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ABSTRACT 
 

India faces a growing number of cardiovascular diseases patients, with over 30 million 

currently affected. Diagnosing heart disease is a complex task that requires careful 

analysis and understanding of patients through regular check-ups. Early detection can 

help patients take precautions and take regulatory measures. The healthcare industry 

generates vast amounts of data about patients, making machine learning techniques 

crucial for analyzing this data. 

A previous heart disease diagnosis system relied on Interval Type-2 Fuzzy Logic 

System (IT2FLS), but it had poor recognition accuracy and training time. This research 

proposes an efficient heart disease prediction system using modified firefly algorithm 

based radial basis function with support vector machine (MFA and RBF-SVM). The 

dataset includes three types of qualities: input, key, and prediction characteristics. 

Standardization is performed using the min-max standardization approach, followed by 

a heuristic approach called MFA to manage large amounts of high-lights and extensive 

records. PCA is used to remove highlights, and RBF-SVM is used to classify highlights 

as ordinary or heart illnesses. 

A PSO algorithm and RBF-based Transductive Support Vector Machines (TSVM) 

approach are proposed to intelligently and efficiently predict heart disease. After 

normalization, rough sets based attribute reduction using the PSO algorithm is 

introduced to find optimal reduction. Finally, classification is performed using RBF-

TSVM to predict heart diseases. An Opposition Based Crow Search Optimization 

(OCSO) technique is applied for attribute reduction followed by RBF-TSVM approach. 

Metric values are found based on True Positive (TP), True Negative (TN), False 

Positive (FP), and False Negative (FN). Experimental outcomes show that the proposed 

techniques achieve superior performance in terms of accuracy, sensitivity, and 

specificity compared to existing methods.As heart disease is the leading cause of death 

globally, predicting cardiac disease is a complex task that requires accurate models. 

Techniques such as Internet of Things (IoT), cloud computing, machine learning, and 

deep learning techniques are used to build accurate models. Web-based healthcare 

systems improve the quality of medical diagnostic decisions, and physicians adopt 

predictive modeling processes to anticipate clinical risk factors 
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CHAPTER-1 

INTRODUCTION 

1.1     OVERVIEW 

In today’s information era, several industries are constantly producing vast quantities 

of data. The rapid growth of AI across many fields has been supported by improvements 

in hardware that enable the processing of this data and the extraction of significant 

insights. In healthcare, the rising demand for medical services and the strain on 

healthcare resources due to a growing global population have contributed to the 

increasing adoption of AI-based systems. Applications such as diagnostic imaging, 

individualized treatment planning, and disease prediction and prevention have emerged 

as part of this transformation. These developments collectively form the foundation of 

“smart healthcare,” in which AI-driven predictive analytics play a central role. 

Smart healthcare differs from traditional healthcare by shifting the focus from 

specialists to patients. By integrating advanced intelligent technologies, smart 

healthcare aims to build a system centered on patient needs, experiences, and 

participation. This paradigm emphasizes data processing, knowledge discovery from 

structured and unstructured information, cross-domain insights, and improved decision-

support mechanisms. These components support predictive modeling, adaptive 

learning, and dynamic prediction in healthcare environments. 

AI applications such as robotic-assisted procedures, disease prediction, and drug 

research have demonstrated significant potential in improving healthcare outcomes. A 

variety of studies have examined the advantages of AI technologies across multiple 

functional areas of smart healthcare. At the same time, the literature highlights 

challenges—particularly related to data quality, integration, privacy, and model 

reliability—that hinder full-scale adoption across healthcare systems. 

The growing adoption of AI across industries has encouraged similar advances in 

healthcare. These technologies have the potential to transform many aspects of patient 

care and administrative operations. Multiple studies indicate that AI can match or even 

surpass human performance in tasks such as disease detection and risk assessment. 

However, despite promising results, AI still faces limitations in generalizability and 
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clinical applicability, necessitating further research to ensure safe and effective 

integration into clinical practice. 

Healthcare systems worldwide require improvement to meet the increasing need for 

accessible, efficient, and high-quality patient care. Many individuals continue to face 

challenges in receiving adequate treatment for chronic illnesses, including heart 

disease, cancer, stroke, and diabetes. As healthcare moves toward value-based and 

patient-centered care, there is a growing need for approaches that provide personalized, 

cost-effective, and coordinated treatment. AI supports this goal by enabling physicians 

to access updated diagnostic information, detect abnormalities in imaging data, and 

compile comprehensive patient profiles based on clinical history and other relevant 

factors. 

However, a significant portion of healthcare data nearly 80% exists in unstructured 

form. This makes it difficult for clinicians to access complete and organized 

information at the point of care. The lack of interoperability among systems, privacy 

concerns, and fragmented data storage add to the complexity of clinical decision-

making. These issues highlight the need for modern data-driven approaches that 

facilitate precise, timely, and patient-focused care. 

The increasing availability of healthcare data and advancements in big data analytics 

have enabled the development of successful AI applications for clinical decision 

support, diagnosis, and personalized treatment. Healthcare data is generated from 

numerous sources, including radiology, laboratory systems, wearable devices, sensors, 

physician notes, pathology reports, and clinical records. This diverse information 

contains important details such as demographics, medical history, family history, 

symptoms, test results, and treatment responses. Facilitating data sharing and 

integration across systems is essential for supporting proactive and preventive care. 

Although access to integrated health data is often limited by privacy regulations and 

compatibility issues among medical devices, machine learning techniques can address 

many challenges once sufficient and authorized data becomes available. ML techniques 

have the capacity to identify patterns within data and support precision medicine by 

tailoring treatment decisions. Predictive models can, for example, assess the likelihood 

of hospital readmission in chronic disease patients and support timely interventions. 
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Discussions on artificial intelligence continue to expand across scientific and technical 

domains. Recent advances in image recognition, natural language processing, and 

speech analysis have raised interest in how these tools can enhance healthcare decision-

making. Studies demonstrate that, in specific contexts, AI systems can achieve 

diagnostic performance comparable to experienced clinicians. However, realizing the 

full potential of AI in healthcare requires overcoming issues related to data quality, 

privacy, system compatibility, and responsible deployment. 

 

Figure 1.1: Robotics for New Medical Businesses.  According to CB Insights (2016) 
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1.2 ARTIFICIAL INTELLIGENCE IN HEALTHCARE 

Artificial Intelligence (AI) refers to computational systems capable of performing tasks 

that normally require human intelligence, such as learning from data, recognizing 

patterns, reasoning, and making informed decisions. Modern AI technologies—

particularly machine learning, deep learning, and natural language processing—have 

become essential tools for analyzing the large and complex datasets generated in 

today’s digital healthcare environment. 

In healthcare settings, AI is used to interpret clinical information, support diagnostic 

decision-making, predict disease risk, and personalize treatment pathways. Its primary 

role is not to replace healthcare professionals but to augment their capabilities by 

providing accurate, data-driven insights that enhance clinical judgment and improve 

patient outcomes. By analyzing patterns in medical records, imaging data, laboratory 

results, and real-time physiological signals, AI systems can assist clinicians in 

identifying abnormalities earlier and more precisely than traditional methods. 

AI applications in healthcare include early disease detection through medical imaging, 

outcome prediction using electronic health records, automated clinical documentation, 

and personalized treatment planning. These tools improve efficiency by reducing 

administrative workloads, enhancing diagnostic accuracy, and enabling faster decision-

making. As the availability of digital health data continues to grow, AI is increasingly 

recognized as a critical component in achieving proactive, patient-centered, and value-

based care. 

Key Characteristics of AI in Healthcare 

The implementation of AI-based smart healthcare solutions is defined by several core 

characteristics: 

1. Big Data Processing and Analysis: Healthcare systems generate large volumes of 

structured and unstructured data from imaging equipment, wearable devices, laboratory 

systems, and electronic health records. AI models process this data to detect patterns, 

support clinical insights, and continuously learn from new information. 
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2. Augmented Intelligence:AI acts as a support system to enhance the capabilities of 

healthcare professionals. By providing accurate diagnostic suggestions, identifying risk 

factors, and managing vast patient datasets, AI assists clinicians in making timely and 

well-informed decisions. Full automation is limited to conditions where risks are 

minimal and human supervision is not critical. 

3. Integration of Software and Hardware: AI in healthcare combines software 

technologies—such as machine learning, deep learning, and NLP—with medical 

hardware including imaging machines, monitoring devices, and robotic systems. 

Together, these components facilitate the analysis of both structured and unstructured 

data, supporting diagnosis, monitoring, and treatment planning. 

1.3 NEED AND RATIONALE OF THE STUDY 

Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality 

worldwide, imposing substantial human, social, and economic burdens. Early and 

accurate prediction of heart disease risk plays a pivotal role in reducing adverse 

outcomes through timely clinical intervention, personalized treatment planning, and 

effective resource allocation. In many clinical settings, diagnosis and prognosis of 

cardiovascular conditions still rely on a combination of physician expertise, 

conventional risk scores, and limited diagnostic parameters. These approaches often 

underperform in two important ways: (a) they may not capture complex, nonlinear 

interactions among clinical variables, and (b) they are limited by incomplete, noisy, or 

heterogeneous data sources. 

Rapid digitization of healthcare and the increasing availability of electronic health 

records (EHRs), physiological time-series (e.g., ECG), laboratory results, and imaging 

data create an opportunity to develop data-driven predictive models that augment 

clinical decision making. Machine learning (ML) and optimization-guided models can 

discover latent patterns and interactions not evident to traditional statistical tools. In the 

context of heart disease, such models can: 

 Identify high-risk patients earlier than conventional screening tools, enabling 

preventive interventions and follow-up strategies. 
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 Improve prioritization and triage in resource-constrained settings (e.g., 

outpatient clinics, emergency departments), reducing delays to care. 

 Personalize therapeutic recommendations by combining demographic, clinical, 

physiological, and laboratory indicators to produce individualized risk scores. 

 Aid clinicians by offering consistent, reproducible risk estimates that 

complement clinical judgment, potentially reducing diagnostic variability and 

oversight. 

However, effective translation of ML/AI solutions into clinical practice requires more 

than high accuracy on benchmark datasets: robustness to noisy / missing data, 

interpretable outputs, resistance to overfitting, and reliable generalization across 

populations are essential. This motivates the present study: the development of an 

integrated, optimized heart disease prediction framework that couples advanced feature 

selection and hybrid optimization algorithms (Modified Firefly Algorithm (MFA), 

Particle Swarm Optimization with Rough Sets (PSO-RS), Orthogonal Chicken Swarm 

Optimization (OCSO)) with strong classifiers (RBF-SVM, TSVM) to produce accurate, 

robust, and practically deployable prediction models. Using a real-world dataset of 303 

patients, this research aims to deliver methods that are computationally efficient, 

interpretable for clinical use, and validated with rigorous performance metrics relevant 

to healthcare settings (accuracy, sensitivity, specificity, AUC, and clinical utility 

measures). 

1.4  PROBLEM STATEMENT 

Despite progress in ML for cardiovascular risk prediction, several persistent problems 

reduce the reliability and clinical readiness of existing models. These can be 

summarized as follows: 

1. Feature-selection inefficiency and redundancy: Clinical datasets often contain 

many correlated and irrelevant variables (demographics, biochemical markers, 

comorbidities, ECG features). Traditional selection methods (filter/wrapper 

methods without global search) either retain noisy features or discard 

informative but subtle predictors, harming model performance. 

2. Suboptimal hyperparameter tuning and model optimization: Many studies 

report models with good average performance but do not employ systematic 
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global optimization strategies for classifier kernels and parameters; this leads to 

models that are sensitive to initialization and dataset splits. 

3. Poor handling of data uncertainty and incompleteness: Clinical records 

commonly contain missing values, measurement noise, and heterogenous 

scales. Existing approaches frequently use ad-hoc imputation and normalization 

methods that do not address uncertainty propagation through the learning 

pipeline. 

4. Limited use of hybrid intelligent frameworks: Few studies combine advanced 

metaheuristic optimizers with robust classifiers in a modular pipeline that 

jointly optimizes feature selection and classifier parameters. Standalone ML 

algorithms or simple ensembles do not exploit the complementary strengths of 

metaheuristics (global search) and margin-based classifiers (SVM/TSVM). 

5. Lack of interpretability and clinical explainability: High-performing black-box 

models are seldom accompanied by clinically interpretable explanations 

(feature importance, decision boundaries, local explanations), restricting 

clinical adoption. 

6. Insufficient validation on diverse and adequately sized datasets: Research often 

relies on small or publicly available datasets with limited representativeness; 

cross-population generalizability and overfitting remain concerns. 

7. Inefficient computational pipelines for real-time/near-real-time use: Methods 

that require heavy tuning, long training times, or large computation are 

impractical for deployment in hospital settings with constrained computing 

resources. 

Therefore, the central problem addressed in this thesis can be formulated as: 

How can we design a robust, accurate, and computationally efficient heart disease 

prediction system that (a) selects the most informative and stable features from noisy 

clinical data, (b) optimally tunes classifier parameters using advanced global search 

algorithms, and (c) provides interpretable, clinically actionable predictions validated on 

a real dataset of patients? 

This research focuses on solving the above problem by integrating modified and hybrid 

metaheuristic optimizers (MFA, PSO-RS, OCSO) with RBF kernel SVM and 
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Transductive SVM classifiers, while emphasizing preprocessing, feature selection, and 

rigorous validation to ensure clinical relevance. 

1.5 OBJECTIVES OF THE STUDY 

Objective 1: To develop an efficient heart disease prediction system using modified 

firefly algorithm based radial basis function with support vector machine 

To develop an efficient heart disease prediction model by integrating the Modified 

Firefly Algorithm (MFA) for optimal feature selection and parameter tuning with an 

RBF-SVM classifier. The objective is to enhance diagnostic accuracy and clinical 

reliability. Model performance will be assessed using accuracy, sensitivity, specificity, 

AUC, and other standard evaluation metrics. 

Objective 2: To configuration upgraded expectation of coronary illness utilizing 

molecule swarm advancement and harsh sets with transductive help vector machines 

grouped 

To design a heart disease prediction framework that combines Particle Swarm 

Optimization with Rough Set theory (PSO-RS) for feature reduction and applies 

Transductive SVM (TSVM) for classification. The objective is to improve uncertainty 

handling, utilize semi-supervised learning capability, and achieve more robust 

generalization on the available dataset. 

Objective 3: To develop Proficient System to Identify Heart Diseases with the Aid of 

Artificial Intelligence and Soft Computing Techniques 

To investigate OCSO as an advanced metaheuristic technique for optimizing classifier 

parameters. This objective involves comparing the performance of OCSO with MFA 

and PSO-RS in terms of convergence behavior, robustness, and predictive accuracy 

under identical experimental conditions. 

Objective 4: To Assist Physicians in Predicting and Diagnosing Cardiovascular 

Diseases at An Early Stage Effectively and Accurately 
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To develop a complete heart disease prediction pipeline comprising data preprocessing, 

normalization, feature selection, optimization, and classification. This includes 

evaluating model interpretability, reliability, and clinical applicability to ensure that the 

proposed system can effectively support physicians in early diagnosis and clinical 

decision-making. 

1.6  APPLICATIONS OF AI IN HEALTHCARE  

Artificial Intelligence has emerged as a transformative technology in modern healthcare 

by enhancing diagnostic accuracy, improving the efficiency of clinical workflows, 

supporting therapeutic decision-making, and enabling personalized treatment 

strategies. Its applications span multiple domains of medical science, bringing 

significant improvements in disease prediction, patient monitoring, drug development, 

and clinical operations. 

AI for Drug Discovery 

AI significantly accelerates the drug discovery process by automating target 

identification, predicting molecular interactions, and identifying potential compounds 

for clinical investigation. Machine learning models analyze vast biochemical datasets 

to repurpose existing drugs and explore novel therapeutic candidates. This reduces 

development timelines and costs compared to conventional laboratory-driven 

processes. Several leading pharmaceutical companies have adopted AI-driven 

platforms for oncology, metabolic disorders, and immunotherapy research, 

demonstrating its expanding role in next-generation drug development. 

AI in Clinical Trials 

Clinical trials involve extensive data management, patient selection, and monitoring, 

often making them time-consuming and costly. AI supports these activities by 

automating data processing, identifying suitable patient cohorts, predicting trial 

outcomes, and improving trial design through real-world data (RWD) analysis. 

Intelligent systems can clean, aggregate, and code clinical data with greater accuracy, 

reducing manual errors. AI-driven models also enhance cooperation among research 
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institutions by enabling secure data sharing, model transfer, and cross-institutional 

analytics—thereby accelerating medical research. 

AI for Patient Care 

AI enhances patient care by analyzing clinical histories, identifying high-risk 

individuals, and supporting personalized treatment pathways. Clinical intelligence 

systems evaluate electronic health records to provide actionable insights for clinicians. 

Examples include early detection tools for maternal health risks, AI-assisted monitoring 

systems for chronic disease management, and predictive models that alert clinicians to 

potential complications. These systems strengthen early intervention and improve 

overall quality of care. 

Healthcare Robotics 

AI-driven robotic systems assist in rehabilitation, surgery, and patient support. 

Exoskeleton robots improve mobility for individuals with spinal or neurological 

impairments, while smart prosthetics offer enhanced precision and functional capability 

through sensor-driven control. Robots equipped with AI also support post-surgical 

recovery, physiotherapy, and assistive tasks, thereby improving patient autonomy and 

reducing caregiver burden. 

Genomic and Data-Driven Medicine 

Genomic data analysis supported by AI enables personalized medicine by uncovering 

genetic markers associated with disease susceptibility and treatment response. 

Wearable health devices and biosensors continuously collect physiological data, 

allowing AI algorithms to anticipate medical conditions, predict disease progression, 

and recommend lifestyle or therapeutic adjustments. These advancements help 

clinicians offer more targeted and individualized care. 

AI-Enabled Diagnostic Tools 

AI-powered diagnostic devices such as digital stethoscopes, smart imaging tools, and 

pattern-recognition systems analyze physiological signals and medical images with 

high accuracy. For example, AI can detect subtle abnormalities in cardiovascular 
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sounds, radiology images, or laboratory data that may not be easily visible to human 

experts. These tools enhance diagnostic precision, particularly in remote or underserved 

regions where specialist availability is limited. 

1.7  TYPES OF ARTIFICIAL INTELLIGENCE USED IN HEALTHCARE  

Artificial Intelligence in healthcare is implemented through several computational 

approaches that support data analysis, diagnosis, prediction, and clinical decision-

making. The most widely used AI types in medical applications include the following: 

1. Natural Language Processing (NLP) 

NLP enables computers to understand and process clinical text such as electronic health 

records, physician notes, laboratory reports, and discharge summaries. It assists in 

automated documentation, information extraction, clinical coding, and decision-

support tasks, improving workflow efficiency and reducing manual effort. 

2. Machine Learning (ML) 

Machine learning algorithms learn patterns from structured clinical data, enabling 

disease prediction, risk assessment, and treatment optimization. ML is widely applied 

in heart disease prediction, medical imaging, and drug safety analysis. Techniques such 

as decision trees, SVM, and ensemble methods form the backbone of ML-based 

healthcare analytics. 

3. Deep Learning (DL) 

Deep learning utilizes multi-layer artificial neural networks to analyze high-

dimensional data such as medical images, physiological signals, and genomic 

sequences. Convolutional neural networks (CNNs) support diagnostic imaging, while 

recurrent neural networks (RNNs) and LSTM models assist in ECG signal 

interpretation and temporal health data analysis. 

4. Rule-Based Expert Systems 

These systems use predefined medical rules (“if–then” conditions) to support clinical 

decision-making. They provide interpretable recommendations for diagnosis and 
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treatment pathways, especially in settings where historical clinical knowledge is 

crucial. 

5. AI-Driven Automation 

Robotic Process Automation (RPA) and intelligent automation streamline 

administrative tasks such as appointment scheduling, billing, insurance verification, 

and report generation. This reduces workload on healthcare staff and enhances 

operational efficiency. 

1.8 SCOPE OF THE STUDY 

The scope of the present study is clearly defined to ensure focused investigation, avoid 

unnecessary expansion, and establish the specific boundaries within which the 

proposed heart disease prediction framework is developed and evaluated. This research 

concentrates on the design, optimization, and assessment of machine learning and soft 

computing–based prediction models using the available patient dataset and selected 

computational methodologies. The scope outlines the components included for analysis 

as well as the areas intentionally excluded from this thesis. 

1.8.1 Included Scope 

Dataset and Study Population 

This study uses the available dataset consisting of 303 patient records related to heart 

disease. Detailed attribute descriptions, distributional characteristics, missing value 

patterns, and ethical considerations regarding anonymization and data usage will be 

presented in Chapter 3. All preprocessing steps applied to this dataset fall within the 

defined scope of the research. 

Data Preprocessing Procedures 

The study includes data cleaning, handling of outliers, missing value imputation 

through statistical or model-based techniques, normalization or standardization, and 

encoding of categorical attributes. These steps ensure that the dataset is suitable for the 

development of reliable prediction models. 
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Feature Selection and Attribute Reduction 

The research covers the application of multiple feature selection and reduction 

techniques, including the Modified Firefly Algorithm (MFA), Particle Swarm 

Optimization with Rough Sets (PSO-RS), and baseline attribute selection measures 

such as mutual information and recursive feature elimination. The objective is to 

identify compact and clinically meaningful subsets of predictive features. 

Optimization Algorithms 

This study investigates MFA, PSO-RS, and Orthogonal Chicken Swarm Optimization 

(OCSO) for optimizing both feature subsets and classifier parameters. Their 

performance, computational efficiency, and stability will be comparatively analyzed. 

Classification Models 

The primary classification models included in the study are RBF-SVM (optimized 

using MFA and OCSO) and TSVM (optimized using PSO-RS). For benchmarking 

purposes, classical machine learning methods such as logistic regression, standard 

SVM, and random forests may also be employed to provide comparative evaluation. 

Evaluation Metrics and Validation Strategy 

The performance of the proposed models will be assessed using stratified k-fold cross-

validation, holdout validation, and repeated experiments where required. Standard 

evaluation indicators such as accuracy, sensitivity, specificity, precision, recall, F1-

score, AUC, and calibration measures will be used, along with statistical significance 

tests like paired t-tests or Wilcoxon signed-rank tests. 

Interpretability and Clinical Reporting 

The study includes interpretability analysis such as feature ranking, rule-based or 

surrogate interpretive models, and discussion of clinical relevance of selected attributes. 

Recommendations for presenting model outputs to healthcare professionals are also 

part of the scope. 
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Implementation and Feasibility Considerations 

The study discusses computational requirements, algorithmic complexity, runtime 

aspects, and potential integration pathways into clinical decision-support environments. 

These considerations help evaluate the practical applicability of the developed system. 

1.8.2 Excluded Scope 

Large-scale Clinical Trials or Real-time Deployment 

The study is limited to retrospective analysis using the provided dataset. Prospective 

clinical trials, hospital-level deployment, or real-time integration into medical systems 

are outside the scope of this thesis. 

High-Dimensional Genomic or Raw Imaging Data 

Unless such data are already represented within the available 303-sample dataset, high-

dimensional genomic information or raw medical imaging (such as DICOM image 

processing) is excluded. Only structured or derived features present in the dataset will 

be utilized. 

Regulatory Certification and Legal Compliance Processes 

While ethical data usage principles are acknowledged, detailed regulatory approval 

activities required for medical device certification lie beyond the present study’s scope. 

Commercial Product Development 

The research focuses on algorithmic development and experimental validation rather 

than commercialization or full production deployment of a medical device. 

