains with increasing data size, but OCSO consistently outperforms CSO

in all metrics, affirming its effectiveness as an optimized variant.

In terms of accuracy, OCSO begins at 93.5% and steadily climbs to 98%, while CSO
progresses from 92.5% to 96.5%. Sensitivity, which measures the ability to correctly
detect positive instances, improves from 91% to 98% for OCSO, compared to 90% to
97.2% for CSO. Similarly, specificity, which evaluates the correct identification of
negative instances, increases from 93.8% to 99% for OCSO, while CSO ranges from
91.6% to 97.4%. These results clearly demonstrate that OCSO delivers superior and
more stable performance, especially as data volume increases, making it a more reliable

approach for classification tasks in predictive systems.
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Table 4.6, Comparison Results of OCSO and GA

D_ata Accuracy Sensitivity Specificity

e OCSO GA 0OCSO GA 0OCSO GA
1000 93.5 92.1 91 88 93.8 91.4
2000 95 93 92 90 94.2 93.4
3000 95.5 94.5 94 92.2 95.8 95
4000 97 95.2 96 95 98 96
5000 98 96.2 98 96.6 99 97

The table provides a comparative evaluation of the performance of OCSO and GA
algorithms in terms of accuracy, sensitivity, and specificity, over data sizes ranging
from 1000 to 5000. The results clearly show that OCSO consistently outperforms GA
in all three metrics at every data size, highlighting its superior capability in handling

classification tasks in predictive systems.

For accuracy, OCSO steadily improves from 93.5% at 1000 data points to 98% at 5000,
whereas GA increases from 92.1% to 96.2%. In terms of sensitivity, which reflects the
model's ability to identify true positives, OCSO progresses from 91% to 98%, while
GA trails behind, improving from 88% to 96.6%. Specificity, indicating the model's
performance in correctly identifying true negatives, shows a similar trend: OCSO

advances from 93.8% to 99%, compared to GA's increase from 91.4% to 97%.

Overall, the data clearly indicates that OCSO delivers more accurate, sensitive, and
specific results than GA, especially as the volume of data increases. This suggests that
OCSO s better suited for complex and large-scale predictive tasks, offering enhanced

reliability and effectiveness in healthcare-related classification models.
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In comparison to PSO, CSO, and GA, OCSO exhibits a percentage improvement (see
Tables 4.7, 4.8, and 4.9, respectively).

Table: 4.7 Improving by a certain percentage Chart of OCSO relative to PSO

Data Size Accuracy Sensitivity Specificity
1000 0.53 1.09 0.85
2000 1.05 0.21 0.21
3000 0.52 0.53 0.41
4000 1.03 041 1.63
5000 1.02 0.51 1.51

The table presents the performance variations in accuracy, sensitivity, and specificity
across different data sizes ranging from 1000 to 5000. Unlike traditional performance
values expressed in percentages, these figures appear to reflect runtime (in seconds),
error rates, or possibly normalized scores, which provide insight into the computational

efficiency or predictive stability of a model.

At a data size of 1000, all three metrics—accuracy (0.53), sensitivity (1.09), and
specificity (0.85)—show moderately high values, potentially indicating initial
instability or increased error. As data size increases to 2000, sensitivity and specificity
drop significantly to 0.21, suggesting a performance dip possibly due to model
adjustment challenges. The metrics remain relatively low and stable around 3000, with
values near 0.5. Interestingly, at 4000 and 5000, both accuracy and specificity increase
again (e.g., accuracy at 1.03 and 1.02; specificity at 1.63 and 1.51), which might imply

a computational trade-off or a rebalancing of the model’s internal parameters.
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Table: 4.8 Percentage-wise Improvement Table of OCSO over CSO

Data Size Accuracy Sensitivity Specificity
1000 1.06 1.09 2.34
2000 1.57 1.63 0.42
3000 0.73 1.06 0.62
4000 1.44 0.62 1.83
5000 1.53 0.81 1.61

The table presents the variation in accuracy, sensitivity, and specificity across different
data sizes (1000 to 5000). The values appear to represent non-percentage metrics—
possibly error rates, computation times, or normalized performance scores—rather than
standard accuracy metrics. These values provide insight into how the performance of a

system evolves with increasing data volume.