1.8.3 Assumptions and Limitations 

This study assumes that the 303-patient dataset is representative of the population for 

which the model is intended. As such, generalization to other populations should be 

approached cautiously and validated separately. The moderate sample size may limit 

the statistical strength for rare subgroups. Additionally, hybrid optimization models 
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may achieve high predictive accuracy but may require supplementary interpretability 

measures to ensure clinical acceptance. 

1.9 THE FUTURE OF AI IN HEALTHCARE  

Dr. Jehi states that research remains the area where artificial intelligence in healthcare 

has the greatest potential. Through her clinical experience, she observed that AI still 

has much to teach the medical community by uncovering patterns that humans cannot 

easily perceive. As an expert studying epilepsy surgery, Dr. Jehi highlights how 

machine learning is transforming traditional clinical decision-making. 

Previously, surgeons relied on multiple clinical tests—brainwave recordings, 

neuroimaging, and specialist interpretations—to determine the brain region responsible 

for seizures. These decisions were largely based on individual clinical experience, 

which limited the ability to generalize or compare across large patient groups. As a 

result, treatment choices for new patients were made with limited collective knowledge. 

Machine learning has now enabled the aggregation of patient data into unified 

analytical systems. By centralizing and analyzing large volumes of clinical information, 

AI helps physicians better understand disease patterns, compare treatment outcomes, 

and make more informed decisions. Importantly, the clinical tests themselves have not 

changed; rather, AI enhances the depth of insights extracted from these tests. 

The goal of ongoing research is to develop more accurate AI-based prediction models 

to support medical and surgical decisions in epilepsy and other conditions. Researchers 

are working on simplifying these models so they can be integrated into routine clinical 

workflows. Using machine learning, Dr. Jehi and her team have identified indicators 

associated with surgical complications or recurrence, and automated systems for 

detecting and localizing abnormal brain tissue are also in development. 

Another area of interest is understanding how a patient’s genetic makeup and brain 

characteristics influence seizure behavior and long-term surgical outcomes. Emerging 

evidence suggests that genetics plays a significant role in determining the success of 

epilepsy interventions. With AI and ML, researchers aim to study larger patient cohorts 
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to uncover deeper relationships between clinical features, genetics, and treatment 

response. 

Overall, the future of AI in healthcare lies in combining clinical expertise with large-

scale data analysis to deliver more precise, personalized, and consistent care. Continued 

research and model refinement will help translate these innovations into practical tools 

that can meaningfully support clinical decision-making. 

1.10 CHALLENGES AND OPPORTUNITIES OF USING AI FOR IMPROVING 

HEALTHCARE 

Artificial Intelligence (AI) has become an essential component of modern healthcare, 

offering improved diagnostic accuracy, faster decision support, and enhanced 

efficiency. However, despite these advantages, several challenges must be addressed 

for AI systems to be integrated effectively and responsibly within healthcare settings. 

These challenges arise from ethical, technical, organizational, and clinical factors and 

directly influence the reliability, acceptance, and long-term sustainability of AI-driven 

prediction systems. 

A major concern relates to ethical and privacy issues, particularly around patient 

autonomy, informed consent, and secure handling of sensitive medical information. 

Since AI systems rely on large, high-quality datasets, ensuring privacy-preserving data 

sharing and compliance with regulatory frameworks remains a critical requirement. 

Healthcare data is often fragmented, incomplete, and non-standardized, leading to 

difficulties in achieving high model performance, interoperability, and reliable 

generalization across patient populations. 

The rapid expansion of biomedical knowledge further challenges clinicians, as the pace 

of new scientific insights exceeds their ability to manually interpret and apply them in 

practice. AI tools can support this process, but their successful integration requires 

robust validation and user-friendly interpretability. Additionally, the rise in 

multimorbidity complicates the clinical decision-making process, as traditional single-

disease guidelines are insufficient, creating a need for advanced AI models capable of 

managing complex interactions. 
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Another major issue concerns the fairness, transparency, and explainability of AI 

models. Bias in training datasets may produce unequal or inaccurate predictions for 

certain demographic or clinical groups. Clinicians also require clear and interpretable 

outputs to maintain trust and ensure appropriate use of model recommendations. 

Responsibility and accountability for AI-generated decisions remain ambiguous, 

raising concerns about professional liability, especially when AI errors might affect 

patient outcomes. 

On the technical side, many healthcare institutions lack the required computational 

infrastructure and interoperable electronic health records needed for seamless AI 

deployment. The “black-box” nature of advanced machine learning models further 

limits adoption, as clinicians and administrators prefer systems that provide traceable 

reasoning. Moreover, limited digital literacy within healthcare environments affects the 

willingness and ability of practitioners to adopt AI-based tools. 

Despite these challenges, AI presents substantial opportunities for transforming 

healthcare. Predictive analytics can support early detection, risk stratification, and 

timely intervention, thereby improving patient outcomes and reducing healthcare costs. 

AI-driven decision support systems can enhance the efficiency of clinical workflows, 

enable personalized treatment recommendations, and assist in managing complex or 

high-volume data. When properly validated and implemented with strong ethical 

safeguards, AI has the potential to support clinicians, strengthen diagnostic accuracy, 

and contribute to more reliable and patient-centered healthcare systems. 
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Fig. 1.2 Challenges in healthcare AI described. 

 

1.11  THE BENEFITS OF USING AI IN HEALTHCARE AND HOSPITALS 

Artificial intelligence (AI) refers to the capability of computational systems to perform 

tasks that traditionally required human intelligence, such as speech recognition, 

decision-making, and language translation. Machine Learning (ML), a major subfield 

of AI, enhances this capability by enabling systems to learn from large datasets and 

solve complex problems using data-driven algorithms. Together, AI and ML 

significantly improve the efficiency and effectiveness of healthcare processes by 

enabling rapid data processing, pattern recognition, and evidence-based insights. 

AI technologies now support various areas of medical practice such as diagnostic 

imaging, neurology, emergency care, and administrative services. These systems 

analyze large clinical datasets in the background and enhance patient care even before 
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individuals arrive at a healthcare facility. Their integration encourages clinical teams to 

reconsider existing workflows and adopt more efficient, data-driven approaches. 

In healthcare, AI systems have demonstrated the ability to interpret certain forms of 

medical imaging—such as CT and MRI scans—with high accuracy. AI tools, including 

emerging generative models, continue to evolve and show potential for contributing to 

clinical decision-support systems, diagnostic interpretation, and predictive modelling. 

AI is also being applied to accelerate biomedical research by enabling faster analysis 

of high-dimensional data such as genetic sequences, molecular interactions, and 

physiological markers. The increasing availability of biological data supports advanced 

AI-driven methods that improve understanding of disease mechanisms and inform 

diagnosis, treatment planning, and follow-up care. As healthcare continues to evolve, 

these technological developments require clinicians to adopt new skills related to data 

interpretation and computational tools. 

AI-driven methods enhance diagnostic precision by offering rapid and accurate analysis 

of medical images, allowing early identification of conditions such as fractures, cancer, 

and vascular abnormalities. In time-sensitive cases such as stroke, accelerated 

evaluation supports faster clinical decision-making and improved outcomes. 

Rapid Diagnosis 

AI algorithms can process imaging data with high speed and accuracy, enabling early 

detection of abnormalities and reducing diagnostic delays. This leads to quicker 

initiation of treatment, reduced patient anxiety, and improved overall satisfaction with 

care. 

Assistance in Surgery 

AI-enabled robotic systems support minimally invasive surgical procedures by 

enhancing precision and offering real-time feedback based on intraoperative data. 

These systems assist clinicians in navigating complex anatomical structures and 

reducing surgical risks. 
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Improved Accessibility of Care 

AI-enabled telemedicine platforms expand access to healthcare services for individuals 

in remote or underserved areas. Through virtual consultations, automated symptom 

guidance, and remote monitoring, patients can receive timely clinical support without 

geographical limitations. 

Patient Support and Self-Management 

AI-powered chatbots and virtual assistants help patients manage health-related tasks by 

providing reminders, answering queries, and suggesting self-care practices. These tools 

support patient engagement and continuity of care outside traditional clinical settings. 

1.12   USE OF AI IN HEALTHCARE 

What we have discussed so far is how AI is bringing about change and improvement in 

the healthcare sector.  Next, we'll look at several practical applications of AI in 

medicine: 

Collaborative effort and making choices:  It is essential for healthcare practitioners to 

work together in teams in today's healthcare systems. This calls for open and honest 

communication, team decision-making, coordinated activities, and regular evaluations 

of success.  As mentioned in, AI chatbots may help with medical appointment 

scheduling and coordination, reminders, and symptom-based condition notification to 

clinicians. 

As previously said, technological breakthroughs such as health monitoring systems 

powered by artificial intelligence may greatly benefit the elderly. These systems 

guarantee prompt delivery of treatment, free up healthcare practitioners to give more 

comprehensive care outside of regular office hours, and encourage self-management.  

For instance, as mentioned in, sensor technology may streamline self-monitoring for 

heart failure patients by using user-friendly gear.  There are a number of health-related 

technologies that might manage medical students' and practitioners' laboratory 

procedures.  As stated in, a virtual reality simulator may help inexperienced surgeons 

hone their skills in a controlled environment, where they can rehearse treatments in 

advance and plan for any contingency, ultimately leading to safer, more accurate 
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surgeries.  Furthermore, as previously said, the public's view of healthcare is evolving 

due to technological developments.  As previously mentioned, AI is also finding 

applications in the control of processes, image analysis, virtual assistants, robotic 

surgery, and clinical decision support.  Possibilities in artificial intelligence are detailed 

in  

 

Fig. 1.3 Potential applications of artificial intelligence in healthcare. 

Better patient outcomes and lower healthcare costs are the benefits of early illness 

identification and progression tracking made possible by artificial intelligence (AI) in 

the context of personalized medicine and predictive analytics.  Also, AI may help with 

therapy development, which is great for healthcare innovation and research.  There are 

several unique prospects for the use of AI to greatly enhance the efficacy and efficiency 

of patient care.  To better understand which patients are most likely to experience a 

decline in health and which ones are more at risk of problems, predictive analytics may 
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be used.  Healthcare practitioners may enhance patient outcomes and forestall the 

development of serious conditions by acting early. 

Pharmaceutical research and development: AI offers enormous promise for 

streamlining and improving pharmaceutical research and development.  The possibility 

of using virtual screening to examine massive volumes of data on medication 

interactions and discover novel therapeutic targets is one such option.  This has the 

potential to significantly shorten the time it takes to find new drug candidates, which 

in turn may reduce the cost of drug development.  Also, AI may look at data on 

medication prospects to find the best compounds to develop further and look into ways 

to repurpose current pharmaceuticals for new applications. 

1. AI in Drug Discovery and Development 

There would be no healthcare system without the pharmaceutical business.  Being a 

leading beneficiary, their work in medicine development enables clinicians to treat 

patients, which has the potential to save lives. 

One of the most prominent applications of artificial intelligence (AI) in healthcare is 

the pharmaceutical industry's heavy investment in R&D for the purpose of finding and 

creating new medications.  Artificial intelligence (AI) technology may greatly improve 

the speed and efficiency of the pharmaceutical drug development pipeline, which is 

now characterized by a high reliance on human labor. 

The first medication to be completely AI-designed has made it to human clinical trials, 

thanks to generative AI-driven biotech businesses like Insilco Medicine. 

Here are a few important points that point to the significant role that AI may play in 

the pharmaceutical industry: 

 Artificial intelligence systems can sift through mountains of biological data, such 

as genetic sequences, molecular models, and results from clinical trials, to find new 

medicines.  

 It is possible to precisely identify the disease targets using AI-based predictive 

modeling tools.  It makes it easier to analyze patient data, such as genomes and clinical 

records, in order to create customized medicines that are specific to each patient.  
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 By allowing the repurposing of pharmaceuticals via the examination of current 

drugs' chemical structures and biological effects, this method significantly reduces the 

time spent producing new treatments.  

 AI models may analyze the chemical qualities and biological interactions of drug 

candidates, anticipate their possible side effects, and eliminate the possibility of safety 

concerns during clinical trials, all with the goal of lowering the risk of toxicity and bad 

consequences. 

 Finally, artificial intelligence is changing the face of clinical trials by making 

"digital twins," or digital copies, of each patient.  All of them act as living computer 

models that mimic normal and abnormal human physiological and pathological 

functions.  It allows for predictive and tailored insights all the way through a clinical 

study. 

2. AI in Personalized Medicine 

Precision medicine, sometimes called customized medicine, is an alternative to 

traditional medicine's one-size-fits-all approach. It entails creating a unique treatment 

plan for each patient by examining their medical history, genetic information, lifestyle 

choices, and other relevant data. 

Unlike conventional medicine, which primarily aims to alleviate symptoms, precision 

medicine tailors its approach to each patient based on their unique requirements.  To 

enhance treatment results while minimizing unwanted effects, a data-driven strategy is 

used, which involves assessing numerous factors concurrently. 

In addition, by using wearables or remote sensors, real-time monitoring provides 

ongoing insights on the patient's health condition and response to therapy.  Improving 

patient care is made possible by prompt interventions and modifications to treatment 

regimens. 

3. AI in Medical Imaging 

When evaluating a wide range of medical images—including X-rays, MRIs, CT scans, 

ultrasounds, and more—the precision of the diagnosis is crucial.  Even while 

radiologists are quite good at interpreting these pictures, they are still human and may 
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make mistakes.  Furthermore, this procedure may be laborious, particularly in cases 

when picture anomalies need meticulous examination to precisely pinpoint the root 

cause. 

To teach AI to correctly identify patterns or irregularities, however, hundreds of photos 

with varied issues are sent into the system.  They won't be able to take the position of 

radiologists entirely, but they may help them save time and be more precise in their 

diagnosis by catching every information that has to be considered. 

4. AI in Genomic Medicine 

With genetic medicine, AI elevates individualized therapies to a whole new level.  To 

begin, genetic data is very complicated and contains a large quantity of information; 

thus, sophisticated computing techniques are required for its analysis.  

Consumption of time will persist even with these instruments.  AI-powered algorithms 

sift through the available genomic data in search of genetic markers linked to certain 

features, illnesses, or treatment reactions.  

In addition, clinicians may use genetic data to create prediction models that AI can use 

to determine an individual's susceptibility to particular illnesses or the effectiveness of 

certain therapies.  This enables them to suggest better lives or targeted medical 

treatments to lower the likelihood of certain illnesses. 

5. AI in Robotic Surgery 

My imagination immediately goes to a sci-fi scenario where surgeons use robotic arms 

controlled by a computer to do less intrusive and more accurate procedures on patients.  

I am no longer dreaming about this.  While operating from a control console, surgeons 

are assisted by surgical robots such as the da Vinci Surgical System. 

Both patients and physicians favor minimally invasive techniques that are precise 

because they increase the success rate of surgery.  Improved patient outcomes are the 

end result of robotic surgical systems driven by artificial intelligence that allow 

surgeons to execute complicated operations with more accuracy, efficiency, and safety. 
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6. AI in Patients’ Assistance 

Virtual assistants like this simplify healthcare for everyone involved.  The function of 

a virtual assistant is as follows: 

 They aid patients by responding to inquiries, serving as gentle reminders, and 

giving emotional support.  

 They help with appointment scheduling, patient record organization, and enabling 

easy access to medical information, among other things.  

 They make healthcare information and resources easily accessible to patients.  

•    Using the data collected from your wristwatch, they may assess your activity levels 

and provide advice on how to maintain a healthy lifestyle. 

7. AI in Oncology 

In addition to other uncommon illnesses, cancer is one that might benefit from AI's use 

in both diagnosis and medication development.  An example of an AI application in 

oncology might be: 

 Recognition (of kinds, stages, and health issues) or accurate/early diagnosis 

using precise analysis of medical pictures (e.g., CT scans, X-rays, MRIs, and more). 

 Creating an individualized treatment strategy by sifting through mountains of 

data on a patient's health, genetics, pathology findings, and more. 

 Analytics that may foretell the patient's reaction to drugs, side effects, and other 

factors related to the chosen chemotherapy treatment or alternatives. 

•         Tailored suggestions for cancer treatments, including kinds of treatments, dose 

quantities, and more, to maximize therapy efficacy with minimum risk of adverse 

effects and drug overexposure. 

8. AI in Remote Patient Monitoring (RPM) 

Using AI for RPM is like knowing what's happening in your hour, except instead of 

you, healthcare providers can know your vitals like blood pressure, respiratory rate, 
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and more from anywhere thanks to the internet of things. We've already seen the power 

of the internet of things. 

A smartwatch or other wearable device may monitor the vitals that are specifically 

being monitored by a healthcare professional, as well as general vitals that provide a 

picture of the patient's health as a whole, such as blood pressure and heart rate.  An AI-

powered mobile app is synced with the devices and scours the gathered data for any 

suspicious patterns. 

The tool also provides doctors with access to these datasets.  The app will notify the 

doctor if it detects anything suspicious, either via pattern analysis or any unexpected 

increases from the patient's specific baselines. This will allow the doctor to promptly 

address the matter. 

9. AI in Mental Health Support 

When it comes to AI and healthcare, it's not just about physical health; AI has also 

proven very beneficial for mental health. 

 Many people with mental health concerns go undiagnosed or untreated until it's too 

late, which may have devastating consequences, including terrible results like suicide.  

People with mental health issues may suffer in silence for a variety of reasons, 

including a lack of understanding about the gravity of their disease and the stigma 

associated with seeking treatment. 

 Consequently, family ones and healthcare professionals may be ignorant of the 

individual's challenges until the problems reach a critical stage, at which time it is too 

late to do anything about it. 

A few key points illustrating the applications of AI in mental health are as follows: 

 Algorithms trained by machines may spot trends that can indicate mental health 

issues like bipolar disorder, depression, or anxiety, allowing for quicker treatment. 

 People dealing with mental health issues have constant access to virtual assistants 

and chatbots driven by artificial intelligence. 
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 Artificial intelligence systems assess a person's propensity for suicidal thoughts and 

actions by analyzing risk variables such social isolation, drug misuse, past suicide 

attempts, and behavioral changes. 

 Natural language processing tools powered by artificial intelligence examine audio 

and text recorded during counseling, support group, and therapy sessions to derive 

valuable insights on patients' attitudes, feelings, and treatment outcomes.  

10. AI in Clinical Documentation 

In a hectic medical practice, doctors waste time that might be better spent diagnosing 

patients by typing or, worse, writing down details about their symptoms, medical 

history, and possible treatments. 

The doctor-patient communication may be transcribed and analyzed by online or 

mobile apps or even search engine extensions that use artificial intelligence to suggest 

possible treatment plans. 

Our team recently developed on a feature called "Scribe" that incorporates AI into 

clinical documentation as part of our project Sully.ai, an AI-powered all-in-one tool for 

physicians.  It goes so far as to provide (or rather produce) a clinical strategy for the 

physicians after the diagnosis is made. 

11. AI in Fraud Detection 

With its share of false invoices, needless treatments, and other forms of insurance claim 

fraud, the healthcare industry is a major player on a worldwide scale.  Medical 

providers and hospitals submit hundreds of claims to healthcare insurance companies 

daily for services rendered to patients.  These firms are finding it more challenging to 

identify warning signs due to the high volume. 

 In order to identify any fraud, AI-powered fraud detection software compares the 

provided facts to the claim and looks for warning signs.  When it detects claims that 

don't add up, it notifies the relevant insurance agency to look into them further.  The 

insurance firm saves a significant amount of money by taking this proactive strategy. 
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1.13 CHAPTER SUMMARY 

Chapter 1 provides the foundational context for the study by outlining the growing 

role of Artificial Intelligence (AI) in modern healthcare and its potential to transform 

diagnostic processes, predictive modelling, and patient care. The chapter highlights 

the increasing burden of cardiovascular diseases and the limitations of traditional 

diagnostic approaches, establishing the need for more accurate, data-driven prediction 

systems. It also emphasizes why AI, with its ability to identify complex nonlinear 

relationships in clinical data, is well-suited for improving heart-disease prediction 

accuracy and supporting early clinical interventions. 

The chapter clearly identifies the rationale of the study, the problem addressed, and 

the specific research gaps in existing literature—such as inefficient feature selection, 

incomplete handling of uncertain data, limited parameter optimization, and lack of 

interpretable models. Based on these gaps, the objectives of the research are defined, 

focusing on developing optimized predictive models using hybrid algorithms like 

MFA, PSO-RS, and OCSO integrated with RBF-SVM and TSVM classifiers. 

Furthermore, the chapter discusses the scope, assumptions, limitations, challenges, 

and benefits associated with AI applications in healthcare. It also introduces the wide 

range of AI-enabled tools and techniques being used across clinical domains. Overall, 

Chapter 1 establishes the motivation, significance, and direction of the thesis, 

providing a clear platform for the detailed methodology and experimental design 

presented in subsequent chapters. 
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CHAPTER-2 

LITERATURE REVIEW 

This chapter presents a concise and structured review of existing research on artificial 

intelligence (AI) and machine learning (ML) in healthcare, with emphasis on predictive 

modelling for cardiovascular disease. The selected studies demonstrate how AI has 

evolved from basic computational techniques to advanced clinical decision-support 

systems capable of analyzing complex medical data. By examining past work on 

diagnostic applications, predictive analytics, optimization algorithms and healthcare 

informatics, this review identifies the strengths, limitations and research gaps in current 

AI-based healthcare solutions. These insights form the foundation for the proposed 

optimized predictive models developed in this study. 

Jiang et al. (2017) describe artificial intelligence (AI) as the emulation of human 

cognitive capabilities such as learning, reasoning, and decision-making through 

computational models. Their work documents some of the earliest AI systems deployed 

in oncology, neurology, cardiology, and stroke care, demonstrating that AI can analyse 

structured clinical databases as well as unstructured information such as radiology 

reports and physician notes. The authors show that these systems significantly improve 

diagnostic confidence and prognostic estimation while reducing manual workload. 

However, they also emphasise key challenges including model interpretability, 

integration into clinical workflows, and the need for continuous validation to ensure 

reliability across diverse patient populations. 

Yu et al. (2018) provide a broad and foundational review of advances in AI and their 

biomedical applications, noting how progress in machine learning algorithms, digital 

records, and high-resolution biomedical sensors has enhanced clinical decision support. 

Their work highlights that AI can uncover subtle, nonlinear relationships in high-

dimensional datasets—an essential capability for complex diseases such as 

cardiovascular disorders. Nevertheless, the authors caution that large-scale adoption 

requires addressing regulatory constraints, ethical considerations, data privacy issues, 

and the financial burden associated with deploying AI technologies in clinical 

environments. 
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Murali et al. (2018) position AI as a rapidly expanding subfield of computer science 

that increasingly outperforms human experts in specialised diagnostic tasks. Their 

review underscores applications in neurological disorders, diabetes, cardiovascular 

disease, and various cancers, showing how AI models can detect nuanced trends within 

patient data and identify early indicators of disease. However, they argue that despite 

the promising performance, robust clinical validation and transparent model behaviour 

are critical prerequisites for safe clinical integration. 

Haleem et al. (2019) identify five major AI technologies—machine learning, natural 

language processing, robotics, expert systems, and deep learning—and summarise their 

ten key applications within healthcare. These include clinical decision support, 

personalised therapy selection, infection surveillance, hospital workflow optimisation, 

and predictive analytics. Their findings show that AI enhances decision-making in 

complex clinical situations, but they also emphasise the need for clinician acceptance, 

training, and strong governance frameworks to ensure responsible deployment. 