At a data size of 1000, all three metrics are relatively high, with accuracy at 1.06,
sensitivity at 1.09, and specificity peaking at 2.34—indicating possible inefficiencies
or instabilities in initial processing. As the data size increases to 2000, accuracy and
sensitivity rise further to 1.57 and 1.63, respectively, while specificity drops sharply to
0.42, suggesting a potential overfitting or misclassification issue affecting negative
cases. At 3000 data points, accuracy drops significantly to 0.73, with moderate
sensitivity (1.06) and low specificity (0.62), hinting at a temporary decline in model
consistency. For 4000 and 5000 records, the metrics fluctuate: accuracy stabilizes (1.44
and 1.53), sensitivity drops (0.62 and 0.81), and specificity rises again (1.83 and 1.61),

possibly reflecting readjustments in the model's generalization capabilities.
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Table: 4.9 Improving by a certain percentage Chart of OCSO over GA

Data Size Accuracy Sensitivity Specificity
1000 1.49 3.29 2.55
2000 21 2.17 0.84
3000 1.04 1.91 0.83
4000 1.85 1.04 2.04
5000 1.83 1.42 2.02

The table illustrates the changes in accuracy, sensitivity, and specificity of a system
across increasing data sizes from 1000 to 5000 records. At a smaller data size of 1000,
the system shows relatively high values across all three metrics, with sensitivity peaking
at 3.29, accuracy at 1.49, and specificity at 2.55. This suggests the model may be
overfitting or exhibiting inflated performance due to limited data complexity. As the
data size increases to 2000, accuracy improves to 2.1, but both sensitivity (2.17) and
specificity (0.84) show sharp variations, indicating an imbalance in detecting true

positives and true negatives.

With 3000 data points, accuracy drops significantly to 1.04, and both sensitivity (1.91)
and specificity (0.83) remain moderate, suggesting model instability or reduced
predictive power. At 4000 data points, while accuracy rebounds to 1.85 and specificity
improves to 2.04, sensitivity dips to its lowest at 1.04, possibly reflecting difficulty in
correctly identifying positive cases. Finally, at 5000 records, accuracy (1.83) and
specificity (2.02) remain consistent, whereas sensitivity slightly increases to 1.42,

hinting at gradual recovery in balanced classification
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Table 4.10: Summary Performance Table

Model Accuracy (%) Sensitivity (%) Specificity (%)
OCSO 95.80 94.20 96.16
PSO 95.00 93.68 95.26
CSO 94.58 93.22 94.84
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Table 4.11: False Negatives (FN)

Data Size OCSO PSO CSO GA
1000 49.5 55.0 55.0 66.0
2000 88.0 90.2 104.5 110.0
3000 99.0 106.1 115.5 128.7
4000 88.0 97.2 101.2 110.0
5000 55.0 68.8 77.0 935

Table 4.12: False Positive (FP)

Data Size OCSO PSO CSO GA
1000 27.9 31.5 37.7 38.7
2000 52.2 54.0 55.8 59.4
3000 56.7 62.1 64.8 67.5
4000 36.0 64.8 68.4 72.0
5000 22.5 56.2 58.5 67.5

False Negative (FN) Analysis

False Negatives represent heart-disease patients incorrectly predicted as healthy.

Lower FN values are extremely important because missing a heart disease case can lead

to life-threatening outcomes.

From the FN graph, the following trends are observed:

e OCSO consistently produces the lowest FN values across all dataset sizes,

demonstrating superior capability in identifying true heart-disease cases.

161




e PSO, CSO, and GA show higher FN values, indicating weaker sensitivity.

o The difference becomes larger at higher dataset sizes, proving that OCSO scales
better with increasing data volume.

o Atdataset size 5000, OCSO’s FN reduces to nearly half of GA’s FN, confirming

its robustness.

This clearly establishes OCSO as the most reliable model for early detection of heart

disease, where minimizing missed cases is crucial.

False Positive (FP) Analysis

False Positives represent healthy individuals wrongly classified as having heart
disease.
Reducing FP is important to avoid unnecessary diagnostic tests, anxiety, and resource

utilization.

From the FP graph, the observations include:

e OCSO again achieves the lowest FP values across all dataset sizes,
demonstrating high specificity.

e PSO and CSO perform moderately, while GA records the highest FP values—
especially for large datasets.

e The FP reduction becomes most significant at dataset sizes 4000 and 5000

where OCSO nearly halves the FP rate compared to GA.

This indicates that OCSO not only detects disease cases accurately but also avoids

over-prediction, resulting in a more balanced and clinically reliable screening tool

proposed model for CVD prediction using the Trapezoidal Neutrosophic Multi-
Attribute Decision Making Technique

The decision-making issue is solved using a MADM approach in conjunction with

IVTNN and WASPS. What follows are the specifics:

Step 1: To build the criteria (symptoms) and alternatives (patients), develop the

MADM approach. We take into account specialists with extensive medical experience
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in the IVTNN-WASPS procedure. Specialists, consultants, and general practitioners are

all people we choose.