Bohr et al. (2020) highlight how big data and machine learning permeate modern 

healthcare, supporting tasks across the full value chain—from patient registration and 

administrative documentation to image analysis, predictive diagnostics, and ambient 

assisted living. They argue that AI systems augment human capabilities rather than 

replace clinicians, enabling them to make faster, more informed decisions while 

reducing cognitive overload. 

Tadiboina et al. (2021) extend this view by examining AI adoption across the life 

sciences industry, healthcare providers, and insurance payers. They describe the diverse 

uses of AI in administrative automation, patient engagement, therapeutic adherence 

monitoring, diagnostic recommendations, and claims management. Their work 

concludes that while AI will primarily complement healthcare professionals, several 

operational roles will undergo substantial transformation due to automation and 

predictive analytics. 

Reddy et al. (2020) describe the broader ecosystem of AI in healthcare, discussing its 

applications in medical diagnosis, population health monitoring, genomic prediction, 

and administrative optimisation. They report significant investments by governments, 

universities, and technology firms into AI-driven health innovations. However, they 
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also emphasise that many stakeholders still lack clarity regarding AI’s limitations, 

operational requirements, and ethical implications, which remain barriers to widespread 

adoption. 

G.M. et al. (2021) define healthcare AI as “augmented intelligence,” highlighting its 

purpose of supporting rather than replacing clinicians. Their review covers AI 

applications for diagnosis, prognosis, and therapy planning, as well as advanced 

algorithms for medical image processing, feature extraction, and patient-care 

optimisation. Their findings support the growing consensus that AI can enhance 

diagnostic speed, reduce variability in interpretation, and improve patient outcomes 

when appropriately integrated. 

Raj et al. (2023) present AI as a rapidly maturing discipline capable of transforming 

multiple domains of healthcare, including cancer detection, neurological assessment, 

cardiovascular disease prediction, and diabetes management. They also demonstrate 

that AI can accelerate drug discovery pipelines, clinical trials, and personalised 

treatment recommendations by efficiently analysing large biomedical datasets. 

Within this broad landscape, the present research specifically targets AI-based 

predictive systems for cardiovascular disease, focusing on optimised SVM and TSVM 

classifiers enhanced through Modified Firefly Algorithm (MFA) and Particle Swarm 

Optimization (PSO) for attribute reduction. Unlike many of the reviewed studies that 

discuss AI generally, this work develops and evaluates hybrid optimisation-driven 

classification models using structured clinical datasets (1000–5000 records from the 

Cleveland Heart Disease Dataset). The goal is to enhance diagnostic accuracy, 

minimise false positive/negative rates, and provide clinicians with a reliable, 

interpretable tool for early heart disease detection and personalised risk assessment. 

Jimma et al. (2023) conducted a bibliometric analysis of 5,019 AI-in-healthcare 

publications from 2000 to 2021 and reported an exponential surge in research output 

after 2012. This rapid growth was driven by advances in machine learning, electronic 

health records, natural language processing and the increasing availability of clinical 

data. They note that major disease areas—COVID-19, diabetes, mental health and 

cancer—dominate global publications, demonstrating AI's expanding relevance across 
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clinical domains. Their findings show how AI research has transitioned from isolated 

pilot experiments to a core component of mainstream medical innovation. 

Amit et al. (2022) reviewed more than 4,000 AI-healthcare papers published in 2021, 

mapping the field’s evolution into three major hotspots: predictive analytics, medical 

imaging and clinical decision support systems. Their analysis indicates that AI models 

increasingly focus on early detection, risk stratification and automated diagnosis—all 

of which align closely with the predictive modelling goals of the present research. The 

breadth of methodological experimentation they document (e.g., SVMs, deep learning, 

hybrid approaches) reflects the same direction pursued in this thesis through MFA-

optimised RBF-SVM and PSO-optimised RBF-TSVM. 

Nkhoma et al. (2024) examined the economic and strategic potential of generative AI, 

estimating nearly one trillion dollars of unrealised global value. They argue that 

generative AI and advanced ML models will reshape patient communication, clinical 

documentation and workflow automation as part of the transition to Industry 4.0 and 

5.0 healthcare systems. Their conclusions reinforce the need for AI systems capable of 

improving efficiency and decision-making—an outcome demonstrated in this thesis, 

where the hybrid MFA–RBF-SVM and PSO–RBF-TSVM models achieve superior 

accuracy, sensitivity and specificity for heart-disease prediction compared with 

traditional IT2FLS. 

Panch et al. (2018) link the rise of AI to global pressures such as ageing populations, 

rising healthcare expenditure and productivity deficits. They suggest that intelligent 

systems could make healthcare more equitable and sustainable by supporting universal 

health coverage and improving clinical responsiveness. However, they caution that 

poor deployment may replicate past failures of digital health initiatives. Their 

discussion highlights the need for validated, interpretable and robust predictive 

models—criteria addressed in this thesis by systematically comparing IT2FLS with two 

AI-optimised models that significantly reduce FPR and FNR across multiple dataset 

sizes. 

Adeoye et al. (2024) review AI's expanding role in modern medical practice, including 

diagnostic classification, therapy recommendation and patient interaction systems. 

They show that machine-learning algorithms often outperform human decision-making 
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in narrow clinical tasks—but emphasise ongoing issues such as bias, confidentiality 

and the need for clinician oversight. Their findings align with the methodological focus 

of this research: deploying supervised learning models such as RBF-SVM and TSVM, 

enhanced through MFA and PSO, to improve reliability while reducing 

misclassification in heart-disease prediction. 

The present thesis directly contributes to this global trend by developing and validating 

two advanced AI-based predictive methods MFA–RBF-SVM and PSO–RBF-TSVM 

specifically for heart-disease prediction. The results show measurable improvements 

over the baseline IT2FLS in accuracy, sensitivity, specificity, and error-rate reduction 

(FPR and FNR), demonstrating how optimisation-enhanced ML models can strengthen 

predictive healthcare systems aligned with worldwide AI developments. 

Alloghani et al. (2020) explain that healthcare data exists in heterogeneous formats 

such as medical images, physiological signals, clinical text and structured EMR 

databases. This diversity necessitates the use of multiple ML techniques including 

CNNs, deep learning models, SVMs and traditional neural networks. Among these, 

SVMs remain widely used for disease diagnosis in areas such as stroke, cancer and 

neurology, often achieving accuracy levels comparable to expert clinicians. This 

observation aligns with the present thesis, where RBF-SVM and RBF-TSVM serve 

as the core classifiers, strengthened through MFA and PSO to enhance diagnostic 

performance for heart disease. 

Agarwal et al. (2022) provide an overview of AI, ML and deep learning, emphasising 

their ability to recognise complex patterns within high-dimensional clinical datasets. 

They also outline the importance of ML and NLP-based systems in disease detection 

and classification. Their discussion supports the methodological motivation in this 

research: adopting optimised machine-learning pipelines to improve prediction 

accuracy, minimise errors and enhance interpretability in clinical settings. 

G. M. et al. (2021) distinguish between major AI algorithms, detailing feature 

extraction, selection techniques and disease-specific applications. They highlight the 

necessity of proper preprocessing and model-tuning strategies—principles applied 

directly in this thesis through min–max and Z-score normalization, attribute 
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reduction using MFA and PSO, and model calibration for SVM and TSVM 

classifiers. 

Furizal et al. (2023) review ML in disease prediction and personalised therapy, 

demonstrating that CNNs, SVMs, RF, k-NN and DT often exceed 90% accuracy in 

cancer detection and classification tasks. They note that high performance depends 

strongly on high-quality labelled datasets and appropriate feature selection. This aligns 

with the findings of the present study, where MFA-based and PSO-based attribute 

reduction improved classification performance across all dataset sizes by removing 

redundant and weakly correlated clinical attributes. 

Nikam et al. (2024) compare deep learning and classical ML for analysing EHRs, 

imaging and omics data. They observe that deep learning captures non-linear 

relationships effectively but requires significant computational power and strong 

regularisation to avoid overfitting. Their analysis highlights why SVM-based classifiers 

remain relevant and efficient for structured clinical data such as the Cleveland Heart 

Disease Dataset used in this thesis. 

Mavani et al. (2024) conduct a review of AI for disease prediction and personalised 

medicine, identifying persistent limitations such as biased datasets, insufficient external 

validation and regulatory ambiguity. Their observations reinforce the methodological 

rigor adopted in this thesis—evaluating models across multiple dataset sizes (1000–

5000 records) and comparing three independent classification systems (IT2FLS, MFA–

RBF-SVM and PSO–RBF-TSVM) to ensure reliability and generalisability. 

Garg et al. (2022) investigate hybrid swarm-intelligence algorithms in healthcare 

analytics, showing how optimisation methods such as firefly, PSO and OCSO improve 

model efficiency by navigating complex parameter spaces. Their findings directly 

support the hybrid approach proposed in this thesis, where Modified Firefly Algorithm 

(MFA) and PSO significantly enhance SVM/TSVM performance, resulting in higher 

accuracy, sensitivity, specificity and lower FPR/FNR compared to the baseline IT2FLS 

method. 
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Datta et al. (2019) describe the growing use of AI in prediction, diagnosis, treatment 

planning and chronic disease management, demonstrating how computational models 

can identify clinically significant associations within complex biomedical data and 

support experimental decision-making. Haleem et al. (2019) emphasise AI’s role in 

clinical decision support across ten high-impact use cases, including infection 

monitoring, personalised therapy and automated digital examination, showing its 

potential for improving the accuracy and speed of clinical assessments. 

Sharma et al. (2020) review AI’s evolution in healthcare diagnostics, including its 

contributions to medical imaging, drug discovery and disease prediction. They 

highlight the substantial accuracy gains achieved by AI models, while underscoring the 

need for ethical integration, data privacy protection and clinician trust. Eskandar et al. 

(2023) add that modern AI systems exceed 90% accuracy in radiological disease 

identification through advanced segmentation and classification methods, although 

they warn that narrow training datasets may compromise generalisability. 

Francis et al. (2023) expand on AI systems deployed for cancer lesions, lung nodules, 

thyroid abnormalities, COVID-19 detection and dermatological analysis using 

multimodal imaging such as MRI, CT and histology. They also highlight AI’s emerging 

use in psychotherapy and neuropsychiatric care, revealing the depth and diversity of 

diagnostic applications. Similarly, Joseph et al. (2023) show how ML-based diagnostic 

imaging tools assist clinicians by detecting subtle anomalies earlier than conventional 

methods, improving both diagnostic precision and intervention timelines. 

Frank et al. (2024) discuss the convergence of machine learning, NLP and computer 

vision in advancing diagnostic accuracy, case management and automated reporting. 

They note that while these systems enhance workflow efficiency, they raise ethical 

concerns regarding bias, fairness and privacy. Khinvasara et al. (2024) link AI-driven 

analytics with big data and EHR systems, which enable improved disease prediction, 

outcome modelling and personalised treatment plans, while emphasising responsible 

governance. Jadhav et al. (2023) further demonstrate AI’s value in early disease 

detection and predictive modelling, including through virtual health assistants that 

extend diagnostic capabilities beyond clinical environments. 
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Khinvasara et al. (2024) highlight AI in healthcare analytics, linking big data, deep 

learning and EHRs to improved diagnosis, outcome prediction and customised 

treatment. They emphasise that biases and privacy concerns must be actively managed 

for AI to be responsibly deployed in medical imaging and beyond. 

Jadhav et al. (2023) discuss AI’s contributions to image-based diagnosis and 

predictive modelling, stressing that AI tools can assist in early detection across a range 

of conditions. They also show how AI-driven virtual health assistants extend diagnostic 

support beyond traditional clinical settings. 

For this thesis, these diagnostic and imaging advances motivate the use of AI classifiers 

capable of early and accurate risk prediction for heart disease, even when working with 

tabular clinical data rather than images. 

Naqvi et al. (2023) position artificial intelligence as a foundational pillar for achieving 

the healthcare “quadruple aim”—enhancing population health, improving patient and 

provider experience, and reducing overall costs. Their work highlights how predictive 

analytics supports early diagnosis, treatment planning and administrative optimisation, 

while underscoring the necessity of trustworthy, transparent and safe AI systems in 

clinical settings. This perspective aligns strongly with the goals of heart disease 

prediction, where accurate early detection directly contributes to improved outcomes 

and reduced long-term healthcare burden. 

Shuford et al. (2024) place considerable emphasis on AI-driven predictive analytics 

and intelligent decision-support systems. They show that machine learning models 

leveraging patient-specific clinical data can forecast health outcomes, personalise 

treatment pathways and enable continuous remote monitoring. However, they stress the 

importance of responsible deployment, noting that predictive systems must comply 

with ethical standards, regulatory policies and model transparency requirements. 

Ali et al. (2024) further explore AI-based risk prediction, resource optimisation and 

therapy planning. Their findings indicate that early disease identification through AI 

significantly improves clinical outcomes while lowering healthcare expenditure. 

However, they caution that prediction models must undergo rigorous validation, 
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fairness testing and bias mitigation to ensure reliability—principles that guide the 

validation strategy in the present thesis. 

Walter et al. (2024) expand the discussion by examining AI and ML in preventive 

medicine, particularly for early detection of conditions such as heart disease, diabetes 

and various cancers. They describe the growing influence of wearable devices and 

continuous monitoring systems that feed real-time data into predictive models. They 

also highlight ethical concerns surrounding surveillance, patient autonomy and data 

privacy, issues relevant to AI deployment in large-scale screening programmes. 

Babu et al. (2024) focus specifically on predictive analytics for disease detection, 

showing how ML and DL algorithms extract patterns from multimodal data—EHRs, 

imaging, genomics and clinical variables—to forecast disease progression and support 

personalised treatment planning. They note that integration into clinical workflows 

remains challenging due to interoperability, clinician acceptance and model 

interpretability. 

Nnamdi et al. (2024) emphasise predictive analytics as a catalyst for improved resource 

allocation and enhanced patient outcomes. They demonstrate how AI models can 

reduce hospital readmissions, prevent complications and support timely interventions. 

Such benefits are particularly relevant to cardiovascular risk prediction, where early 

identification of high-risk individuals can reduce mortality and long-term healthcare 

expenditure. 

Hossain et al. (2024) contribute an economic perspective, showing that AI-based 

predictive systems can reduce operational costs by approximately 25% and lower 

readmission rates by 15–20% when integrated into hospital workflows. Their findings 

support the financial viability of deploying predictive analytics systems, which is 

important when considering real-world adoption of heart disease prediction models like 

MFA–RBF-SVM and PSO–RBF-TSVM. 

Yasmeen et al. (2024) explore the role of AI in improving healthcare prediction 

through personalised treatment pathways and chronic disease monitoring. They present 

case studies where ML algorithms significantly enhance management of long-term 
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diseases, but they also highlight risks associated with algorithmic bias and over-reliance 

on automated systems. 

Pasupuleti et al. (2024) discuss AI and big data analytics in predictive healthcare, 

covering early diagnosis, personalised treatment, robotic surgery and remote patient 

monitoring. They emphasise the importance of data governance frameworks such as 

GDPR and HIPAA, particularly when AI models rely on sensitive clinical information. 

Finally, Walter et al. (2024) and Bobet et al. (2024) extend predictive analytics into 

chronic disease management, illustrating how continuous monitoring and long-term 

prediction models can identify deterioration early, guide preventive interventions and 

reduce complications. Their findings reinforce the value of predictive modelling in 

diseases like cardiovascular disorders, where early intervention is often life-saving 

Pallavi et al. (2022) discuss the expanding role of artificial intelligence within digital 

health ecosystems, particularly in clinical decision support systems (CDSS) and 

medical imaging applications. Their review demonstrates how AI-driven tools enable 

clinicians to rapidly access patient-specific evidence and enhance diagnostic accuracy 

by detecting subtle imaging patterns that may not be easily visible to human experts. 

These capabilities proved especially valuable during the COVID-19 pandemic, when 

rapid and reliable diagnostic support was essential. 

Hasan et al. (2023) examine AI within the broader domain of health informatics, which 

includes health information systems, telemedicine, consumer health informatics and 

cybersecurity. They emphasise that AI facilitates participatory healthcare by 

strengthening communication between patients and clinicians, and by enabling 

personalised, data-driven decision-making. However, they underline that issues related 

to privacy, data governance and secure data-sharing frameworks remain central 

challenges for widespread adoption. 

Adrah et al. (2024) focus on AI applications in health information systems, including 

CDSS, virtual assistants and predictive analytics platforms. They draw attention to the 

need for responsible and transparent AI—advocating for fair machine learning, 

federated learning and bias-aware algorithms—particularly in light of vulnerabilities 
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exposed during the COVID-19 crisis. They argue that trust, explainability and 

governance frameworks must develop in parallel with technical innovation. 

Kejriwal et al. (2022) analyse the exponential growth of healthcare data generated 

through EHR systems, imaging modalities and clinical treatment protocols. They 

describe how AI, robotics, IoT and deep learning tools can automate routine processes, 

enhance data organisation and reduce clinician workload. Nevertheless, they insist that 

human oversight is essential to ensure that automated systems remain clinically safe, 

explainable and ethically sound. 

Saxena et al. (2024) explore AI and big data analytics in mobile health (m-health), 

showing how large volumes of sensor-generated and behavioural data from 

smartphones and wearable devices can support personalised interventions, genetic 

therapy and continuous remote monitoring. They note that such systems face 

computational and data-quality challenges, often requiring sophisticated preprocessing 

and optimisation techniques—an area directly relevant to the optimisation strategies 

used in this thesis. 

Khan et al. (2020) present a systematic review of AI-enhanced m-health systems, 

particularly in resource-constrained settings. They propose AI-driven models for 

efficient resource management, improved data routing and informed decision-making 

in mobile environments. Their findings show that AI can significantly enhance the 

reach and scalability of healthcare services, making it a viable option for remote 

diagnostics and chronic disease monitoring. 

Tak et al. (2024) examine AI-enabled EHR systems in the United States, demonstrating 

how AI reduces the documentation burden, improves interoperability and generates 

real-time predictive alerts indicating patient deterioration or risk of complications. 

Their work highlights the need to address ethical issues such as algorithmic bias and 

unequal access, ensuring that predictive systems benefit all patient groups equally. 

Chen et al. (2024) emphasise AI’s transformative role in telemedicine and remote 

patient monitoring. Their study shows that predictive analytics enhances proactive care 

by identifying patterns of deterioration before symptoms escalate. They argue that AI-

enabled telehealth platforms improve access and efficiency, especially for populations 
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with limited mobility or access to traditional clinical services, but they also stress the 

importance of governance frameworks for deployment at scale. 

Iseal et al. (2024) investigate intelligent tools integrated into hospital management 

systems (HMS), including AI-based scheduling, patient-flow optimisation and resource 

allocation systems. Their findings demonstrate that AI can substantially enhance 

operational efficiency, reduce waiting times and improve hospital throughput. 

However, they note that successful adoption requires investment in digital 

infrastructure, workforce training and change management strategies. 

Roy et al. (2020) examine the deployment of AI within the Indian healthcare 

ecosystem, with a particular focus on enhancing access to affordable and quality care 

across rural and underserved regions. Their analysis shows that AI is increasingly used 

across descriptive, predictive and prescriptive analytics, supporting tasks such as 

outbreak detection, triaging, diagnosis and treatment planning. However, they 

emphasise that India requires stronger ethical and regulatory frameworks addressing 

consent, risk, bias and data integrity—issues that directly shape the responsible use of 

AI-based predictive models such as those developed in this thesis. 

Anwar et al. (2022) provide a multi-domain review of AI applications in radiology, 

cardiology, ophthalmology and drug development. They illustrate how AI improves 

precision in diagnostics and therapeutic planning by mimicking core cognitive 

functions such as perception and reasoning. Their findings demonstrate that AI not only 

assists clinicians in identifying diseases but also enhances records management and 

workflow efficiency, reinforcing AI’s dual role in both patient-facing and 

administrative healthcare operations. 

Bobet et al. (2024) focus specifically on chronic disease management—especially 

diabetes and cardiovascular disease—where predictive analytics plays a key role. They 

highlight how continuous data from EHRs, wearable sensors and remote monitoring 

platforms enables early detection of risk conditions, personalised interventions and 

long-term disease management. These insights strongly align with the objectives of this 

thesis, which uses AI models (MFA–RBF-SVM and PSO–RBF-TSVM) to predict heart 

disease risk with higher accuracy, thereby supporting earlier intervention. 
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Walter et al. (2024) (as discussed in Section 2.5) emphasise AI’s importance in 

preventive strategies, particularly for chronic illnesses such as heart disease, cancer and 

diabetes. Their review shows that AI can detect early-risk patterns before symptoms 

manifest and can personalise preventive measures. This supports the rationale for using 

AI-based classifiers in cardiovascular risk prediction, where early detection 

significantly impacts patient outcomes. 

Chanchaichujit et al. (2019) analyse the role of AI in tuberculosis (TB) control and 

management through a case study in Thailand. They demonstrate how AI optimises TB 

diagnosis, enhances patient screening and improves public health surveillance. 

Although TB is a different domain, their work reinforces the broader capability of AI 

to support large-scale health monitoring and strategic health planning—an approach 

that can be extended to cardiovascular disease prediction systems. 

Islam et al. (2024) present a broad review of AI applications across medical imaging, 

virtual care, rehabilitation, drug discovery and EHR management. They identify major 

ethical and social issues such as privacy, fairness, autonomy and transparency, arguing 

that effective governance mechanisms are crucial for the sustainable use of AI in 

healthcare. Their emphasis on governance is relevant to this thesis, which also relies on 

sensitive clinical data and must adhere to ethical standards for predictive modelling. 

Alkuwaiti et al. (2023) discuss AI applications in telehealth, pharmaceutical 

innovation, clinical research, adherence monitoring and rehabilitation. They highlight 

how AI played a crucial role during the COVID-19 pandemic in improving diagnostic 

workflows, supporting remote consultations and accelerating drug-development 

pipelines. Their findings show that AI improves healthcare efficiency—but only when 

supported by appropriate ethical and technical safeguards. 

Ankolekar et al. (2024) analyse AI and predictive modelling during the COVID-19 

pandemic, arguing that AI-enabled learning health systems (LHS) could have better 

supported the integration of data, knowledge and clinical practices. They propose AI-

driven strategies for epidemic prediction, vaccine-effectiveness monitoring and variant 

surveillance. Their work underscores the need for predictive AI systems that are 

adaptive, data-efficient and capable of continuous learning—principles reflected in the 

optimisation methods used in this thesis. 
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Santamato et al. (2024) investigate AI’s contributions to healthcare operations and 

crisis management from 2019 to 2023, including its role during COVID-19. They 

identify key operational themes—quality assurance, resource management, innovation, 

safety and emergency response—and show that AI enhances strategic planning and 

decision-making. However, they also raise concerns regarding privacy, interoperability 

and sustainable integration, highlighting the challenges of embedding predictive 

analytics into real-world health systems. 

Attrey et al. (2024) explore the role of 5G-enabled machine learning systems in 

healthcare, with a special focus on the Indian context. They show how next-generation 

networks enable real-time analytics, remote diagnostics and advanced monitoring. 

Their recommendations outline barriers such as limited infrastructure, data governance 

issues and lack of awareness. As predictive models evolve—such as the MFA–RBF-

SVM and PSO–RBF-TSVM systems developed in this thesis—they will increasingly 

depend on such high-speed, low-latency networks for deployment in mobile and 

telehealth environments. 