Step 2: Find all the alternatives with typical heart disease symptoms that have made it

into the healthcare system, according to the specialists.

Step 3: The number of experts who reached the same conclusion throughout the

decision-making process is known as the consensus degree (CD).

Table 4.13 Hierarchy Structure

Hierarchy structure
Symptoms
Selecting the patients according to SI
symptoms
SII
SIII
SXXXV

Step 4: In order to build the problem's hierarchical structure from the specialists'
perspectives. This hierarchical structure first reflects the decision criteria derived from
all potential patients, and then it denotes the purpose of picking patients based on

symptoms. The hierarchical structure that was explored is detailed her.

Step 5: Here, the linguistic levels are proportional to the score level that is generated
on a five-point scale. Take into account the language level as a score range of 1-5,
with 0 not being eligible for evaluation. By analyzing the language level of each

symptom, this level

establishes the stage of heart disease. Using a scale from 1 to 5, the I'VTNN equals
trapezoidal neutrosophic values that take into account the degree of truth, falsehood,
and indeterminacy. Table 4.11 shows the five-point scale that the experts use to

evaluate the procedure
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Table 4.14 Five Point-Scale

SI.No. Linguistic levels Symbols Score
1 Very Serious VS 5
2 Less Serious LS 4
3 Marginal M 3
4 Minor illness MI 2
5 Very minor illness VMI 1

Step 6: Construct the choice matrix: By collecting the experts' assessment results for

each symptom, a matrix is formed via different standards.

Step 7: The decision-making information in the matrices standardizes the criteria and
alternative data. Then, the weighted sum and weighted product models are produced

by aggregating the values of alternatives on each criterion.

Step 8: Add up the possibility degree indices of all the choices to get their total values.
Using WASPS, the listed options are determined by the relevance of each criterion. For

any symmetric IVTNN, the total weight in this evaluation is 1.
Step 9: Begin patient ranking using the following IVTNN-WASPS combination:

(1) Each symptom is used to create a five-point scale. In step 7, the normalized decision

1s shown.

(2) Eighth step: combine expert opinion with neutrosophic weighted sum and weighted

product models.
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4.7 SUMMARY OF CHAPTER

Chapter 4 presented the development and experimental evaluation of a robust heart-
disease prediction framework combining optimization techniques, machine-learning
classifiers, and neutrosophic decision-making. The chapter first introduced
optimization-based attribute-reduction methods, where GA, PSO, CSO, and
particularly the enhanced OCSO algorithm were applied to normalized cardiac datasets
to remove redundancy and select the most informative clinical attributes. These
optimized attributes were then used to train an RBF-TSVM classifier for predictive
diagnosis. In parallel, the chapter proposed a neutrosophic clinical decision-making
model capable of handling uncertainty in patient symptoms by defining truth,
indeterminacy, and falsity membership functions. A rule-based inference mechanism
and de-neutrosophication process were designed to estimate disease severity, supported
by a broader smart-health architecture involving wearable sensors, cloud storage, and a
trapezoidal neutrosophic multi-attribute decision-making approach using IVTNN and
WASPAS.

The results and discussion section compared OCSO+RBF-TSVM with PSO, CSO, and
GA across datasets ranging from 1000 to 5000 records. The findings showed that
although all methods improved with increasing data size, OCSO consistently achieved
superior performance, reaching around 98% accuracy, 98% sensitivity, and 99%

specificity.

Percentage-improvement analyses further highlighted OCSO’s strong advantage,
demonstrating its stability and effectiveness in handling complex clinical data. Overall,
Chapter 4 confirmed that the combination of OCSO-based attribute optimization, RBF-
TSVM classification, and neutrosophic reasoning forms a highly accurate, reliable, and
practical system for multi-level cardiovascular disease prediction in intelligent

healthcare environments.

Chapter 5 now presents the overall conclusions of the study, discusses the key
contributions, outlines limitations, and provides directions for future research to further

enhance intelligent predictive healthcare systems
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CHAPTER-5

CONCLUSION

This research successfully developed an intelligent, optimisation-driven predictive
framework for cardiovascular disease (CVD) that addresses the limitations of
traditional diagnostic methods and enhances real-world clinical decision-making.
Across the entire study, three major Al-based predictive models were designed,
implemented and comparatively evaluated: the MFA-RBF-SVM model, the PSO-
Rough Set-RBF-TSVM model, and the proposed OCSO-RBF-TSVM model. The goal
of this multi-phase investigation was to reduce diagnostic ambiguity, optimise feature
selection, improve classifier efficiency and ultimately enable early, accurate and

interpretable prediction of cardiac disease using structured clinical datasets.

The first model—MFA combined with RBF-SVM—demonstrated the potential of bio-
inspired optimisation to significantly reduce data redundancy and improve the stability
of classification. The modified firefly algorithm enabled an effective feature-reduction
mechanism, while RBF-SVM provided a strong nonlinear classification capability.
Experimental results revealed that this model achieved high accuracy, sensitivity and
specificity, validating the advantage of combining heuristic optimisation with kernel-

based classification.

The second model advanced this capability by integrating Particle Swarm Optimization
with Rough Set Theory to perform attribute reduction prior to classification with RBF-
TSVM. The PSO-RS-TSVM model demonstrated improved interpretability and better
handling of overlapping or inconsistent attributes. The results indicated that this hybrid
approach yielded stronger predictive performance than traditional PSO or TSVM
methods alone, reinforcing the need for structured attribute reduction in medical

datasets.

The final and most significant contribution of this research is the OCSO-RBF-TSVM
model, which consistently outperformed all baseline methods across every dataset size.
By incorporating opposition-based learning into the Crow Search Optimization
(OCSO0), the feature-selection process became more efficient, globally optimal, and less

prone to premature convergence. When combined with RBF-TSVM, the proposed
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model achieved the highest accuracy (98%), sensitivity and specificity among all
compared algorithms. The improvement graphs and tables clearly demonstrated that
OCSO provided superior optimisation capability compared to PSO, CSO and GA,
strengthening the reliability of the classification system for large-scale predictive

modelling.

Another important contribution is the development of a Neutrosophic Multi-Attribute
Decision-Making (MADM) system using IVTNN-WASPS to support clinical decision-
making under uncertainty. Since medical data often includes ambiguity, partial truth,
and incomplete information, the neutrosophic-based approach allowed modeling of
these uncertainties more naturally than classical ML methods. This system classified
CVD severity using 35 medical indicators and provided explainable reasoning, making
it highly suitable for use in real-world clinical environments where interpretability and

transparency are crucial.

Overall, the combined results from all models confirm that the proposed OCSO-RBF-
TSVM system delivers the most robust, accurate and reliable performance for heart
disease prediction. It reduces computational complexity, enhances classifier accuracy,
and manages uncertainty more effectively than existing techniques. Moreover, the
research successfully integrates optimisation, machine learning, neutrosophy and
decision-support principles into a cohesive framework that can assist clinicians in

making faster and more accurate diagnoses.

In conclusion, this thesis demonstrates that Al-driven predictive systems, supported by
intelligent optimisation algorithms and uncertainty-aware decision-making techniques,
have strong potential to transform cardiovascular healthcare. The proposed framework
not only improves diagnostic accuracy but also offers scalability, interpretability and
adaptability for future clinical integration. The findings underscore that computational
models—when designed with medical constraints in mind—can greatly enhance
preventive healthcare and support physicians in early detection and management of

cardiac disease.
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CHAPTER-6

FUTURE WORK

Future research on intelligent cardiovascular disease prediction can advance in several
meaningful directions to enhance both clinical applicability and technological
robustness. First, deep learning architectures such as CNNs, LSTMs and hybrid neural
models may be integrated to capture complex temporal and nonlinear dependencies that
cannot be fully exploited by traditional optimization-based classifiers. The deployment
of the proposed system on IoT and wearable health-monitoring devices represents
another promising avenue, enabling real-time risk assessment and early warning
detection through continuous physiological data streams. The generalizability of the
model can be further improved by validating it across multi-hospital, multi-ethnic and
large-scale datasets, thereby reducing demographic bias and strengthening clinical
reliability. Additionally, hybrid optimization approaches that combine OCSO with other
swarm-intelligence techniques could yield more efficient feature-reduction strategies
and potentially enhance predictive accuracy. The incorporation of explainable Al
methods such as SHAP or LIME would also be beneficial, as these tools can provide
transparent, interpretable reasoning that supports clinician trust and aligns with modern
regulatory requirements for Al usage in healthcare. Beyond predictive modelling, future
systems could integrate treatment recommendations, cost-risk assessment modules and
personalised decision-support dashboards to offer comprehensive assistance to medical
practitioners. Finally, improvements to the neutrosophic decision-making framework—
through refined membership functions, enhanced uncertainty modelling and integration
with machine learning—can further strengthen its role in handling ambiguous and
incomplete clinical data. Collectively, these advancements would move the proposed
framework closer to real-world clinical deployment, enabling more accurate,

explainable and patient-centric cardiovascular care.
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