Nkhoma et al. (2024) examine the transformative potential of generative AI (GenAI) 

in healthcare, arguing that GenAI can augment medical knowledge work, automate 

documentation, improve communication and support clinical decision-making. They 

position GenAI within broader Industry 4.0 and 5.0 paradigms, where human–machine 

collaboration becomes integral to healthcare operations. However, they caution that 

governance, workforce readiness and legal frameworks must evolve in parallel to 

ensure safe adoption. 

Yang et al. (2022) introduce Explainable AI (XAI) as a critical response to the “black-

box” nature of deep learning and advanced machine learning models used in medicine. 

They argue that interpretability is essential for clinician trust, regulatory approval and 

safe decision support. XAI allows healthcare professionals to understand how a model 

reaches its prediction—an increasingly important requirement for predictive heart 

disease models like MFA–RBF-SVM and PSO–RBF-TSVM. 

Chen et al. (2024) discuss the rapid advancements in AI products, data processing 

technologies and deep learning architectures, noting that many of these developments 

now target healthcare applications. They highlight significant improvements in 
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diagnostic speed, accuracy and workflow efficiency but emphasise that societal and 

technical challenges—ethical risks, bias, regulatory updates and system 

interoperability—must be addressed continuously. 

Attrey et al. (2024), as referenced earlier, connect the deployment of ML-based 

healthcare systems with emerging 5G infrastructures, enabling real-time analytics, 

remote monitoring and continuous patient engagement. These developments will be 

particularly important for future cardiovascular predictive models, which may depend 

on mobile health environments and large-scale patient data streams. 

Santamato et al. (2024) evaluate AI’s influence on strategic planning, operational 

efficiency and crisis management within healthcare administration. Their study 

integrates predictive modelling with SHAP-based explainability techniques to show 

how AI enhances quality assurance, optimises resource allocation and strengthens 

emergency response systems such as those deployed during the COVID-19 pandemic. 

At the same time, they highlight concerns around privacy, algorithmic transparency and 

the ethical implications of automation—issues that must be addressed when deploying 

AI-powered predictive systems in real-world hospitals. 

Bitkina et al. (2023) conduct a PRISMA-guided systematic review of artificial 

intelligence applications in healthcare IT, narrowing more than 700 studies to 89 high-

quality sources. Their analysis maps core research subfields—including clinical 

decision support, intelligent documentation, workflow automation and predictive 

analytics—and identifies a recurring gap between AI prototypes and deployable 

healthcare solutions. They emphasise the necessity of multidisciplinary collaboration, 

integrating expertise from clinicians, data scientists, engineers and policymakers to 

transform experimental models into sustainable, real-world systems. 

Tak et al. (2024), discussed previously in Section 2.6, further demonstrate how 

embedding AI models within Electronic Health Record (EHR) systems improves 

clinical documentation, real-time risk prediction and patient management at an 

organisational scale. They note that AI-enabled EHRs reshape healthcare workflows by 

reducing administrative burden, improving interoperability and enabling proactive 

patient alerts. These findings are directly relevant to heart-disease prediction 
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frameworks, where seamless integration with EHR platforms is key to clinical 

adoption. 

Iseal et al. (2024) investigate intelligent tools—including AI, machine learning, 

optimisation models and predictive analytics—within hospital management systems 

(HMS). They highlight improvements in administrative automation, patient-flow 

regulation, resource scheduling and overall hospital efficiency. However, they also 

point out limitations such as data fragmentation, infrastructure costs and the need for 

rigorous evaluation of risks associated with automated decision-making. Their insights 

align closely with the need for interpretable, reliable and cost-efficient predictive 

systems like the MFA–RBF-SVM and PSO–RBF-TSVM models proposed in this 

thesis. 

Garg et al. (2022) (see Section 2.3) demonstrate how bio-inspired optimisation 

algorithms, including Firefly, PSO and OCSO, can address high-dimensional, complex 

parameter spaces in healthcare analytics. Their findings support the thesis’s 

methodological choice to use swarm-intelligence optimisation (MFA and PSO) to 

enhance feature selection and classification accuracy in heart-disease prediction. 

Pulimamidi et al. (2023) review the adoption of AI technologies in leading hospitals 

and conclude that AI is increasingly used for diagnosis, clinical decision support, 

administrative automation and personalised treatment planning. They report generally 

positive attitudes among healthcare stakeholders but note persistent concerns about 

integration challenges, transparency, algorithmic fairness and equity in AI-driven 

systems. These concerns underscore the importance of designing interpretable and 

ethically robust prediction models. 

Alsaeed et al. (2024) explore the integration of AI tools into nursing practice, 

particularly for risk assessment, documentation assistance, outcome prediction and 

workload reduction. Their findings suggest that AI can significantly improve nursing 

efficiency and patient safety. They recommend incorporating AI and health informatics 

education into nursing curricula to develop a workforce capable of safely using 

predictive technologies. This perspective reinforces the need for user-friendly, 

clinically interpretable predictive systems, such as those developed in the present 

research. 
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Abbas et al. (2023) review the transformative potential of AI in diagnostic support, 

administrative automation, personalised treatments and predictive analytics, but 

emphasise that significant ethical and regulatory barriers continue to hinder full-scale 

adoption. They argue that issues such as data privacy, informed consent, model 

transparency and algorithmic fairness must be addressed before AI tools can be reliably 

deployed in real-world healthcare environments. Abbas et al. (2024) extend this work 

by highlighting that although AI can enhance outcomes and reduce operational costs, 

these benefits can only be realised within strong legal and ethical frameworks that 

govern data handling, liability and integration with clinical workflows. 

Udegbe et al. (2024) analyse both the advantages and limitations of AI adoption, noting 

that challenges in data privacy, cybersecurity, legal responsibility and interoperability 

create major risks in clinical settings. They recommend establishing universal 

interoperability standards, robust cybersecurity mechanisms and ethical governance 

structures to ensure that AI systems remain safe, accountable and trustworthy. Islam et 

al. (2024), in their broader evaluation of AI applications, reinforce these concerns by 

identifying autonomy, equity, transparency and cost as major obstacles to adoption. 

They advocate for precise governance mechanisms to protect patient safety and 

maintain confidence in AI-led decisions. 

Olawade et al. (2024) provide a systematic review demonstrating that while AI tools 

can achieve high diagnostic accuracy, unresolved concerns persist regarding data 

quality, model interpretability, algorithmic bias and legal accountability. They argue 

for rigorous validation, continuous monitoring and the integration of human oversight 

to ensure safe deployment. Willow et al. (2023) similarly recognise AI’s value in 

diagnostic workflows and administrative streamlining but warn that unresolved privacy 

issues, regulatory friction and challenges in integrating AI with legacy systems pose 

significant implementation risks. 

Godala et al. (2024) emphasise the need for long-term economic evaluations of AI in 

healthcare and call for structured training programs to prepare clinicians and 

administrators to work effectively with AI tools. They argue that standardised 

guidelines and governance frameworks are essential to ensure equitable, safe and 

ethical use of AI systems. Mashabab et al. (2024) adopt a critical approach, presenting 

case studies where AI succeeds and fails in clinical environments. Their findings 
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highlight ethical concerns such as algorithmic bias, privacy violations and ambiguous 

lines of responsibility—factors that could undermine trust if not properly addressed. 

Lainjo et al. (2024) summarise the benefits and risks of AI adoption across diverse 

healthcare settings, noting improvements in diagnostic accuracy and workflow 

efficiency but also persistent concerns around privacy, fairness and inconsistent 

regulatory environments. They emphasise the need for high-quality, diverse datasets 

and responsible data-sharing mechanisms to ensure equitable model performance. Patil 

(2024) focuses specifically on legal responsibility and the doctor–patient relationship, 

arguing that new regulatory frameworks and continuous oversight are required to 

manage algorithmic bias, ensure accountability and preserve patient trust. Collectively, 

these studies highlight that while AI offers unparalleled opportunities for predictive 

healthcare—including cardiovascular risk prediction—its success depends on 

transparent, ethical and accountable deployment. 

Patil (2024) focuses explicitly on legal responsibility, liability, algorithmic bias and 

doctor-patient relationships. They call for new regulatory frameworks, systematic 

monitoring of AI tools and strategies to address bias and maintain trust, arguing that AI 

must remain a tool under human oversight. 

Samreen et al. (2018) provide an early examination of machine learning in 

personalised medicine, showing how ML-based decision-support systems can enhance 

diagnostic precision and improve treatment planning. Their findings underscore the 

importance of data-driven approaches in managing complex clinical conditions, a 

principle that directly supports AI-driven cardiovascular risk prediction. 

Yu et al. (2018) and Jiang et al. (2017), as discussed in Section 2.1, show how 

algorithms such as SVMs, neural networks and deep learning models can analyse 

structured and unstructured data for disease prediction and prognosis. Their 

frameworks have been widely applied in cardiology and stroke care, demonstrating the 

viability of AI for predicting cardiovascular events and supporting early intervention. 

Samajdar et al. (2024) reinforce this by offering a high-level perspective on AI in 

diagnosis, monitoring and treatment. They note that predictive models can greatly assist 

clinicians but must undergo rigorous evaluation before clinical deployment. 
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Srivastava et al. (2023) examine the use of AI and ML in medical data storage, 

retrieval and analysis, highlighting their use in diagnostic support, drug prescription 

optimisation, mental health assessment and imaging. They argue that some algorithms 

already approach or surpass clinician-level performance, raising important ethical and 

sociological considerations. Fatima et al. (2024) analyse AI-driven systems for early 

diagnosis, personalised treatment, drug discovery and robotic surgery, emphasising the 

importance of interdisciplinary collaboration and cautioning against the risks of bias 

and confidentiality breaches. 

Jadhav et al. (2023), as discussed in Section 2.4, illustrate how AI models can support 

early detection and personalised care by analysing imaging data, biosignals and virtual 

health interactions. These approaches can be adapted for cardiovascular disease 

prediction, where early identification of abnormalities is crucial. Bobet et al. (2024) 

expand this work by showing how chronic disease management can be enhanced 

through AI-driven predictive analytics, particularly for diabetes and cardiovascular 

diseases. Continuous monitoring and real-time risk assessment support proactive 

interventions that reduce long-term complications. 

Babu et al. (2024) review AI-based predictive analytics for early illness detection and 

management, emphasising their utility for diseases requiring long-term monitoring, 

such as cardiovascular conditions. Walter et al. (2024) similarly highlight the role of 

predictive analytics in preventive medicine, noting the increasing use of AI for early 

detection of heart disease, diabetes and cancer. They emphasise the importance of 

identifying high-risk patients early and supporting personalised preventive 

interventions. 

Nnamdi et al. (2024) and Naqvi et al. (2023) link predictive analytics to the healthcare 

“quadruple aim”—better outcomes, improved clinician and patient experience, and 

reduced cost. Their findings reaffirm that AI-based cardiovascular prediction systems, 

like those developed in this thesis (MFA–RBF-SVM and PSO–RBF-TSVM), directly 

contribute to operational efficiency, risk reduction and improved population health 

outcomes. 

Taken together, these studies indicate that although AI and ML have been widely 

applied to diagnosis, imaging and chronic disease management, there is still limited 
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work that combines advanced optimisation algorithms (MFA, PSO-RS, OCSO) with 

SVM/TSVM classifiers on structured clinical datasets for heart disease prediction in 

specific populations such as Indian patients. This gap forms the core motivation for the 

hybrid MFA+RBF-SVM, PSO-RS+RBF-TSVM and OCSO-optimised models 

developed in this thesis. 

2.LITRATURE REVIEW SUMMARY TABLE 

Table 2.1: Comparative Summary of Existing Studies 

Study Dataset Used Method Used 
Limitation 

Identified 

Jiang et al. (2017) Clinical data ML + rule-based AI 
Limited 

interpretability 

Yu et al. (2018) Biomedical datasets ML/DL 
Ethical + workflow 

issues 

Haleem et al. 

(2019) 
Multiple domains ML + NLP 

Lack of 

standardization 

Bohr et al. (2020) EHR + imaging ML 
Limited parameter 

optimization 

Frank et al. (2024) Medical imaging CNN + NLP 
Overfitting, no 

generalization 
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Table 2.2: Comparative Analysis of Key AI and ML Studies Relevant to Predictive 

Heart Disease Modelling 

Author & 

Year 

ML/AI 

Techniques 

Used 

Dataset / 

Clinical 

Domain 

Key Findings 
Limitations 

Reported 

Aldali et al. 

(2024) 

General AI 

methods, ML 

Healthcare 

decision-

making, 

diagnosis 

Improved early 

detection, 

service 

optimisation, 

personalised 

diagnostics 

Ethical 

concerns, data 

privacy, 

regulatory 

issues 

Yousef 

Shaheen et al. 

(2021) 

AI for drug 

discovery, ML, 

analytics 

Clinical trials, 

patient care, 

medical records 

Accelerates 

drug discovery, 

improves 

monitoring, 

enhances 

insights 

Limited 

generalisation, 

accuracy 

validation 

needed 

Abbas et al. 

(2023) 

ML, predictive 

analytics 

Diagnostic 

support, 

personalised 

therapy, admin 

Supports 

diagnosis, 

enhances 

outcomes, 

automates 

admin tasks 

Privacy issues, 

regulatory 

hurdles, 

integration gap 

Chan et al. 

(2023) 
CV, NLP, ML 

COVID-19 

screening, 

telehealth, 

remote 

monitoring 

Fast diagnosis, 

chatbot triage, 

supports 

telehealth 

Data shortages, 

ethical 

concerns, 

adoption 

barriers 

Hasan et al. 

(2023) 

AI in HI, ML, 

NLP 

HIS, clinical 

images, 

telemedicine, 

m-health 

Strengthens 

CDS, improves 

data handling, 

enhances 

mobile health 

Handling 

unstructured 

data, 

complexity, 

privacy 

Pallavi et al. 

(2022) 

ML, DL for 

imaging & 

CDS 

Medical 

imaging, CDS, 

digital health 

Enhances 

imaging 

accuracy, aids 

diagnosis, 

supports 

pandemic 

response 

Needs reliable 

data, limited 

adoption in 

small clinics 

Wu et al. 

(2024) 

DL, NLP, 

predictive 

models 

Automation, 

diagnostics, 

planning 

Improves 

patient care, 

workflows, 

diagnosis 

accuracy 

Bias risks, 

privacy 

concerns, job 

displacement 

fears 
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Datta et al. 

(2019) 

ML, DL, AI-

based detection 

Chronic 

diseases, 

diagnosis, 

tissue 

engineering 

Better disease 

identification, 

personalised 

care, drug 

discovery 

Dataset 

dependence, 

low 

interpretability 

Alloghani et 

al. (2020) 

CNN, SVM, 

NN, DL 

Medical 

imaging, 

stroke, cancer 

SVM widely 

used, AI 

outperforms 

humans 

Regulatory 

issues, data bias 

Sharma et al. 

(2020, 2023) 

ML, DL, 

imaging AI 

Imaging, drug 

discovery, 

diagnostic tools 

Improves 

prediction, 

reduces error, 

supports 

treatment 

planning 

Acceptance 

challenges, 

integration 

issues 

Kumar et al. 

(2023) 

Predictive 

analytics, ML 

Surgery, 

diagnostics, 

monitoring 

Enhances 

surgical 

precision, 

reduces 

complications 

Data accuracy 

issues, 

workflow 

adaptation 

Aftab et al. 

(2024) 

ML, 

monitoring 

systems 

Surgery, real-

time risk 

assessment 

Early 

complication 

detection, 

improves 

patient safety 

High cost, real-

time hardware 

requirement 

Naqvi et al. 

(2023) 

Predictive 

analytics, ML 

Preventive 

healthcare, 

chronic 

diseases 

Early risk 

prediction, 

reduced cost, 

improved 

population 

health 

Explainability 

required, 

governance 

gaps 

Bobet et al. 

(2024) 

ML for chronic 

disease 

Diabetes, heart 

disease, public 

health 

Identifies high-

risk patients, 

supports 

preventive 

interventions 

Limited dataset 

diversity 

Yasmeen et al. 

(2024) 

ML, predictive 

modelling 

Chronic 

illnesses, CVD 

prediction 

Enables early 

diagnosis, 

personalised 

care, real-time 

monitoring 

Bias, privacy 

challenges 

Olawade et al. 

(2024) 

AI algorithms, 

predictive tools 

Diagnostics, 

surgical 

robotics, 

treatment 

pathways 

Enhances 

diagnosis, 

robotic 

assistance, 

operational 

efficiency 

Legal gaps, 

data scarcity, 

bias 
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Islam et al. 

(2024) 
ML, NLP, DL 

Imaging, 

telehealth, drug 

discovery 

Supports RPM, 

early disease 

prediction, 

EHR 

automation 

High 

computational 

cost, uncertain 

effectiveness 

Samajdar et 

al. (2024) 

ML, AI for 

personalised 

care 

Precision 

medicine, 

treatment 

planning 

Supports 

genomic 

analysis, 

optimises 

personalised 

treatment 

Needs more 

experimental 

validation 

Srivastava et 

al. (2023) 

ML for 

prediction 

CVD risk 

prediction, 

chronic disease 

management 

Accurate risk 

prediction, 

supports 

clinicians 

Dataset 

imbalance, 

limited 

generalisation 

Jadhav et al. 

(2023) 
ML, DL 

Heart disease 

prediction 

Improved 

accuracy using 

structured 

clinical data 

Lack of 

optimisation 

methods 

2.2 CRITICAL ANALYSIS OF REVIEWED LITERATURE 

The reviewed literature demonstrates that Artificial Intelligence (AI) has become 

deeply embedded in modern healthcare, with extensive applications in diagnostics, 

medical imaging, clinical decision support, telehealth, predictive analytics and 

personalized medicine. Although significant advancements have been made, a closer 

evaluation reveals several important observations. 

First, many studies (Bohr et al., 2020; Sharma et al., 2020; Wu et al., 2024) highlight 

the strong performance of ML and DL models in disease diagnosis, yet the majority 

rely on large, high-quality datasets that are not consistently available across global 

healthcare systems. This raises concerns regarding model generalizability and real-

world applicability. Second, while methods such as CNNs, SVMs, RF, and DL 

architectures are widely used, several authors (Alloghani et al., 2020; Mavani et al., 

2024) report operational challenges such as data heterogeneity, model interpretability 

and insufficient clinical validation. Thus, despite high reported accuracies, practical 

deployment remains limited. 

Another major limitation across studies is insufficient focus on optimization 

techniques. Very few reviews have explored hybrid models that integrate optimization 

algorithms (e.g., Firefly, PSO, OCSO) with classifiers such as SVM/TSVM. Most 
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authors employed standard ML models without improving hyperparameter tuning, 

feature selection or convergence behaviour significantly. In addition, although some 

studies (Naqvi et al., 2023; Yasmeen et al., 2024) discuss predictive analytics, only a 

small subset specifically address cardiovascular risk prediction using structured clinical 

data. 

A recurring theme across literature is the lack of explainability and trustworthiness in 

AI-based systems. Ethical, legal and governance issues such as bias, privacy concerns, 

regulatory uncertainty and lack of transparency were frequently highlighted (Abbas et 

al., 2023; Olawade et al., 2024; Islam et al., 2024). These concerns become even more 

critical in life-threatening conditions such as heart disease, where clinicians require 

interpretable and reliable predictions. 

Finally, although many studies discuss AI applications globally, limited research has 

been conducted on Indian patient populations. Datasets are often small and imbalanced, 

leading to reduced model generalization. This emphasizes the need for population-

specific, optimized predictive models capable of handling real clinical variability. 

2.3 RESEARCH GAPS 

Based on the critical evaluation of literature, the following key research gaps have 

emerged: 

Gap 1: Limited Use of Hybrid Optimization Techniques in Predictive Healthcare 

Most existing studies rely on traditional ML/DL models without integrating 

optimization algorithms such as MFA, PSO-Rough Set or OCSO. Very few works have 

examined their combined effect on feature selection, parameter tuning and classifier 

performance. 

Gap 2: Lack of Research on SVM/TSVM with Optimization for Heart Disease 

Prediction 

Although SVM is widely used in healthcare, its enhanced variants (TSVM with RBF 

kernel) have rarely been optimized using advanced swarm intelligence techniques. 

Hence, their potential remains unexplored. 
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Gap 3: Insufficient Studies Using Structured Clinical Data for Cardiovascular 

Prediction 

Most studies focus on imaging or large EHR datasets. Very limited research has used 

structured risk-factor data (age, cholesterol, BP, sugar levels, lifestyle parameters) for 

heart disease prediction—especially in a hybrid optimization–classification pipeline. 

Gap 4: Absence of Models Tailored to Indian Patient Populations 

Most studies use Western datasets (e.g., UCI Cleveland, MIMIC, NHS datasets). There 

is very little research applying AI models to Indian datasets, which have different 

demographic, lifestyle and genetic patterns. 

Gap 5: Lack of Explainable and Clinically Interpretable AI Models 

Many studies achieve high accuracy but lack interpretability, making clinicians hesitant 

to adopt them. Very few studies integrate explainable ML/XAI with predictive cardiac 

models. 

Gap 6: Need for End-to-End Predictive Pipeline 

Existing studies evaluate isolated components (e.g., imaging, diagnosis, risk scoring) 

but lack a complete pipeline that includes: 

 Data preprocessing and normalization 

 Attribute reduction 

 Feature optimization 

 Classifier optimization 

 Performance evaluation (accuracy, sensitivity, specificity) 

Gap 7: Limited Comparative Assessment Across Multiple Optimization Approaches 

No existing study compares MFA, PSO-Rough Set and OCSO for the same dataset to 

determine the best optimisation method for heart disease prediction. 

These gaps clearly justify the need for the proposed hybrid MFA–SVM, PSO-RS–

TSVM and OCSO-TSVM heart disease prediction models. 
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2.4 SUMMARY OF LITERATURE REVIEW 

The literature review shows that AI has significantly enhanced healthcare through 

diagnostic imaging, early disease detection, telemedicine, predictive modelling and 

personalized care. Advanced ML and DL techniques such as CNNs, SVMs, RF, and 

neural networks are highly effective in medical applications, with reported accuracies 

often exceeding traditional statistical methods. Telehealth and HIS integrations have 

enabled real-time monitoring and decision support, while predictive analytics has 

demonstrated strong potential in preventing chronic diseases and reducing healthcare 

burden. 

However, despite the progress, several challenges persist, including data fragmentation, 

lack of interoperability, ethical concerns, model bias and limited clinical explainability. 

More importantly, heart disease prediction using optimized hybrid models remains 

underexplored. Only a few studies have addressed optimization algorithms, and almost 

none have combined MFA, PSO-RS and OCSO with RBF-SVM or TSVM classifiers. 

Moreover, there is a lack of population-specific research, particularly for Indian 

datasets, indicating a significant gap in personalized cardiovascular prediction. 

Overall, existing literature confirms both the importance and urgency of developing 

robust, optimized, interpretable AI-based heart disease prediction systems—a gap that 

the present thesis aims to fill. 
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CHAPTER-3 

DEVELOP A REGULAR FLY MODEL FOR EFFECTIVE PREDICTION OF 

HEART DISEASES, ANATOMY, AND SUPPORT VECTOR MACHINE, AND 

ENHANCE CORONARY DISEASE PREDICTION USING VECTOR 

MACHINES: IMPROVING CORONARY PREDICTION USING FLY 

ALGORITHM AND SVM 

This chapter presents the overall research methodology adopted for developing an 

effective heart-disease prediction system. It outlines the structured approach used to 

process the dataset, select significant features, optimize classifier parameters, and build 

the predictive models. The focus of this chapter is to describe how the study was 

designed, what methodological steps were followed, and why these steps were 

necessary to address the challenges present in clinical data. The subsequent sections 

explain each component of the methodology in detail, including preprocessing, feature 

selection, optimization strategies, classification techniques, and evaluation procedures. 

This chapter therefore provides the foundational framework on which the experimental 

analysis in Chapter 4 is built. 

 

3.1 METHODOLOGY OVERVIEW 

The research methodology adopted in this study follows a structured, multi-stage 

framework designed to develop a highly accurate and reliable heart-disease prediction 

system. This framework combines advanced data preprocessing techniques, hybrid 

feature-selection strategies, metaheuristic optimization algorithms, and robust 

machine-learning classifiers. Each component of the methodology is formulated to 

address the key challenges commonly found in clinical datasets, including missing 

values, nonlinear feature interactions, mixed data types, redundant attributes, and 

limited sample size. By systematically addressing these challenges, the proposed 

methodology ensures improved model accuracy, stability, and interpretability. 

The process begins with comprehensive data preprocessing, where missing values are 

appropriately imputed, outliers are detected and treated, categorical features are 

encoded, and numerical attributes are normalized. These steps ensure that the dataset is 

clean, consistent, and suitable for machine-learning analysis. Once the data is prepared, 
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feature selection and dimensionality reduction are performed using hybrid optimization 

techniques. The Modified Firefly Algorithm (MFA) and Particle Swarm Optimization 

with Rough Set Theory (PSO-RS) are employed to identify the most relevant and 

informative clinical attributes. These methods help eliminate noise and redundancy 

while retaining essential features that contribute to accurate prediction. 

After feature selection, the methodology incorporates algorithmic optimization to 

enhance classifier performance. Two machine-learning classifiers—Radial Basis 

Function Support Vector Machine (RBF-SVM) and Transductive Support Vector 

Machine (TSVM)—are utilized for prediction. The MFA and Orthogonal Chicken 

Swarm Optimization (OCSO) algorithms are used to fine-tune key SVM 

hyperparameters such as C and γ, whereas PSO-RS is applied for optimizing TSVM 

parameters. This integrated feature-selection and parameter-optimization approach 

ensures that both classifiers operate at their highest generalization capability. 

The optimized features and tuned classifiers are then used for model training and 

validation. A stratified k-fold cross-validation approach is adopted to maintain balanced 

class representation and avoid biased performance estimates. The models are evaluated 

using clinically relevant metrics such as accuracy, sensitivity, specificity providing a 

comprehensive assessment of the proposed system’s diagnostic effectiveness. 

Finally, the methodology includes comparative evaluation and statistical validation to 

verify performance improvements over baseline techniques. Statistical tests are applied 

to confirm the significance of the results. Overall, this methodological framework 

ensures a robust, optimized, and clinically meaningful heart-disease prediction system 

that can support decision-making in real healthcare environments. 
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3.2 FLOWCHART OF THE PROPOSED SYSTEM 

The flowchart illustrates the complete operational workflow of the proposed heart-

disease prediction system, presenting each methodological stage in a clear and 

sequential manner. The process begins with the acquisition of the dataset, which forms 

the foundation for all subsequent computational procedures. To ensure uniformity and 

eliminate scale-based distortions, the raw data undergoes normalization using the min–

max technique, allowing all attributes to be mapped within a standardized range. 

Following normalization, the Modified Firefly Algorithm (MFA) is applied for attribute 

reduction, where redundant, noisy, or less informative features are systematically 

removed. This step not only simplifies the dataset but also enhances computational 

efficiency and improves the quality of model learning. After the attribute reduction 

phase, the remaining significant features are further transformed using Principal 

Component Analysis (PCA). PCA extracts the most meaningful components from the 

dataset, reduces dimensionality, and strengthens the feature set by retaining maximum 

variance. 

The refined set of PCA-derived features is then used for the classification stage, where 

the Radial Basis Function Support Vector Machine (RBF-SVM) is trained to 

distinguish between heart-disease patients and normal subjects. The RBF kernel is 

specifically chosen due to its strong capability to model nonlinear patterns commonly 

found in clinical datasets. By integrating systematic preprocessing, intelligent feature 

reduction, and an optimized classification mechanism, the workflow ensures that the 

predictive model operates with high accuracy, reliability, and robustness. Ultimately, 

the flowchart encapsulates the streamlined and coherent progression of the system—

from data preparation to final decision making—demonstrating how each step 

contributes to the development of an effective heart-disease prediction model. 
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                        Figure 3.1: Flowchart of the Proposed System 
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3.3 DATASET DESCRIPTION 

The performance and reliability of any predictive healthcare model depend significantly 

on the quality and characteristics of the dataset used for training and evaluation. In this 

study, the heart-disease dataset comprising 303 patient records is employed to develop 

and validate the proposed MFA–RBF-SVM, PSO-RS–TSVM, and OCSO–RBF-SVM 

predictive frameworks. This dataset has been widely used in cardiovascular research 

due to its balanced combination of demographic, clinical, physiological, and 

laboratory-related features that collectively influence heart-disease risk. 

3.3.1 Source of Dataset 

The dataset originates from clinical examinations and laboratory investigations 

conducted on actual patients. It is a standardized and frequently used dataset in 

cardiology-based machine-learning research, making it suitable for benchmarking and 

comparative analysis. The dataset is openly available for academic use and does not 

contain any personally identifiable information, ensuring ethical compliance and data 

privacy. 

3.3.2 Dataset Size and Structure 

 Total number of samples: 303 

 Number of predictor variables: 13 

 Number of output classes: 1 

 Type of problem: Binary classification (0 = no heart disease, 1 = heart disease) 

 Nature of data: Structured tabular dataset with mixed numerical and categorical 

variables 

The dataset presents moderate complexity, which is ideal for evaluating hybrid 

optimization-driven machine-learning methods. 
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3.3.3 Attribute Description 

The dataset contains attributes that represent known cardiovascular risk factors. The list 

of features is provided below 

Table 3.1 Attribute Description 

No. Attribute Description Type 

1 Age Age of patient in years Numerical 

2 Sex 0 = Female, 1 = Male Categorical 

3 CP Chest pain type (0–3) Categorical 

4 Trestbps Resting blood pressure (mm Hg) Numerical 

5 Chol Serum cholesterol (mg/dl) Numerical 

6 FBS 
Fasting blood sugar > 120 mg/dl 

(1 = true) 
Categorical 

7 Restecg Resting ECG results Categorical 

8 Thalach Maximum heart rate achieved Numerical 

9 Exang Exercise-induced angina (1 = yes) Categorical 

10 Oldpeak ST depression induced by exercise Numerical 

11 Slope 
Slope of the peak exercise ST 

segment 
Categorical 

12 Ca 
Number of major vessels colored 

by fluoroscopy (0–3) 
Categorical 

13 Thal 
Thalassemia (0 = normal, 1 = 

fixed defect, 2 = reversible defect) 
Categorical 

14 Target 
Heart-disease diagnosis (0 = no 

disease, 1 = disease) 
Binary 
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3.3.4 Statistical Summary of Attributes 

To understand the data distribution and detect potential preprocessing needs, summary 

statistics are computed for numerical variables. 

Table 3.2 Statistical Summary of Attributes 

Attribute Mean Std. Dev. Min Max 

Age 54.37 9.08 29 77 

Trestbps 131.69 17.60 94 200 

Chol 246.26 51.83 126 564 

Thalach 149.61 22.87 71 202 

Oldpeak 1.04 1.16 0 6.2 

 

3.3.5 Class Distribution 

Heart-disease datasets often suffer from class imbalance, impacting classification 

models. 

Table 3.3 Class Distribution 

Class Description Count 

0 No heart disease 138 

1 Heart disease 165 

 

3.3.6 Dataset Challenges  

The dataset presents several challenges that justify the need for hybrid optimization 

techniques. It contains missing values and outliers—especially in cholesterol and 

resting blood pressure—which can distort model learning. Nonlinear relationships 

among clinical attributes further complicate classification, while the mix of numerical 

and categorical features requires appropriate encoding. Some features may also be weak 



80 
 

or redundant, potentially reducing model accuracy if not properly selected. 

Additionally, the dataset’s limited size increases the risk of overfitting, making careful 

parameter tuning essential. These challenges highlight the importance of applying 

MFA, PSO-RS, and OCSO to improve feature selection, parameter optimization, and 

overall model performance. 

3.4 THE FIREFLY ALGORITHM 

The Firefly Algorithm (FA) is a meta-heuristic optimization method inspired by the 

bioluminescent communication of fireflies. In nature, fireflies produce flashes of light 

primarily for mating signals, and the brightness of these flashes determines the insects’ 

attractiveness. This natural behaviour is modelled mathematically in FA, where each 

firefly represents a candidate solution, and its brightness corresponds to the quality of 

the solution. 

Light Intensity and Distance 

The perceived brightness diminishes with distance according to the inverse-square law: 

 

In addition, atmospheric absorption further reduces brightness as distance increases. 

These properties enable fireflies to communicate effectively within a limited range—a 

concept adapted in FA to control attraction between candidate solutions. 

Attractiveness and Movement 

Two key components define FA behaviour: 

1. Variation in Light Intensity 

2. Attractiveness Based on Proximity 

If firefly i is less bright than firefly j, it moves toward j. The attractiveness β decreases 

exponentially with distance: 
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Distance between fireflies is computed using Euclidean distance: 

 

 

The movement of firefly i toward firefly j is defined as: 

 

where 

 α = randomization parameter 

 ϵ = random vector 

However, traditional FA has limitations: the brightest firefly may move randomly and 

lose brightness, thereby slowing convergence. This limitation motivates the Modified 

Firefly Algorithm described in later sections. 
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3. 5  NORMALIZATION USING MIN–MAX NORMALIZATION 

A large number of AI computations examine data focus highlights in an effort to 

uncover data drifts.  However, problems arise when the highlights have very different 

sizes. 

 

Figure 3.2 Data Set of House 

By standardizing, we want to ensure that all data points are on the same scale and that 

each component is given the same weight.  Below is an image that shows the same 

housing data that has been standardized using min-max standardization. 
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Figure 3.3 Normalized Houses using min-max normalization 

 

 MIN-MAX Normalization 

Among the many methods for standardizing data, min-max standardization is among 

the most well-known.  The element's base estimate becomes zero, its maximum value 

becomes one, and all other values become decimal numbers between zero and one for 

each component. 

 For example, since it falls between 20 and 40, 30 would be reduced to about 0.5 if the 

element's base estimate was 20 and its maximum value was 40.  The following is the 

equation 
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Figure 3.4 Normalized and Un-Normalized Houses 

 

The x-axis remains troublesome, while normalizing resolved the y-axis squishing issue.  

Since the y-axis may vary by 1, while the x-axis can only differ by 0.4, the y-axis would 

clearly take centre stage in any comparison of these points. The purpose of 

normalization is to prevent numerical errors when computing and to prevent the 

dominance of aggregate properties at larger numerical scales over those at smaller ones. 

 A popular technique, Min-Max Normalization, is used in this study.  By discovering, it 

converts a view v of the remarkable dataset to v' within the range of [new_min; 

new_max]., 
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New _min and new _max provide the range of values for the progress dataset in this 

case.  In this test, we're connecting new_max= 1 and new_min= 0.  The modified 

datasets are then used for the property decreasing system after normalization. 

3.6 ATTRIBUTE REDUCTION BASED ON MODIFICATION IN THE 

FIREFLY ALGORITHM 

 

Each firefly represents a candidate solution vector 

 

Brightness (objective value) 

Brightness is proportional to the fitness of solution xi: 

 

For feature selection, the fitness combines accuracy and number of selected features: 

 

where 

 Acc(xi) = classification accuracy using subset SiS_iSi 

 ∣Si∣ = number of selected features 

 ∣F∣|= total features 

 β = weighting constants (α+β=1\alpha+\beta=1α+β=1). 

Attractiveness 

Attractiveness of firefly j  to firefly iii at distance rij is: 
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With 

 

Where β0 is initial attractiveness and γ is the light absorption coefficient. 

 

 

Algorithm workflow:   

1. Initialize firefly population with feature subsets.   

2. Evaluate brightness using RST dependency.   

3. Move fireflies according to MFA rules.   

4. Apply directional update to brightest firefly.   

5. Repeat until convergence.   

6. Return optimal reduct. 
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3.7 ATTRIBUTE REDUCTION BASED ON ROUGH SETS 

Efficient attribute reduction is essential for building an accurate and computationally 

efficient heart disease prediction model. Medical datasets often contain redundant, 

irrelevant, or weakly correlated features, which may negatively influence classifier 

performance. To overcome this challenge, the proposed work integrates Rough Set 

Theory (RST) for evaluating feature significance and a Modified Firefly Algorithm 

(MFA) for searching the optimal attribute subset. The innovation of this method lies in 

the modification of the classical Firefly Algorithm: the brightest firefly (representing 

the best feature subset) is restricted to move only in directions that improve its fitness, 

avoiding random deterioration and significantly improving convergence and reliability. 

This is particularly important when working with high-dimensional clinical datasets 

where optimal feature selection directly impacts prediction accuracy. 

3.6.1 Rough Set Theory for Attribute Reduction 

Rough Set Theory (RST) is a mathematical tool used to reduce attributes without 

requiring any preliminary information, such as probability or membership values.   

Given a decision table: 

 

 

 

T = (U, A ∪ {D}) 

 

Where:   

- U = Universe of objects   

- A = Set of conditional attributes   

- D = Decision attribute   
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The dependency degree of D on C ⊆ A is defined as: 

 

γ_C(D) = |POS_C(D)| / |U| 

 

Where: 

 

POS_C(D) = ⋃ (C̅(d)), for all d ∈ D 

 

A subset C′ is a reduct if: 

 

γ_{C′}(D) = γ_C(D) 

 

and removing any attribute from C′ decreases the dependency.   

Thus, RST provides a mathematical basis for verifying whether selected attributes 

preserve classification quality. 

3.4.2 Limitations of the Classical Firefly Algorithm 

While the Firefly Algorithm is a powerful meta-heuristic optimization technique, its 

classical form suffers from two major drawbacks when applied to healthcare data: 

1. Random Movement of the Brightest Firefly 

In standard FA, even the best-performing firefly may move randomly. This can degrade 

its brightness (solution quality), slow convergence, and reduce the chances of reaching 

the optimal feature subset. 

2. Premature Convergence 

Medical datasets often contain correlated attributes. FA may get trapped in local optima 

and fail to explore promising regions effectively. 

To address these limitations, the proposed method introduces a direction-controlled 

movement mechanism, which significantly enhances both convergence and solution 

stability. 
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3.8 PRINCIPAL COMPONENT ANALYSIS (PCA) 

A principal component analysis (PCA) system's final output is a set of vectors in a space 

with dimensions shifted from one to another.  Principal Component Analysis (PCA) is 

an element extraction approach that yields new highlights that are a linear mix of the 

underlying highlights; it uses this method to extract a reduced dimensional element 

subset.  Its ultimate objective is to ensure that k is less than d by mapping all instances 

Convert the provided dataset from a d-dimensional space to a k-dimensional subspace. 

 The Principal Components (PC) are the k-new dimensions that are created, and each 

PC is coordinated to achieve the maximum change possible, excluding the difference 

that is already reflected in all of its initial segments.  Thus, the main section accounts 

for the most difference, while each subsequent component accounts for a smaller 

estimate of volatility.  The following is a way to refer to the Principal Components. 

Let the dataset be represented as: 

X = [x1, x2, ..., xn]^T 

where each xi has d features. 

 

Step 1: Standardize the Dataset 

x'ij = (xij - μj) / σj 

 

Step 2: Compute the Covariance Matrix 

S = (1/(n-1)) * (X^T X) 

 

Step 3: Eigenvalues and Eigenvectors 

S * ei = λi * ei 

 

Step 4: Construct the Transformation Matrix 

W = [e1, e2, ..., ek] 

 

Step 5: Transform the Dataset 

Z = XW 
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3.5.3 Interpretation of Principal Components 

PCi = ai1 x1 + ai2 x2 + … + aid xd 

Here, PCi Principal component I, 

Xj – original feature „j ; 

aj – numerical coefficient for Xj. 

The following procedure may be used to calculate the primary components: 

1. Take the data input and compute the S-covariance matrix. 

2. Determine the eigenvalues and eigenvectors of S and arrange them in decreasing 

order according to the eigenvalues. 

3.  Using the preset number of components (eigenvectors), create the actual 

transition matrix. 

4. Finally, to get a lower-dimensional representation, multiply the initial feature 

space by the obtained transition matrix. 

3.9   MACHINE FOR SUPPORT VECTOR FUNCTIONS (RBF-SVM) 

 Basics of SVM 

A maximum separating hyperplane is built by mapping the input vector to a higher 

dimensional space.  On each side of the data-splitting hyperplane, two parallel 

hyperplanes are drawn.  A hyperplane that optimizes the distance between two parallel 

hyperplanes is termed the separating hyperplane.  As a starting point, SVM uses 

 

Here xj is the input feature vector of jth sample and yj is the output index which is +1 or 

-1. SVM uses a hyperplane to split the positive and negative cases as 
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There is a gap between the positive and negative instances.  Using a margin 

maximisation algorithm, SVM determines the optimal hyperplane. 

 

Figure 3.5 Support Vector Machines 

 

 

To minimise the objective function stated in (3), we must take into account the 

restrictions of (2). 

 

Both the margin size and the misclassification are indicated by the first and second 

components, respectively, of Eqn. (3).  In this case, the cost of unmet limitations is 

represented by the changeable positive number C. 
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If the situation is linearly separable, the decision function f(x) = sgn(g(x)) is provided 

as 

 

The decision function in non-linear situations is provided by 

 

where K K(xi .x) is a kernel function given by 

 

 Radial Basis Function (RBF) 

 Radial Functions 

Starting with a basic issue and using great approaches, their reaction monotonically 

lowers (or grows), which is their characteristic highlight.  In a direct model, the 

parameters (such as the inside of the separation scale and the precise condition of the 

spread capacity) remain constant.  For scalar inputs, a common radial function is the 

Gaussian, which looks like: 

 

The characteristics of this object are its centre (c) and radius (rr).  With a centre of zero 

and a radius of one, a Gaussian RBF is shown in Figure 3.6 .  As one moves out from 
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the centre, the radius of a Gaussian RBF monotonically shrinks.  With scalar input, on 

the other hand, a multiquadric RBF is 

 

 

Figure 3.6 Fitting a straight line to a bunch of points is a kind of parametric 

regression where the form of the model  

 

 

Figure 3.7 Gaussian (left) and Multiquadric RBFs 
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 RBF Neuron Activation Function 

In RBF networks, each neurone analyses data based on a percentage of how similar it 

is to its model vector, which is drawn from the training set.  Data vectors that are more 

and more similar to the model provide results closer to 1.  Although there are a number 

of possible judgements on comparability capabilities, the most famous one is based on 

the Gaussian.  In the case of a one-dimensional information, the following holds for a 

Gaussian. 

The information is represented by x, A standard deviation is mu times the mean is 

sigma.  This results in the naturally occurring chime bend seen below, which is centred 

on the mean, mu (where 5 is the mean and 1 is sigma) in the figure below. 

. 

Figure 3.8 Familiar Bell curve 
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Figure 3.9: RBF Neuron activation for different values of beta 

 

The Gaussian component, which is based on RBF, transforms the space of the lower 

dimensions into an unfathomably high-dimensional space.  Unidentifiable highlights 

that are projected into three-dimensional space always end up being vividly visible. 

 

The  is responsible for adjusting the Gaussian ringer mold's width.  The smaller the 

estimate, the wider the curve, and vice versa.  When the RBF component is combined 

with SVM, the final result is a step closer to becoming 

 

The RBF-based support vector machine (SVM) has two categories: normal subjects 

(NS) and heart patients (HP). 
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3.10 IMPROVING HEART DISEASE PREDICTION WITH TRANSDUCTIVE 

SUPPORT VECTOR MACHINE CLASSIFIER AND OPTIMAL USE OF 

WHOLE-SAMPLE OPTIMIZATION 

Predicting cardiac problems using a Support vector machines and the radial basis 

function  was the focus of the prior chapter.  Having said that, the categorization result 

it produces is far from good.  This chapter suggests a PSO-RS using TSVM — a 

combination of PSO and Rough Sets — as a solution to this challenge. 

 In this study, Zero-Score (Z-Score) is used for data normalization in order to decrease 

data redundancy and increase data integrity.  To minimises computing cost and boost 

prediction system performance, the ideal subset of attributes is selected using the PSO 

algorithm and an attribute reduction approach based on Rough Sets (RS).  Last but not 

least, Predicting cardiac sickness is done using the RBF-TSVM classifier. 

 

Figure 3.10 Block diagram of the proposed methodology 

There are three main phases to the comprehensive design of a system for diagnosing 

heart disease:  Classification, feature extraction, attribute reduction, and normalization. 

 Normalization Using Z-Score Normalization 

To avoid having data that are too close to one another in terms of distance measure, all 

of the input and output data were normalized before the testing and training operations. 

As far as Z-Score standardization is concerned, it is generally useful.  This arrangement 

of scores is used to isolate each score by its standard deviation in order to standardize 

several scores using the normal deviation.  In this specific case, before dividing by the 

standard deviation, we usually take the average score and deduct it from every single 
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score.  The acronym Z-scores describes this uniformity [15].  According to official 

statistics, Z-scores are transformed into Yn for large N scores with means of M and 

standard deviations of S. 

 

The standard deviation is 1 and the mean is 0 for many Z-scores which may be shown 

to be rather likely.  Thus, Z-scores provide a unit-free metric that may be used to 

compare estimated perceptions with different units.  The quality reduction approach is 

used to modified datasets after standardization. 

 Typically, the disagreeable set and data hypothesis is used in conjunction with the 

characteristics decline hypothesis.  A reduction in qualities indicates a weakening of 

the knowledge base's repeating properties without crossing the line into 

characterization. 

 Attribute dependency 

The information table describes the choice property D's dependence on the condition 

characteristic C as: 

 

(4.2) 

A positive domain's element count is given by |Posc(D)|. 
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Procedure characteristic decrease 

 

Data frameworks make extensive use of databases.  The articles are categorized into 

identical sets according to the choice characteristic in the database. The trust is used to 

differentiate each choice class based on condition features. Finally, decision guidelines 

are generated for each class.  There are a handful of data attributes that don't matter 

much for the learning task, but I have faith in finding a foundational set of correlative 

characteristics that can characterised the choice quality with the full set of conditions, 

and the rules I've been able to construct from this foundational set are getting easier 

and better. 
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3.11 A ROUGH SET ALGORITHM FOR REDUCING ATTRIBUTES USING 

PSO 

 Particle Swarm Optimization (PSO) 

A computational intelligence optimization method, the PSO methodology primarily 

draws inspiration from the habits of swarming or flocking animals like fish and birds. 

 

Figure 3.11 Functions of PSO 

Xi denotes where the particle is located Yi stands for the particle's speed, and LS for 

the local memory space.  GS stands for the space for all memories on Earth. 

 Equations (5.1) and (2) provide the particle's updated location, which may be used to 

calculate its velocity. 
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where be the constant that computes 

 

 

 

1. Let S be the search space 

2. Let Xi be the set that denotes the position of particle in S 

3. Visualize Vi as the collection of nodes' velocities. 

4. Let tFF be the time delay between two successive fitness function assessments 

of a particle 

5. Particles are initialized in S at position xi\ 

6. Every particle computes the Fitness Function F() 

7. After tFF, F() of each particle is compared with Lbest 

8. If (Fxi1(tFF1) >Lbest (xi1)) then 

9. Lbest (xi1) = Fxi1(tFF1) 
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10. Else 

11. Lbest (xi1) is not modified 

12. End if 

13. After tFF, F() of each particle is compared with Gbest 

14. If (Fxi1(tFF1) >Gbest(xi1)) then 

15. Gbest(xi1) = Fxi1(tFF1) 

16. Else 

17. Gbest(xi1) is not modified 

18. End if 

19. Conditions (4.6) are satisfied, and the molecule's speed is restored (20). 

20. The molecule's location is restored in accordance with condition (4.7). 

21. Transfer the molecule to an other location 

22. Keep going until the tree is full, then repeat steps 6–20. 

 Rough Set Algorithm 

By using this technique, the reduced 

 

(4.8) 
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A weight factor value between 0.4 and 0.9 will improve the calculation's performance 

[20].  The following is the formula for the fluffy capacity s(v_ij (t)) that is often used 

in neural systems; it may be any quantity between 0 and 1: 

 

 

 and  represent the global ideal solution and the individual extreme solution, 

respectively, as shown in Equations (9) and (10): 

   (4.10) 

 

Wellbeing(I) is the wellbeing of molecule I in Eq. (4.10).  The health metric serves as 

a primary guidepost for the swarm of molecules to follow as they strive for perfection.  

Since our decrease calculation is based on positive district decrease computation [21], 

we can easily acquire a base decrease with diverse consequences by changing the 

wellness capacity.  To verify, check whether the relative positive location in the 

necessary conditions of Eq. (4.12) is true. 
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3.12 CLASSIFICATION USING RBF-TSVM 

Heart disease prediction makes use of RBF-based TSVM support classification.  A 

basic overview of the RBF approach was covered in the preceding chapter. 

 It is possible to combine the proposed broadcast data of unlabelled examples with well-

prepared tests since TSVM computations make use of the potential of transductive 

adaptation effectively.  Calculating using TSVM yields better grouping accuracy when 

compared to the standard assist vector machine method.  Still, there are a number of 

issues with TSVM calculations. One of them is that N worth is sometimes difficult to 

obtain a reasonable estimate of, Also, for TSVM calculations, it's deceptive to show the 

number of positive name tests in the unlabeled samples. [22]. 

 The ratio of positive tests to all unlabeled cases is evaluated by comparing the ratio of 

positive tests to all named tests; this ratio is then used as an estimate of N in TSVM 

calculations.  Anyway, it's difficult to get a more precise estimate of N using this method 

when the number of exams with marks is small.  If the number of tests with positive 

marks differs considerably from the pre-set estimate of N, then the TSVM computation 

will fail presentation becomes very weak, and the calculation's grouping accuracy 

cannot be effectively guaranteed. 

 

with an additional set of unlabeled samples from the corresponding sharing, 
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Training in TSVM 

Classify the test examples using     The num+test examples 

with the highest value of  are assigned to class ; 

Students are given the remaining test cases to complete in class. 

  

 . 

some small number 
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The following are the main components of a TSVM training algorithm: 

TSVM training Algorithm 

Input: -training examples  

-test examples  

Parameters: -C,C*: parameters from OP(2) 

-num+: class's required amount of practice exams+  

Output: -anticipated labels for the sample data 

 

Stage 1: Find C and C*, finish an underlying learning using inductive picking up using 

all marked cases, and construct a one-of-a-kind classifier.  In the unlabelled models, 

identify a positive-named model by assigning it a predicted value N. 

Stage 2: Evaluate each unlabelled segment using the first classifier to determine its 

option capacity charges.  All but one of the models that include Mark N's actual 

judgement abilities are considered detrimental by him.  Establish a short-term achieve 

factor C_tmp^*. 

Stage 3: In most cases, you should retrain the support vector machine.  Alter the names 

of a few different named unlabelled representations according to a specified guideline 

in order to estimate the goal capacity drop as much as feasible for the recently produced 

classifier.  This process continues until no two models that satisfy the exchange 

condition have been constructed. 

Stage 4: Return to Step 3 after slightly increasing the estimate of C_tmp^*. 

 Whenever C_tmp^* C∗, the calculation is finished and the outcome is yield. 
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It is confirmed that the target capacity would decrease after the exchange using the 

marker swapping approach in Step 3.  Step 4's iteratively increasing temporary 

accomplish factor calculates the influence of the unlabelled models on the goal task 

gradually in an effort to look for a convenient error supervise.  Due to the fact that C* 

provided in Step 1 is a finite quantity, the computation might conclude after limited 

cycles. 

 The radial basis function (RBF) based component, often known as the Gaussian piece, 

transforms the space of lower dimensions into an infinite dimensional space.  It is 

common for straightly non-divisible highlights to become directly detachable after 

being transferred into higher dimensional space. 

 Predicting the occurrence of cardiac illnesses is one use of the RBF-based TSVM for 

classification purposes. 

3.13 METHODOLOGICAL COMPARISON BETWEEN EXISTING AND 

PROPOSED MODELS 

Table 3.4 : Methodological Comparison Between Existing and Proposed Models 

Criteria 
Existing Model 

(IT2FLS) 

Proposed Models 

(MFA–RBF-SVM, 

PSO–RBF-TSVM, 

OCSO–RBF-SVM) 

Feature Selection 
No systematic feature 

selection; uses all features 

Uses MFA and PSO-RS 

for optimal feature subset 

selection 

Handling Nonlinearity 
Limited ability to model 

nonlinear patterns 

RBF-SVM and TSVM 

effectively capture 

nonlinear decision 

boundaries 

Parameter Optimization 

Parameters manually 

chosen; no optimization 

framework 

MFA and OCSO provide 

automatic hyperparameter 

tuning 

Adaptability to Noisy 

Data 

Sensitive to noise due to 

fixed fuzzy rules 

Robust optimization 

reduces noise impact and 

improves stability 

Flexibility 

Rule-based, less 

adaptable to complex 

datasets 

Hybrid models 

dynamically adapt to 

feature interactions 
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Computational 

Efficiency 

Moderate; rule evaluation 

only 

Improved efficiency with 

reduced feature subsets 

and optimized parameters 

Generalization Ability 
Weak generalization due 

to static rule base 

Strong generalization 

through optimized 

classifiers and feature 

subsets 

Scalability 
Limited scalability to 

increasing data size 

Models scale effectively 

with larger datasets due to 

optimization strategies 

Learning Capability 
No learning mechanism; 

rule-driven 

Machine-learning + 

optimization allows 

continuous improvement 

Suitability for Clinical 

Prediction 

Basic interpretability but 

limited accuracy 

High adaptability, strong 

predictive power, and 

better clinical reliability 

 

The comparison clearly shows that IT2FLS lacks structured feature selection, 

parameter optimization, and the ability to model nonlinear relationships. In contrast, 

the proposed hybrid models leverage optimization algorithms and advanced classifiers 

to deliver greater adaptability, improved generalization, and stronger methodological 

foundations for heart-disease prediction. 

3.14 EXPERIMENTAL RESULTS AND ANALYSIS 

The performance of the proposed hybrid approaches—MFA–RBF-SVM and PSO–

RBF-TSVM—is evaluated using standard classification metrics: Accuracy, Sensitivity, 

Specificity, False Positive Rate (FPR) and False Negative Rate (FNR). The 

experiments are performed using different dataset sizes ranging from 1000 to 5000 

records, derived from the Cleveland Heart Disease Dataset (CHDD).The results are 

compared with the existing Interval Type-2 Fuzzy Logic System (IT2FLS), which 

serves as the baseline model. 
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FALSE POSITIVE RATE (FPR) 

The False Positive Rate represents the proportion of healthy individuals who are 

incorrectly classified by the model as having heart disease. A high FPR leads to 

unnecessary clinical tests, patient anxiety, and increased healthcare costs. 

 

Where: 

 FP (False Positives): Healthy patients misclassified as diseased 

 TN (True Negatives): Healthy patients correctly classified 

FALSE NEGATIVE RATE (FNR) 

The False Negative Rate indicates the proportion of actual heart disease cases that the 

model fails to detect. A high FNR is dangerous because it may delay diagnosis and 

treatment, potentially resulting in severe medical complications. 

 

Where: 

 FN (False Negatives): Heart disease patients misclassified as healthy 

 TP (True Positives): Heart disease patients correctly classified 
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Figure 3.12 : Graph FPR and FNR 

This graph illustrates the relationship between data size and the error rates—False 

Negative Rate (FNR) and False Positive Rate (FPR)—for the MFA + RBF-SVM 

model. As the amount of training data increases from 1000 to 5000 records, both 

FNR and FPR consistently decrease. The FNR, represented by the blue line, drops 

from 11% to 3%, indicating that the model is making fewer mistakes in missing 

actual positive cases. Similarly, the FPR, shown in brown, decreases from 8% to 

3%, showing a reduction in incorrect positive predictions. This trend demonstrates 

that increasing the data size leads to better model performance, with fewer 

classification errors and improved accuracy in both identifying true positives and 

true negatives. 
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(i) ACCURACY – MFA–RBF-SVM VS IT2FLS 

The measurement precision allows for the proper segmentation of tumour components 

in pictures based on their weighted ratio.  It is represented in this way, 

 

 

Figure 3.13: Accuracy Comparison 

Figure 3.12 compares the accuracy of the proposed MFA–RBF-SVM method with the 

existing IT2FLS method across different dataset sizes. The x-axis represents the dataset 

size (number of records), and the y-axis represents accuracy (%).Using MFA for 

attribute reduction before classification allows the proposed system to achieve higher 

accuracy at all dataset sizes. The MFA–RBF-SVM model consistently outperforms 

IT2FLS, demonstrating the effectiveness of the optimisation-based feature selection. 
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(ii) SENSITIVITY – MFA–RBF-SVM VS IT2FLS 

A high level of affectability is indicative of a large number of accurately recognized 

positive aspects.  In order to perceive favourable results, it identifies with the test's 

boundary. 

 

 

Figure 3.14: Sensitivity Comparison 

Figure 3.13 shows the sensitivity of the IT2FLS method and the proposed MFA–RBF-

SVM method for different dataset sizes. The y-axis represents sensitivity, and the x-

axis shows dataset size.  

The proposed work uses min–max normalization and MFA-based attribute 

reduction, followed by RBF-SVM classification. This combination improves the 

detection of true heart disease cases and hence increases sensitivity. Across all dataset 

sizes, MFA–RBF-SVM achieves higher sensitivity than IT2FLS, meaning fewer heart 

disease cases are missed. 
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 (iii) SPECIFICITY – MFA–RBF-SVM VS IT2FLS 

An indicator of specificity is the fraction of false negatives that are properly classified. 

The test's capacity to identify unfavourable outcomes is connected to it. 

 

 

Figure 3.15: Specificity Comparison 

 

Figure 3.14 compares the specificity of IT2FLS and MFA–RBF-SVM. The x-axis 

shows dataset size, and the y-axis shows specificity. 

The results indicate that MFA–RBF-SVM yields higher specificity than IT2FLS for all 

dataset sizes, implying that the proposed model produces fewer false alarms (healthy 

subjects wrongly predicted as diseased) and is more reliable in identifying non-diseased 

cases. 
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Table 3.5 Results of MFA-RBF-SVM and IT2FLS 

Data Size 

(Bytes) 

Accuracy Sensitivity Specificity 

IT2FL

S 

MFA and 

RBF-

SVM 

IT2FLS 

MFA 

and 

RBF-

SVM 

IT2FL

S 

MFA and 

RBF-SVM 

1000 91.5 92 87 89 91 92 

2000 92 93 89 91 92 93 

3000 94 95 91 93 93 94 

4000 95 96 94 95 95 96 

5000 96 97 95 97 96 97 

 

The table compares the performance of IT2FLS and MFA with RBF-SVM using 

accuracy, sensitivity, and specificity across data sizes ranging from 1000 to 5000 bytes. 

Although both models improve as the data size increases, MFA with RBF-SVM 

consistently achieves higher performance at every level. IT2FLS shows accuracy 

improving from 91.5% to 96%, sensitivity from 87% to 95%, and specificity from 91% 

to 96%. In comparison, MFA with RBF-SVM increases accuracy from 92% to 97%, 

sensitivity from 89% to 97%, and specificity from 92% to 97%. Overall, the results 

indicate that while both models benefit from larger datasets, MFA with RBF-SVM 

provides superior classification performance. 
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Table 3.6 The MFA-RBF-SVM Outperforms IT2FLS in Percentage Terms 

Data Size Accuracy Sensitivity Specificity 

1000 0.54 2.24 1.08 

2000 1.07 2.19 1.07 

3000 1.05 2.15 1.06 

4000 1.04 1.05 1.04 

5000 1.03 2.06 1.03 

 

Cleveland Heart Disease Dataset (CHDD), which can be found on the UCI Repository 

[14], is the source of the datasets.  Here are the thirteen characteristics that are taken 

into account: details about the patient's age, gender, the nature of their chest discomfort, 

blood pressure at rest, cholesterol levels, glucose levels after fasting, electrocardiogram 

readings at rest, angle of the heart, number of major veins obscured by fluoroscopy, and 

the extent to which exercise-induced ST depression differs from resting conditions. A 

range of dataset sizes (from 1000 to 5000 records) is considered for performance 

evaluation of the proposed methods. Here, we evaluate the sensitivity, specificity, and 

accuracy of the suggested PSO and RBF-TSVM method with that of the current system 

IT2FLS [23], as well as with modified FA and RBF-SVM 

 

 

 

 



116 
 

 (i)    Accuracy-PSO–RBF-TSVM vs IT2FLS and MFA–RBF-SVM 

Accurate measurement allows for the proper segmentation of the weighted proportion 

of tumour sections in pictures.  This is shown as, 

 

 

Figure 3.16. Results for Accuracy 

 

Comparing the accuracy of the current IT2FLS, MFA, and RBF-SVM based 

classification methods with the suggested PSO-RBF-TSVM based methodology is 

shown in Figure 3.15.  On the one hand, we have the dataset size (X-axis) and accuracy 

(Y-axis).  The suggested approach employs PSO for attribute reduction to get high 

accuracy.  When compared to the current technique, the PSO and based RBF-TSVM 

classification algorithms demonstrated very high accuracy across all dataset sizes 
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(ii)   Sensitivity – PSO–RBF-TSVM vs Baseline Models 

Affectability is defined as the degree to which pleasant emotions are adequately felt.  

In order to perceive favorable results, it identifies with the test's boundary. 

 

 

Figure 3.17. Results for Sensitivity 

 

Figure 3.16 shows the sensitivity findings of the IT2FLS, RBF-SVM, and PSO-RBF-

TSVM based classification methods, as well as the suggested PSO-RBF-TSVM based 

classification method.  The sensitivity is shown on the Y-axis, while the dataset size is 

plotted on the X-axis.  The suggested work employs the Z-Score method for 

normalization in an effort to improve the system's overall performance.  Additionally, 

RBF-TSVM is used to accomplish effective categorization.  The rate of true positives 

is enhanced.  When compared to the current system, the suggested PSO and based RBF-
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TSVM classification method exhibited good sensitivity findings across all dataset 

sizes. 

(iii)   Specificity-PSO–RBF-TSVM vs Baseline Models 

The percentage of correctly identified negatives is the metric for specificity.  The ability 

of the test to detect unfavorable outcomes is at the heart. 

 

 

Figure 3.18. Results for Specificity 

 

Figure 3.17 shows the specificity findings of the IT2FLS, RBF-SVM, and PSO-RBF-

TSVM based classification methods, as well as the suggested PSO-RBF-TSVM based 

classification method.  On the one hand, we have the dataset size (X-axis) and the 

specificity (Y-axis).  The suggested PSO and based RBF-TSVM classification method 

outperformed the state-of-the-art system across all dataset sizes. 
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Table 3.7 Results of PSO-RBF-SVM and IT2FLS 

Data Size 

Accuracy Sensitivity Specificity 

IT2FLS 
PSO-RBF-

TSVM 

IT2FL

S 

PSO- RBF-

TSVM 
IT2FLS 

PSO- 

RBF- 

TSVM 

1000 91.5 93 87 90 91 93 

2000 92 94 89 91.5 92 94 

3000 94 95.5 91 93.5 93 95 

4000 95 96.5 94 96 95 97 

 The table compares the performance of IT2FLS and PSO-RBF-TSVM across dataset 

sizes ranging from 1000 to 5000 instances using accuracy, sensitivity, and specificity. 

Although both models improve as the dataset grows, PSO-RBF-TSVM consistently 

achieves higher results. IT2FLS shows accuracy rising from 91.5% to 96%, sensitivity 

from 87% to 95%, and specificity from 91% to 96%. In contrast, PSO-RBF-TSVM 

increases accuracy from 93% to 98%, sensitivity from 90% to 97.5%, and specificity 

from 93% to 98%. These results indicate that PSO-RBF-TSVM delivers stronger and 

more reliable predictive performance than IT2FLS, especially with a larger dataset. 
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Table 3.8 Findings from the PSO-RBF-TSVM and MFA-RBF-SVM Models 

 

Data 

Size 
Accuracy Sensitivity Specificity 

  

MFA and 

RBF-

SVM 

PSO-RBF-

TSVM 

MFA and 

RBF-

SVM 

PSO-RBF-

TSVM 

MFA and 

RBF-

SVM 

PSO-

RBF-

TSVM 

1000 92 93 89 90 92 93 

2000 93 94 91 91.5 93 94 

3000 95 95.5 93 93.5 94 95 

4000 96 96.5 95 96 96 97 

5000 97 98 97 97.5 97 98 

 

Table 3.9 Percentage wise Improvement of PSO-RBF-TSVM over IT2FLS 

 

Data Size (Bytes) Accuracy Sensitivity Specificity 

1000 1.61 3.33 2.15 

2000 2.12 2.73 2.12 

3000 1.57 2.67 2.1 

4000 1.55 2.08 2.06 

5000 2.04 2.56 2.04 
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Table 3.10 Percentage wise Improvement of PSO-RBF-TSVM over MFA-RBF-

SVM 

Data Size Accuracy Sensitivity Specificity 

1000 1.07 1.11 1.07 

2000 1.06 0.54 1.06 

3000 0.52 0.53 1.05 

4000 0.51 1.04 1.03 

5000 1.02 0.51 1.02 

 

Figure 3.19 – Percentage Improvement of MFA–RBF-SVM Over IT2FLS Across 

Different Dataset Sizes 
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Figure 3.20 – Percentage Improvement of PSO–RBF-TSVM Over IT2FLS 

Across Different Dataset Sizes 

 

Figure 3.21 – Percentage Improvement of PSO–RBF-TSVM Over MFA–RBF-

SVM 
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Figure 3.22– Summary Graph 

  

Figure 3.23 -FPR–FNR Comparison Across Models and Dataset Sizes 
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Table 3.11: overall average accuracy, sensitivity, specificity. 

Model Accuracy Sensitivity Specificity 

IT2FLS 96% 95% 96% 

MFA–RBF-SVM 97% 97% 97% 

PSO–RBF-TSVM 98% 97.5% 98% 

            

             Table 312: FPR–FNR Comparison Across Models and Dataset Sizes 

Dataset 

Size 

IT2FLS 

FNR (%) 

IT2FLS 

FPR (%) 

MFA–

RBF-

SVM 

FNR (%) 

MFA–

RBF-

SVM 

FPR (%) 

PSO–

RBF-

TSVM 

FNR (%) 

PSO–

RBF-

TSVM 

FPR (%) 

1000 14 9 11 8 10 6 

2000 11 8 8 6 7 4 

3000 9 6 7 5 5 3 

4000 7 5 5 4 4 3 

5000 5 3 3 3 2 2 
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3.15 SUMMARY OF CHAPTER 

Chapter 3 presented the complete methodological framework used to develop the 

proposed heart-disease prediction system, beginning with an overview of the research 

approach and a flowchart depicting the workflow. It described the dataset, its 

challenges, relevance, and the preprocessing steps applied, including handling missing 

values, treating outliers, scaling features, and encoding categorical data. The chapter 

explained the feature selection techniques (MFA, PSO-RS), classification methods 

(RBF-SVM, TSVM), and optimization strategies (MFA, PSO-RS, OCSO) employed to 

enhance model accuracy. It also justified the choice of the proposed hybrid models over 

the existing IT2FLS method and outlined the experimental setup, evaluation metrics, 

and statistical validation procedures. While Chapter 3 explains how the system is 

designed and implemented. 

Chapter 4 is needed because it provides the empirical validation of the methodology 

developed in Chapter 3. While Chapter 3 explains the algorithms, preprocessing, and 

system design, Chapter 4 demonstrates how well these methods perform through 

detailed experimentation. It presents accuracy, sensitivity, and specificity results for 

OCSO, PSO, GA, and CSO; compares the proposed approach with other optimization 

methods; and includes graphical trends, percentage improvement calculations, and 

thorough discussion of classifier behavior. Chapter 4 also verifies the practical 

usefulness of the neutrosophic diagnosis model and confirms that the proposed OCSO-

RBF-TSVM framework significantly improves prediction performance. Thus, Chapter 

4 is essential for translating the methodology into measurable outcomes, proving its 

effectiveness, and validating the contributions of the study. 
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CHAPTER-4 

A ROBUST SYSTEM USING ARTIFICIAL INTELLIGENCE AND 

SOFT COMPUTING TECHNIQUES FOR IDENTIFYING AND 

PREDICTING HEART DISEASES 

In order to overcome the complexity and enhance performance compared to traditional 

methods of cardiac disease prediction, this chapter explains how Artificial Intelligence 

(AI) and soft computing approaches may be used. Collecting cardiac data in a real-

world setting is the first step, followed by reducing data redundancy and improving data 

integrity. Zero-Score (Z-Score) is used to normalize the data. Following this, Multiple 

soft computing methods, including Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), Crow Search Efficiency (CSO), and Opposition Based Crow 

Search Optimization (OCSO), are used to accomplish attribute reduction. Finally, we 

have RBF-TSVM, an acronym for Radial Basis Function-Transductive Support Vector 

Machines, which is a classifier. The findings demonstrate that the proposed OCSO 

technique outperforms the present method in terms of accuracy, sensitivity, and 

specificity. 

The leading killers on a global scale are cardiovascular disorders. The mortality rate 

may be reduced if the condition can be detected early. Many new decision-making 

systems have recently been created, but their complexity prevents them from being used 

by healthcare practitioners. In order to accomplish these aims, a digestible neutrosophic 

clinical decision-making system is suggested, which would take 35 different 

characteristics into consideration. The most important parts of our suggested model are 

the neo-optimal approach, the inference engine, the rule building, the explainability, 

and the causality. To show how well our model works, we included an algorithm for 

calculating the risk of cardiovascular disease using a single-valued neutrosophic 

method. The model classifies heart disease severity on a scale from 1 to 5, using a 

Multi-Attribute Decision Making (MADM) approach that combines Interval-valued 

Trapezoidal Neutrosophic Numbers (IvTNN) and Weighted Aggregated Sum Product 

Assessment (WASPS). 
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Vulnerability is the most important and basic fact in the medical sector. Representing 

patients' emotions, physicians' opinions, and laboratory results correctly is next to 

impossible. No one in the field of clinical research has yet provided a satisfactory 

explanation for how diseases disrupt the body's usual processes. Many businesses, 

including the medical field in particular, provide decision-makers with a high degree of 

uncertainty. Important decisions need to be made by doctors swiftly and precisely. It is 

challenging for less experienced doctors and physicians to diagnose heart disease due 

to the wide variety of symptoms and pathologic characteristics. 

4.1 EFFECTIVE METHODS FOR THE DIAGNOSIS OF HEART 

CONDITIONS WITH THE USE OF AI AND SOFT COMPUTING 

Askarzadeh proposed a novel metaheuristics optimization method, which he called 

CSO, based on the crow's collective behavior in recent days.  The concept of CSO is 

based on the notion of storing extra nutrients in hidden places and then reintroducing 

them at the critical moment.  After other birds leave a spot where they've stashed food, 

the crow can smell it and takes it.  Once the burglary is done, it admits to escape from 

becoming a prey even more. 

 If there are N crows in a flock, then it stands to reason that crow i will have location 

xi k at repetition k.  The disguised spot where the food shadowed by crow i was kept.  

Crow explores the world in search of the best food source, m ik, in the exploration 

level.  There are two potential outcomes for the CSO probing approach. The first is that 

the owner of the nourishment origin property, crow j, fails to distinguish between the 

burglar, crow i, and follows it.  So, the crow of the thief lands on the crow of the owner, 

who has already conceded.  The crow burglar's location alert method is defined by 

 

Here, ri is any positive integer in the interval [0, 1], and flik is the distance flown by 

crow i at iteration k. 
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As a second possibility, it's possible that owner crow j notices that burglar crow i is 

following it, and owner crow j decides to betray burglar crow i by going to a different 

investigating spot.  A random location rearranges the position of crow i. 

The following manifestation resolves the problem in CSA: 

if  

update position by eqn.5.1 

 else update to random position 

This is where pik represents the probability of crow j's awareness at repetition k and rj 

is any integer in the interval [0, 1]. 

The  parameter  is crucial in determining the best answer on a worldwide 

scale, even with just a tiny amount of    suggestions for the local lowest  even 

when huge sums result in a worldwide minimum, The results of are shown in 

Figures 4.1 and 4.2   as part of the search process. 

At repetition k, the group's location is rearranged according to Eq.(5). At the same time, 

The appropriateness task is evaluated first-hand. At iteration k, the completed suitability 

task  is connected to the one indicated before, and the group's location is placed to alert. 
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Figure 4.1. Parameter fl<1 

 

 

 

Figure 4.2 Parameter fl>1 
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CROW SEARCH ALGORITHM 

Randomly initialize the position of a flock of N crows in the search space   

Evaluate the position of the crows   

Initialize the memory of each crow   

 

while iter < itermax do   

    for i = 1 to N (all N crows of the flock) do   

        Randomly choose one of the crows to follow (for example, j)   

        Define an awareness probability (AP)   

 

        if rand >= AP then   

            x_i^(iter+1) = x_i^iter + fl * (m_j^iter - x_i^iter)   

        else   

            x_i^(iter+1) = a random position in the search space   

        end if   

    end for   

 

    Check the feasibility of new positions   

    Evaluate the new position of the crows   

    Update the memory of the crows   

end while 

 OCSO implementation for optimization 

Here, we'll assume that you know how to implement OCSO step-by-step. 

Step 1: Setup and changeable constraints 

We classify the inflation problem, resolution changes, and constraints.  The OCSO's 

tunable parameters (flock size, N), which dictate the number of repeats (itermax), At that 

point, the flying distance (fl) and the awareness probability (AP) are respected. 

 

To demonstrate the feasibility of opposition-based learning, Hamid R. Tizhoosh 

introduces it and uses it to solve a few optimization issues.  The main idea behind this 
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topology is to find an optimum solution that is just around the corner by creating an 

opposition-based solution for the first developed random solution.  To compare the final 

result to the original, opposing answer, the following function is used. 

 

Ii I1, I2, I3…. NP, the above equation (4) proposes generating a counter-intuitive answer, 

with x and y being the extremes of the possible range, and these starting solutions are 

created at random. 

Step 2: Get the crows' nest and memories ready. 

In a d-magnitude exploring region, N crows are placed at random as group members.  

With d being the integer of resolution change, each crow confirms a likely solution to 

the problem. 

(5.4 

Set each crow's memory to its initial state.  Consequently, the crows play no role in the 

first recapitulation.  Their nutritional secretion at their early locales is pretty typical. 

 



132 
 

Step 3: Estimate Fitness function 

By inserting the verdict flexible miles into the impartial job, we may assess the 

excellence of every crow's place. 

 Using the correctness of characteristic reduction without insignificant reductions, 

these wellness capabilities may be evaluated.  Applying a health task that considers 

both trait reduction (nature of guess characterization) and insignificant property 

reduction is crucial for finding the optimum negligible characteristic decrease.  Thus, 

this inquiry is linked to a wellness task, as indicated in Eq. 

 

Here m=|C|, |U|;γ_x (D) that arrangement has is called its nature.  R is recorded using 

a regulated fast reduction computation, and it is known as a reduce of scenario trait C. 

For the characteristic reduction job, this formula implies that the length of the qualities 

subset, |X|, and the course of action value, γ_x (D), are of distinct relevance. 

Step 4: Design a fresh setting 

Crows create new territory at the investigation site while investigators conduct follow-

up inquiries:  Think about a crow—I need one to create a new space.  This crow (mej) 

selects one of the group crows at random, so you may follow its trail to find out what 

happened to the food it was hiding.  The vast majority of crows follow this pattern. 

Step 5: Investigate potential new employment opportunities 

Crow does something unexpected; it remains where it is instead of flying to a newly-

created spot. 

Step 6: Assess the suitability of a new site 

For each crow's unique location, we evaluate their suitability task rate. 
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Step 7: Bring memories that are current 

In their subsequent searches, the crows update their memory: 

 

The objective task rate is deduced by f(.). 

 Clearly, if a crow's suitability rate in its new site is higher than its suitability rate at its 

old one, then. 

Step 8: Check termination criterion 

The fourth through seventh stages are tedious until itermax is reached. Recalling that 

the closure principle is the solution to the inflation issue is a good place to start when 

thinking about the fair task rate. 

4.2 CARDIOLOGICAL NEPHROSOPHIC CLINICAL DECISION-MAKING 

SYSTEM 

The doctor makes a call based on past judgments made for patients in comparable 

scenarios and an estimation of the patient's actual examination findings. The knowledge 

and skill of a doctor make this feasible, but because there are so many clinical, 

behavioural and physiological factors to consider, this task becomes extremely time-

consuming. Therefore, there is an urgent need for a precise and intelligent system that 

can detect patients whose conditions, symptoms or risk patterns are similar or identical. 

Although ML algorithms will play an increasingly important role in illness prediction, 

traditional ML approaches were never designed to handle the level of uncertainty, 

inconsistency and incompleteness present in real clinical data. Many of the learning 

problems are expressed using contradictory, imprecise or missing facts, and as a result, 

the performance of conventional ML models becomes insufficient when applied to 

medical datasets. In addition, data preparation itself is computationally intensive and 

prone to errors arising from data collection, feature extraction and reporting. When 
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inaccurate or incomplete data is provided, ML systems face genuine learning obstacles. 

These limitations create a clear research gap: existing prediction models cannot reliably 

handle uncertainty, and therefore their performance degrades when applied to real-

world cardiac datasets such as ours. 

To address this, Single-Valued Neutrosophic Sets (SVNs) provide a mathematical 

framework for modelling inaccurate, vague and indeterminate information. Unlike 

traditional ML methods that rely solely on crisp input values, neutrosophic learning 

algorithms are capable of manipulating data that contains truth, falsity and 

indeterminacy simultaneously, making them highly suitable for complex medical 

environments. As an extension of the fuzzy system proposed by Smarandache (1995), 

neutrosophic statistics (NS) directly address uncertainty that fuzzy logic alone cannot 

capture. In neutrosophic classifiers, every piece of data includes three components—

true, false and ambiguous—allowing the model to preserve uncertainty rather than 

forcing a premature decision. This helps clinicians obtain more realistic predictions and 

significantly reduces uncertainty in medical decision-making. NS has been widely 

adopted in various fields, including medicine, physics, computer science and 

engineering, demonstrating its robustness for complex domains. In the proposed 

chapter, this framework is applied to classify heart disease data more efficiently, and 

the cardiac dataset is evaluated using a neutrosophic diagnostic method. The model 

diagram for neutrosophic-based disease prediction (Figure 4.3) shows how 

neutrosophic reasoning determines the relative importance of each feature to forecast 

cardiovascular disease. 

 

               Figure 4.3 Model Diagram for Neutrosophic-Based Disease Prediction 

 



135 
 

To implement this approach, relevant data is first extracted, followed by defining 

neutrosophic membership functions and establishing the criteria for illness prediction. 

The system is then trained and tested for accurate disease categorisation. Although 

several ML and DL methods exist for CVD prediction, most function effectively only 

in controlled clinical settings. However, modern healthcare requires prediction systems 

that work in dynamic real-time monitoring environments. This chapter therefore 

integrates neural network techniques with neutrosophic sets to build a more reliable 

prediction model suitable for real-time cardiac risk assessment. The goal is to detect the 

onset of a heart attack and alert physicians in advance. This requires identifying 

complex interactions among dependent and independent variables, for which classical 

methods are insufficient. 

This decision-making process is designed to support medical professionals, but clinical 

staff often hesitate to trust computational systems due to lack of transparency. 

Neutrosophic reasoning addresses this by providing interpretable outputs that enhance 

trust and promote adoption. The proposed research is notable because it introduces a 

reliable technique for multi-classifying cardiac data and comparing confusion matrix 

results with other fuzzy and soft computing algorithms. Although diagnostic tests in 

classical statistics assume that each datapoint is precisely known, real clinical datasets 

frequently contain vague or ambiguous observations. In such cases, neutrosophic 

statistics provide a more realistic analytical framework. Health datasets contain 

significant ambiguity that, if improperly managed, can lead to misdiagnosis. 

Furthermore, increased system complexity often makes clinicians reluctant to adopt 

decision-support tools. By using neutrosophic reasoning, the proposed model 

overcomes these limitations and provides a robust prediction framework for CVD. 

Thus, the study effectively addresses the need for a more accurate, uncertainty-aware, 

real-time prediction system for heart disease, bridging a critical gap not addressed by 

existing ML or DL methods. 
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4.3 CATEGORIES OF CVD 

Various types of cardiovascular disorders may be classified.  Each group is described 

in Table 4.1 

Table 4.1 Several Types of Cardiovascular Diseases with Their Description 

Sl. 

No 

Category of 

CVD 

Disease 

Value 
Description 

1 
Coronary artery 

disease 
D1 

A CAD is a constriction of the coronary 

arteries. Fat and cholesterol in the 

blood vessel called atherosclerosis. 

These plaques may block the artery, 

preventing blood from reaching the 

heart muscle. 

2 Heart arrhythmia D5 

It is called arrhythmia which means the 

heartbeat rate is too fast or slow or the 

interval of the heartbeat becomes 

irregular. The heart is one kind of 

electrical system of the human body, 

which handles the heartbeat and 

circulates blood throughout the body. If 

anything goes wrong in the system then 

the heart rhythm becomes abnormal. 

3 
Peripheral artery 

disease 
D6 

Narrow arteries are a frequent 

cardiovascular problem that restricts 

blood flow to the organs. The spheres 

do not receive enough blood flow as the 

body starts to develop PAD. 

4 
Heart valve 

disease 
D7 

It is one kind of hereditary. In adults, it 

can also be caused by a variety of 

factors and conditions, including 

infections and other cardiac problems. 

Regression of heart valves can occur. 

5 Heart failure D8 

Heart failure occurs in the human body 

when the muscles of the heart do not 

pump the blood as required. Due to 

such a problem, the heart gradually 

weakens or tightens and could not fill 

and pump effectively. 
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By feeding the suggested system 35 different symptoms, we may calculate the risk of 

different CVDs.  The specifics are included in the section that follows table 4. The 

binary association between symptoms and CVDs is shown in 2 below, with 'ɩ' 

representing binary 1 and 'ꭕ' representing binary 0.  To find out how accurate the final 

cardiovascular disease outline is, this table will be helpful. 

Table 4.2 Binary Correlation between Symptoms and CVDs Type Of CVD 

Symptom 

ID 
D1 D2 D3 D4 D5 D6 D7 D8 

Sym-I J X X J X J X J 

Sym-II J J X J X X X J 

Sym-III X X X X X J J J 

Sym-IV J X J J X J X J 

Sym-V J X X X J X J J 

Sym-VI J X J X J J J X 

Sym-VII J X X J J J X J 

Sym-VIII J J X J J J X J 

Sym-IX X J J X X J X J 

Sym-X J J X J J J X X 

Sym-XI J X J J X X J X 

Sym-XII X J X J X J X X 

Sym-XIII J J J J X X J J 

Sym-XIV X X J X X J X J 

Sym-XY X X J J X J X J 

Sym-XYI J X X J J X J J 

Sym-XYII X J X X J J X X 

Sym-

XYIII 
X J J J X J X J 

Sym-XIX X X J J J X X J 

Sym-XX X X X J J X J X 

Sym-XXI J J X J X J J J 

Sym-XXII X X J X X J J J 
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Sym-

XXIII 
X X J X J X J X 

Sym-

XXIV 
J J J X X X J J 

Sym-XXV X J X J X X X X 

Sym-

XXVI 
X J X J X X J J 

Sym-

XXVII 
X J X X J J J J 

Sym-

XXVIII 
X J X X J J X J 

Sym-

XXIX 
X X X X X X J X 

Sym-XXX X X X X X X X X 

Sym-

XXXI 
X X X X X X X J 

Sym-

XXXII 
J J J J J X J X 

Sym-

XXXIII 
J J X X X X J X 

Sym-

XXXIV 
J J J J X J X X 

Sym-

XXXV 
X X J X J J X J 

 

4.4    PRELIMINARIES OF NEUTROSOPHIC SETS 

The NS concept is derived from neutrosophy, a new path of philosophy [129]. “A set 

of points ξ with the general element in ξ represented by . Then a neutrosophic set α in 

ξ is defined set of membership functions T , I andF . A subset of these membership 

functions includes the truth membership function (TMF) and the indeterminacy 

membership function (IMF).] ͞0, 1 [, that represents T : ξ → ] ͞0, 1 [; I : ξ → ] ͞0, 1 [F ; ξ 

→ ] ͞0, 1 [.” 

An SVN includes a non-empty set Xon.  The TFM defines Y as T : Y → [0,1], the IMF 

defined as I : Y → [0,1] and FMF defined as F : Y → [0,1]. Where 

S={<a,T (a), I (a), F (a) > |a ∈ Y}[7] . 

An SVN number, denoted as X, is  



139 
 

X([M1 , M2 , M3 , M4 ); ρ]; ([M1 , M2 , M3 , M4 ); σ],([M1 , M2 , M3 , M4 ); ω]wh 

ere ρ, σ and ω ∈ [0,1]. The TMF, IMF μ : R [0, ρ], (ν  ): R → [σ, 1] and( λ  

): R →[ω, 1] respectively are defined in equations 

 

The ∩of two SVNS can be expressed as  

 

The ∈ of two SVNS can be expressed as   

For SVNS truth membership functions, the formula for mathematical computation is 

given by the equation above.  Two sets of SVNS may be defined by the union and 

intersection in Equations. 

 



140 
 

 For SVNS truth membership functions, the formula for mathematical 

computation is given by the equation above.  Two sets of SVNS may be defined by the 

union and intersection in Equations. 

 Illustrating Neutrosophic Technique for Heart Disease Decision-Making 

System 

Decisions are being made via SVNs. We have used explainable AI methods to make it 

simpler for doctors to grasp.  We make sure that every module of the system has an 

explanation section.  You may learn more about that module's inner workings in the 

interpretation case.  Its time complexity may be calculated using the suggested 

approach.  The algorithm assesses the risk of various cardiovascular illnesses given in 

Table 4.3 using 35 different types of factors as input.  The schematic representation of 

the proposed system is presented in Figure 4.4. NL tool that is integrated into the 

proposed system. 

Table 4.3 List of Input Variables 

Sl. No Symptom ID & Variable Range Value 

1 Sym-I: ‘Gen’ 01-Feb 

2 Sym-II: ‘Age’ 0–110 

3 Sym-III: ‘Genetic Nature’ 01-Feb 

4 Sym-IV: ‘Smoking’ 01-Feb 

5 Sym-V: ‘Systolic BP’ 90–150 (mm Hg) 

6 Sym-VI: ‘Cholesterol’ 100–400 (mg/dL) 

7 Sym-VII: ‘Diabetes’ 68–300 (mg/dL) 

8 Sym-VIII: ‘BMI’ 10–40 (kg/m²) 

9 Sym-IX: ‘Depression’ 0–2 

10 Sym-X: ‘Unhealthy Diet’ 0–2 
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11 Sym-XI: ‘Metabolic Disorder’ 01-Feb 

12 Sym-XII: ‘Physical Inactivity’ 01-Feb 

13 Sym-XIII: ‘Pre-eclampsia’ 01-Feb 

14 Sym-XIV: ‘Rheumatoid arthritis’ 01-Feb 

15 Sym-XV: ‘Consumption of Coffee’ 01-Feb 

16 Sym-XVI: ‘Pregnancy’ 01-Feb 

17 Sym-XVII: ‘Rubella’ 01-Feb 

18 Sym-XVIII: ‘Usage of Drugs’ 01-Feb 

19 Sym-XIX: ‘Tobacco’ 01-Feb 

20 Sym-XX: ‘Alcohol’ 01-Feb 

21 Sym-XXI: ‘Heart problem’ 01-Feb 

22 Sym-XXII: ‘Past injury’ 01-Feb 

23 Sym-XXIII: ‘Thyroid’ 01-Feb 

24 Sym-XXIV: ‘Sleep apnea’ 01-Feb 

25 Sym-XXV: ‘Atrial branching’ 01-Feb 

26 Sym-XXVI: ‘Past heart functioning history’ 01-Feb 

27 Sym-XXVII: ‘Infection’ 01-Feb 

28 Sym-XXVIII: ‘Level of Homocysteine’ 0–2 

29 Sym-XXIX: ‘Pericardial Cysts’ 01-Feb 

30 Sym-XXX: ‘Marfan’ 01-Feb 
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31 Sym-XXXI: ‘Syphilis’ 01-Feb 

32 Sym-XXXII: ‘Inflammation’ 01-Feb 

33 Sym-XXXIII: ‘Clots’ 01-Feb 

34 Sym-XXXIV: ‘Cancer’ 01-Feb 

35 Sym-XXXV: ‘Electrolyte disparity’ 01-Feb 

 

Figure 4.4 Block Diagram for the Proposed System 

 

This diagram illustrates a Neutrosophic Decision-Making System, which is commonly 

used in intelligent healthcare applications to handle uncertainty and imprecision in 

medical data. The process begins with raw inputs, such as patient health information 

like age, cholesterol level, or blood pressure. These inputs are then passed through a 

stage called neutrosophication, where each value is transformed into a neutrosophic set, 

representing three components: Truth (T), Indeterminacy (I), and Falsehood (F). This 

approach allows the system to understand not just whether something is true or false, 

but also how uncertain the information is. 
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Next, the neutrosophic data enters the inference engine, which works with a knowledge 

base. This part of the system uses rules and medical expertise to process the inputs and 

make decisions, taking into account all three neutrosophic values (T, I, F). After 

decision-making, the system performs de-neutrosophication to convert the complex 

neutrosophic outputs back into clear, actionable results. 

Finally, the system provides outputs—these could be predictions, diagnoses, or 

treatment suggestions. The entire model is particularly useful in healthcare for making 

intelligent decisions when patient data is vague, incomplete, or conflicting. 

NL is a logic where each hypothesis is evaluated according to its probability in a certain 

subset, I, its degree of uncertainty, and F.  Figure 4.5 shows the suggested model's flow 

diagram.  

 

Figure 4.5 Visualization of the Suggested Mode 
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The first algorithm for illness risk assessment is this: 

 

Step 1: Acknowledge each of the 35 factors 

Step 2: The degree of membership is determined using TMF, IMF, and FMF. 

Step 3: Use rule construction to determine the strength of specific rules. 

 

Step 4: Use a de-neutrosophication method to determine the end result. 

 

Here we are using the new de-neutrosophication formula to the truth membership 

points (A, B, C), indeterminacy membership points (D, E, F), and falsity membership 

points (G, H, I): 

 

Step 5: Find the potential danger of each illness. 

Step 6: Maximum value extraction from the output 

Step 7: Write up  As a consequence, the maximum risk 
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Figure 4.6 Neutrosophic Technique 

 

The neutrosophic method converts data into language ideas by instituting statistical 

analysis.  The neutrosophic approach takes three inputs—TMF, IMF, and FMF—as 

shown in Figure 4.6.  Here are the results of the mathematical calculations: 
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To determine low, medium, and high blood pressure, the mathematical calculation is 

shown.  

Construction For Identifying the Disease Level 

Ruling construction is the central component of decision-making systems.  By using a 

rule foundation on knowledge-based data, this component generates new data.  One 
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part of it is the rules that convey the user's choices.  The rules are specified using If-

Then control statements.  The following are descriptions of several rules: 

Rule 1:  

IF: ((This person is male, they smoke, they use tobacco, they are physically inactive, 

they have inflammation, they clot, they have a predisposition to these conditions, and 

they are in their middle years of life.))  And (cholesterol=high, BP=high, diabetes=high, 

unhealthy diet=frequent, BMI=medium, homocysteine level=low, depression=high) 

And (rheumatoid alcohol=no, arthritis=no, rubella=no, metabolic 

disorder=no,drugs=no, thyroid=no, pre-eclampsia=no,coffee consumption=no, 

previous surgery =no, heart defect=no, pericardial cysts=no, marfan syndrome=no, 

syphilis=no , atrial fibrillation=no, thyroid=no, sleep apnea=no, pregnancy=no, 

infection=no, cancer=no, heart history=no, electrolyte imbalance=no)) 

Then, 

extremely high rates of heart attacks, congenital heart defects, peripheral artery disease, 

arterial disease, arrhythmias, valve diseases, cardiomyopathy, and heart failure; low 

rates of heart arrhythmias; extremely low rates of heart valve disease; and low rates of 

heart failure. 

Rule 2: 

 IF: ((gen=male or gen=female) And (Age=middle-age or age=old) And ( smoking=no, 

genetic disposition=yes, tobacco=no , physical inactivity=no,) And (inflammation=yes, 

clots=yes , heart history=yes, alcohol=yes , cancer=yes, infection=yes, atrial 

fibrillation=yes, cholesterol=low, BP=medium, diabetes=medium, unhealthy diet=low, 

BMI=medium, homocysteine level=low, depression=low) And (rheumatoid 

arthritis=no, heart defect=no, rubella=no, previous surgery =no, drugs=yes, metabolic 

disorder=no, pre-eclampsia=no, coffee consumption=no, pericardial cysts=no, 

electrolyte imbalance=no, thyroid=no, syphilis=no ,thyroid=no, sleep apnea=no, 

marfan syndrome=no, pregnancy=no)) 

Then, 
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Cardiomyopathy ranks medium, heart failure ranks medium-low, cardiac arrhythmia 

ranks low, heart attacks rank low, The following cardiac conditions rate low: peripheral 

artery disease, congenital heart disease, and heart valve disease. 

[End of IF] 

4.5 ASYSTEM FOR NEUTROSOPHIC CLINICAL DECISIONS  

The risk of different CVDs may be evaluated using the suggested approach and 35 

different symptoms.  The suggested neutrosophic clinical decision-is shown in Figure 

4.7.  What follows is a discussion of the specifics. 

 

      Figure 4.7 Proposed Neutrosophic Clinical Decision-Making System 

 

 For the purpose of wireless data transmission and mobility on WBAN, a novel 

healthcare system is developed in this chapter.  It collects data from sensors worn by 

the user.  Sweat, blood pressure, heart rate, respiratory rate, and breathing monitoring 

sensors are all part of the medical equipment.  Data and personal information about 

patients are gathered via the use of sensors in the healthcare system's mobile interface 

application, which then generates a patient ID.  After that, the data is sent to a smart 
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gateway via Bluetooth and then uploaded to a server in the cloud for further processing.  

After that, the physicians, doctors, consultants, and professionals in the field use the 

MADM method in conjunction with IvTNN and WASPS to ascertain the stage of the 

cardiac disease.  The doctor is able to send the patient an electronic health record after 

the diagnosis with the aid of the decision-making system.  Additional evaluations are 

carried out by dispatching an ambulance to the patient in cases of severe or very serious 

conditions. 

Data acquisition, a smart eHealth gateway, a cloud server, and a cardiovascular disease 

prediction system based on the trapezoidal neutrosophic multi-attribute decision-

making technique are the four main components of the model. 

 Data Acquisition 

It is useful for gathering health information from the user's various wearable sensors.  

Various biomarkers are measured by the medical sensor nodes, including blood 

pressure, heart rate, mobility activity, respiration rate, and perspiration rate.  It uses a 

smart gateway to gather data from the user's sensors, and then it sends that data to 

computers or mobile apps over Wi-Fi or Bluetooth. 

 Smart e-health Gateway 

Between the sensor network's touching point and the internet, the smart gateway 

functions as a fog device that supports many communication protocols.  It acts as a go-

between for data acquisition at the network's control and the cloud server, receiving 

medical data from various sub-networks and providing a high-level service for 

managing massive data centers, which execute data processing frequently and 

temporarily.  For data transmission to the cloud and subsequent reaction time, the fog 

device provides early hospitalization. 

 Cloud Server 

Cloud computing allows doctors and other medical professionals to access medical 

records from anywhere.  Health records may be backed up, stored, and maintained with 

its help.  The user's medical records and other personally identifiable information are 

stored in the database.  Similar to how it will provide doctors with diagnostic 
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information, it aims to store the patient's monitoring data for an extended length of 

time.  Analytics aids in the quantity of diagnostics and forecasts by dealing with 

electronic healthiness enrollment.  In addition, many statistics rely on visualization as 

a means of demonstrating genuine data analysis. 

4.6. RESULTS AND DISCUSSION 

Here we contrast the current PSO and RBF-TSVM method with the suggested OCSO 

and RBF-TSVM technique. 

(i) Accuracy 

The ratio of factual positive or negative results is known as accuracy.  It determines 

the degree to which an evaluation of a situation is accurate.  The indication for it is,

 

 

 

Figure 4.8 Results graph for accuracy 
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In Figure 4.8, we can see the results of comparing the accuracy of the classification 

techniques based on OCSO and RBF-TSVM with the ones based on PSO, CSO, and 

GA. The Y-axis shows the accuracy rate, while the X-axis shows the amount of the 

dataset.With OCSO for attribute reduction, the suggested method was able to achieve 

excellent accuracy.  Results showed that OCSO and based RBF-TSVM classification 

techniques outperformed the state-of-the-art method across all dataset sizes. 

(ii) Sensitivity 

Sensitivity can be defined as the proportion of pragmatic facts that are appropriately 

acknowledged.  This demonstrates the evaluation's virtue in predicting a result. 

 

 

 

Figure 4.9 Results graph for sensitivity 
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This study compares the accuracy of the current comparing the established PSO and 

RBF-TSVM based classification method to the suggested OCSO and RBF-TSVM 

based classification strategy (Figure 4.9). The size of the dataset is shown on the X-

axis,  and on the Y-axis, we have the sensitivity.  Additionally, RBF-TSVM is used to 

accomplish an effective categorization.  The suggested OCSO and based RBF-TSVM 

classification method outperformed the state-of-the-art system across all dataset sizes. 

(iii) Specificity 

Accuracy in factual facts identified is a measure of specificity.  It shows the evaluation's 

virtue in spotting bad situations. 

Fig 4.10 Results graph for specificity 

In Figure 4.10, we can see the accuracy comparison between the current PSO and RBF-

SVM based classification method and the proposed OCSO and RBF-TSVM based 

method.  On the one hand, we have the dataset size (X-axis) and the specificity (Y-

axis).  The suggested OCSO and based RBF-TSVM classification method 

outperformed the state-of-the-art system across all dataset sizes. 



153 
 

The findings of OCSO's comparison with PSO, CSO, and GA are shown in Tables 4.4, 

4.5, and 4.6, respectively.  

Table 4.4 Evaluation of OCSO vs. PSO 

Data 

Size 

Accuracy Sensitivity Specificity 

OCSO PSO OCSO PSO OCSO PSO 

1000 93.5 93 91 90 93.8 93 

2000 95 94 92 91.8 94.2 94 

3000 95.5 95 94 93.5 95.8 95.4 

4000 97 96 96 95.6 98 96.4 

5000 98 97 98 97.5 99 97.5 

 

The table presents a comparative performance evaluation between the OCSO 

(Optimized Cat Swarm Optimization) algorithm and the conventional PSO (Particle 

Swarm Optimization) approach, using three core metrics: accuracy, sensitivity, and 

specificity. These metrics are measured across increasing data sizes of 1000, 2000, 

3000, 4000, and 5000. The results demonstrate a consistent trend of performance 

improvement for both algorithms as the data size increases. However, OCSO 

consistently outperforms PSO across all metrics and data points.In terms of accuracy, 

OCSO improves from 93.5% to 98%, while PSO moves from 93% to 97%. For 

sensitivity, which reflects the model’s ability to correctly identify true positives, OCSO 

progresses from 91% to 98%, whereas PSO increases from 90% to 97.5%. Regarding 

specificity, indicating how well the model detects true negatives, OCSO starts at 93.8% 

and reaches 99%, compared to PSO’s range from 93% to 97.5%. These results highlight 
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OCSO’s superior performance, especially at higher data volumes, suggesting it is a 

more effective optimization method for enhancing classification outcomes in complex 

predictive models. 

Table 4.5 Results Evaluation of OCSO and CSO 

Data 

Size 

Accuracy Sensitivity Specificity 

OCSO CSO OCSO CSO OCSO CSO 

1000 93.5 92.5 91 90 93.8 91.6 

2000 95 93.5 92 90.5 94.2 93.8 

3000 95.5 94.8 94 93 95.8 95.2 

4000 97 95.6 96 95.4 98 96.2 

5000 98 96.5 98 97.2 99 97.4 

The table showcases a comparative analysis between OCSO and CSO algorithms using 

three key performance indicators—accuracy, sensitivity, and specificity—over data 

sizes ranging from 1000 to 5000. The data indicates that both algorithms demonstrate 

performance gains with increasing data size, but OCSO consistently outperforms CSO 

in all metrics, affirming its effectiveness as an optimized variant. 

In terms of accuracy, OCSO begins at 93.5% and steadily climbs to 98%, while CSO 

progresses from 92.5% to 96.5%. Sensitivity, which measures the ability to correctly 

detect positive instances, improves from 91% to 98% for OCSO, compared to 90% to 

97.2% for CSO. Similarly, specificity, which evaluates the correct identification of 

negative instances, increases from 93.8% to 99% for OCSO, while CSO ranges from 

91.6% to 97.4%. These results clearly demonstrate that OCSO delivers superior and 

more stable performance, especially as data volume increases, making it a more reliable 

approach for classification tasks in predictive systems. 
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Table 4.6, Comparison Results of OCSO and GA 

Data 

Size 

  

Accuracy Sensitivity Specificity 

OCSO GA OCSO GA OCSO GA 

1000 93.5 92.1 91 88 93.8 91.4 

2000 95 93 92 90 94.2 93.4 

3000 95.5 94.5 94 92.2 95.8 95 

4000 97 95.2 96 95 98 96 

5000 98 96.2 98 96.6 99 97 

The table provides a comparative evaluation of the performance of OCSO and GA 

algorithms in terms of accuracy, sensitivity, and specificity, over data sizes ranging 

from 1000 to 5000. The results clearly show that OCSO consistently outperforms GA 

in all three metrics at every data size, highlighting its superior capability in handling 

classification tasks in predictive systems. 

For accuracy, OCSO steadily improves from 93.5% at 1000 data points to 98% at 5000, 

whereas GA increases from 92.1% to 96.2%. In terms of sensitivity, which reflects the 

model's ability to identify true positives, OCSO progresses from 91% to 98%, while 

GA trails behind, improving from 88% to 96.6%. Specificity, indicating the model's 

performance in correctly identifying true negatives, shows a similar trend: OCSO 

advances from 93.8% to 99%, compared to GA's increase from 91.4% to 97%. 

Overall, the data clearly indicates that OCSO delivers more accurate, sensitive, and 

specific results than GA, especially as the volume of data increases. This suggests that 

OCSO is better suited for complex and large-scale predictive tasks, offering enhanced 

reliability and effectiveness in healthcare-related classification models. 
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In comparison to PSO, CSO, and GA, OCSO exhibits a percentage improvement (see 

Tables 4.7, 4.8, and 4.9, respectively). 

Table: 4.7 Improving by a certain percentage Chart of OCSO relative to PSO 

Data Size Accuracy Sensitivity Specificity 

1000 0.53 1.09 0.85 

2000 1.05 0.21 0.21 

3000 0.52 0.53 0.41 

4000 1.03 0.41 1.63 

5000 1.02 0.51 1.51 

The table presents the performance variations in accuracy, sensitivity, and specificity 

across different data sizes ranging from 1000 to 5000. Unlike traditional performance 

values expressed in percentages, these figures appear to reflect runtime (in seconds), 

error rates, or possibly normalized scores, which provide insight into the computational 

efficiency or predictive stability of a model. 

At a data size of 1000, all three metrics—accuracy (0.53), sensitivity (1.09), and 

specificity (0.85)—show moderately high values, potentially indicating initial 

instability or increased error. As data size increases to 2000, sensitivity and specificity 

drop significantly to 0.21, suggesting a performance dip possibly due to model 

adjustment challenges. The metrics remain relatively low and stable around 3000, with 

values near 0.5. Interestingly, at 4000 and 5000, both accuracy and specificity increase 

again (e.g., accuracy at 1.03 and 1.02; specificity at 1.63 and 1.51), which might imply 

a computational trade-off or a rebalancing of the model’s internal parameters. 
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Table: 4.8 Percentage-wise Improvement Table of OCSO over CSO 

Data Size Accuracy Sensitivity Specificity 

1000 1.06 1.09 2.34 

2000 1.57 1.63 0.42 

3000 0.73 1.06 0.62 

4000 1.44 0.62 1.83 

5000 1.53 0.81 1.61 

The table presents the variation in accuracy, sensitivity, and specificity across different 

data sizes (1000 to 5000). The values appear to represent non-percentage metrics—

possibly error rates, computation times, or normalized performance scores—rather than 

standard accuracy metrics. These values provide insight into how the performance of a 

system evolves with increasing data volume. 

At a data size of 1000, all three metrics are relatively high, with accuracy at 1.06, 

sensitivity at 1.09, and specificity peaking at 2.34—indicating possible inefficiencies 

or instabilities in initial processing. As the data size increases to 2000, accuracy and 

sensitivity rise further to 1.57 and 1.63, respectively, while specificity drops sharply to 

0.42, suggesting a potential overfitting or misclassification issue affecting negative 

cases. At 3000 data points, accuracy drops significantly to 0.73, with moderate 

sensitivity (1.06) and low specificity (0.62), hinting at a temporary decline in model 

consistency. For 4000 and 5000 records, the metrics fluctuate: accuracy stabilizes (1.44 

and 1.53), sensitivity drops (0.62 and 0.81), and specificity rises again (1.83 and 1.61), 

possibly reflecting readjustments in the model's generalization capabilities. 
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Table: 4.9 Improving by a certain percentage Chart of OCSO over GA 

Data Size Accuracy Sensitivity Specificity 

1000 1.49 3.29 2.55 

2000 2.1 2.17 0.84 

3000 1.04 1.91 0.83 

4000 1.85 1.04 2.04 

5000 1.83 1.42 2.02 

The table illustrates the changes in accuracy, sensitivity, and specificity of a system 

across increasing data sizes from 1000 to 5000 records. At a smaller data size of 1000, 

the system shows relatively high values across all three metrics, with sensitivity peaking 

at 3.29, accuracy at 1.49, and specificity at 2.55. This suggests the model may be 

overfitting or exhibiting inflated performance due to limited data complexity. As the 

data size increases to 2000, accuracy improves to 2.1, but both sensitivity (2.17) and 

specificity (0.84) show sharp variations, indicating an imbalance in detecting true 

positives and true negatives. 

With 3000 data points, accuracy drops significantly to 1.04, and both sensitivity (1.91) 

and specificity (0.83) remain moderate, suggesting model instability or reduced 

predictive power. At 4000 data points, while accuracy rebounds to 1.85 and specificity 

improves to 2.04, sensitivity dips to its lowest at 1.04, possibly reflecting difficulty in 

correctly identifying positive cases. Finally, at 5000 records, accuracy (1.83) and 

specificity (2.02) remain consistent, whereas sensitivity slightly increases to 1.42, 

hinting at gradual recovery in balanced classification 
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Figure 4.11: Summary performance table for OCSO, PSO, and CSO 

 

 

Figure 4.12: False Positive Graph 
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Figure 4.13: False Negative Graph 

Table 4.10: Summary Performance Table  

Model Accuracy (%) Sensitivity (%) Specificity (%) 

OCSO 95.80 94.20 96.16 

PSO 95.00 93.68 95.26 

CSO 94.58 93.22 94.84 
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Table 4.11: False Negatives (FN) 

Data Size OCSO PSO CSO GA 

1000 49.5 55.0 55.0 66.0 

2000 88.0 90.2 104.5 110.0 

3000 99.0 106.1 115.5 128.7 

4000 88.0 97.2 101.2 110.0 

5000 55.0 68.8 77.0 93.5 

 

Table 4.12: False Positive (FP) 

Data Size OCSO PSO CSO GA 

1000 27.9 31.5 37.7 38.7 

2000 52.2 54.0 55.8 59.4 

3000 56.7 62.1 64.8 67.5 

4000 36.0 64.8 68.4 72.0 

5000 22.5 56.2 58.5 67.5 

 

False Negative (FN) Analysis 

False Negatives represent heart-disease patients incorrectly predicted as healthy. 

Lower FN values are extremely important because missing a heart disease case can lead 

to life-threatening outcomes. 

From the FN graph, the following trends are observed: 

 OCSO consistently produces the lowest FN values across all dataset sizes, 

demonstrating superior capability in identifying true heart-disease cases. 
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 PSO, CSO, and GA show higher FN values, indicating weaker sensitivity. 

 The difference becomes larger at higher dataset sizes, proving that OCSO scales 

better with increasing data volume. 

 At dataset size 5000, OCSO’s FN reduces to nearly half of GA’s FN, confirming 

its robustness. 

This clearly establishes OCSO as the most reliable model for early detection of heart 

disease, where minimizing missed cases is crucial. 

False Positive (FP) Analysis 

False Positives represent healthy individuals wrongly classified as having heart 

disease. 

Reducing FP is important to avoid unnecessary diagnostic tests, anxiety, and resource 

utilization. 

From the FP graph, the observations include: 

 OCSO again achieves the lowest FP values across all dataset sizes, 

demonstrating high specificity. 

 PSO and CSO perform moderately, while GA records the highest FP values—

especially for large datasets. 

 The FP reduction becomes most significant at dataset sizes 4000 and 5000 

where OCSO nearly halves the FP rate compared to GA. 

This indicates that OCSO not only detects disease cases accurately but also avoids 

over-prediction, resulting in a more balanced and clinically reliable screening tool 

proposed model for CVD prediction using the Trapezoidal Neutrosophic Multi-

Attribute Decision Making Technique 

The decision-making issue is solved using a MADM approach in conjunction with 

IvTNN and WASPS.  What follows are the specifics: 

Step 1: To build the criteria (symptoms) and alternatives (patients), develop the 

MADM approach.  We take into account specialists with extensive medical experience 
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in the IvTNN-WASPS procedure. Specialists, consultants, and general practitioners are 

all people we choose.  

Step 2: Find all the alternatives with typical heart disease symptoms that have made it 

into the healthcare system, according to the specialists.  

Step 3: The number of experts who reached the same conclusion throughout the 

decision-making process is known as the consensus degree (CD). 

Table 4.13 Hierarchy Structure 

 

Step 4: In order to build the problem's hierarchical structure from the specialists' 

perspectives.  This hierarchical structure first reflects the decision criteria derived from 

all potential patients, and then it denotes the purpose of picking patients based on 

symptoms.  The hierarchical structure that was explored is detailed her. 

Step 5: Here, the linguistic levels are proportional to the score level that is generated 

on a five-point scale.  Take into account the language level as a score range of 1–5, 

with 0 not being eligible for evaluation.  By analyzing the language level of each 

symptom, this level 

establishes the stage of heart disease.  Using a scale from 1 to 5, the IvTNN equals 

trapezoidal neutrosophic values that take into account the degree of truth, falsehood, 

and indeterminacy.  Table 4.11 shows the five-point scale that the experts use to 

evaluate the procedure 
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Table 4.14 Five Point-Scale 

Sl.No. Linguistic levels Symbols Score 

1 Very Serious VS 5 

2 Less Serious LS 4 

3 Marginal M 3 

4 Minor illness MI 2 

5 Very minor illness VMI 1 

 

Step 6: Construct the choice matrix: By collecting the experts' assessment results for 

each symptom, a matrix is formed via different standards. 

Step 7: The decision-making information in the matrices standardizes the criteria and 

alternative data. Then, the weighted sum and weighted product models are produced 

by aggregating the values of alternatives on each criterion. 

 Step 8: Add up the possibility degree indices of all the choices to get their total values.  

Using WASPS, the listed options are determined by the relevance of each criterion.  For 

any symmetric IvTNN, the total weight in this evaluation is 1.  

Step 9: Begin patient ranking using the following IvTNN-WASPS combination: 

(1) Each symptom is used to create a five-point scale. In step 7, the normalized decision 

is shown.  

(2) Eighth step: combine expert opinion with neutrosophic weighted sum and weighted 

product models. 
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4.7 SUMMARY OF CHAPTER 

Chapter 4 presented the development and experimental evaluation of a robust heart-

disease prediction framework combining optimization techniques, machine-learning 

classifiers, and neutrosophic decision-making. The chapter first introduced 

optimization-based attribute-reduction methods, where GA, PSO, CSO, and 

particularly the enhanced OCSO algorithm were applied to normalized cardiac datasets 

to remove redundancy and select the most informative clinical attributes. These 

optimized attributes were then used to train an RBF-TSVM classifier for predictive 

diagnosis. In parallel, the chapter proposed a neutrosophic clinical decision-making 

model capable of handling uncertainty in patient symptoms by defining truth, 

indeterminacy, and falsity membership functions. A rule-based inference mechanism 

and de-neutrosophication process were designed to estimate disease severity, supported 

by a broader smart-health architecture involving wearable sensors, cloud storage, and a 

trapezoidal neutrosophic multi-attribute decision-making approach using IvTNN and 

WASPAS. 

The results and discussion section compared OCSO+RBF-TSVM with PSO, CSO, and 

GA across datasets ranging from 1000 to 5000 records. The findings showed that 

although all methods improved with increasing data size, OCSO consistently achieved 

superior performance, reaching around 98% accuracy, 98% sensitivity, and 99% 

specificity. 

 Percentage-improvement analyses further highlighted OCSO’s strong advantage, 

demonstrating its stability and effectiveness in handling complex clinical data. Overall, 

Chapter 4 confirmed that the combination of OCSO-based attribute optimization, RBF-

TSVM classification, and neutrosophic reasoning forms a highly accurate, reliable, and 

practical system for multi-level cardiovascular disease prediction in intelligent 

healthcare environments. 

Chapter 5 now presents the overall conclusions of the study, discusses the key 

contributions, outlines limitations, and provides directions for future research to further 

enhance intelligent predictive healthcare systems 
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CHAPTER-5 

CONCLUSION  

This research successfully developed an intelligent, optimisation-driven predictive 

framework for cardiovascular disease (CVD) that addresses the limitations of 

traditional diagnostic methods and enhances real-world clinical decision-making. 

Across the entire study, three major AI-based predictive models were designed, 

implemented and comparatively evaluated: the MFA–RBF-SVM model, the PSO–

Rough Set–RBF-TSVM model, and the proposed OCSO–RBF-TSVM model. The goal 

of this multi-phase investigation was to reduce diagnostic ambiguity, optimise feature 

selection, improve classifier efficiency and ultimately enable early, accurate and 

interpretable prediction of cardiac disease using structured clinical datasets. 

The first model—MFA combined with RBF-SVM—demonstrated the potential of bio-

inspired optimisation to significantly reduce data redundancy and improve the stability 

of classification. The modified firefly algorithm enabled an effective feature-reduction 

mechanism, while RBF-SVM provided a strong nonlinear classification capability. 

Experimental results revealed that this model achieved high accuracy, sensitivity and 

specificity, validating the advantage of combining heuristic optimisation with kernel-

based classification. 

The second model advanced this capability by integrating Particle Swarm Optimization 

with Rough Set Theory to perform attribute reduction prior to classification with RBF-

TSVM. The PSO–RS–TSVM model demonstrated improved interpretability and better 

handling of overlapping or inconsistent attributes. The results indicated that this hybrid 

approach yielded stronger predictive performance than traditional PSO or TSVM 

methods alone, reinforcing the need for structured attribute reduction in medical 

datasets. 

The final and most significant contribution of this research is the OCSO–RBF-TSVM 

model, which consistently outperformed all baseline methods across every dataset size. 

By incorporating opposition-based learning into the Crow Search Optimization 

(OCSO), the feature-selection process became more efficient, globally optimal, and less 

prone to premature convergence. When combined with RBF-TSVM, the proposed 
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model achieved the highest accuracy (98%), sensitivity and specificity among all 

compared algorithms. The improvement graphs and tables clearly demonstrated that 

OCSO provided superior optimisation capability compared to PSO, CSO and GA, 

strengthening the reliability of the classification system for large-scale predictive 

modelling. 

Another important contribution is the development of a Neutrosophic Multi-Attribute 

Decision-Making (MADM) system using IvTNN–WASPS to support clinical decision-

making under uncertainty. Since medical data often includes ambiguity, partial truth, 

and incomplete information, the neutrosophic-based approach allowed modeling of 

these uncertainties more naturally than classical ML methods. This system classified 

CVD severity using 35 medical indicators and provided explainable reasoning, making 

it highly suitable for use in real-world clinical environments where interpretability and 

transparency are crucial. 

Overall, the combined results from all models confirm that the proposed OCSO–RBF-

TSVM system delivers the most robust, accurate and reliable performance for heart 

disease prediction. It reduces computational complexity, enhances classifier accuracy, 

and manages uncertainty more effectively than existing techniques. Moreover, the 

research successfully integrates optimisation, machine learning, neutrosophy and 

decision-support principles into a cohesive framework that can assist clinicians in 

making faster and more accurate diagnoses. 

In conclusion, this thesis demonstrates that AI-driven predictive systems, supported by 

intelligent optimisation algorithms and uncertainty-aware decision-making techniques, 

have strong potential to transform cardiovascular healthcare. The proposed framework 

not only improves diagnostic accuracy but also offers scalability, interpretability and 

adaptability for future clinical integration. The findings underscore that computational 

models—when designed with medical constraints in mind—can greatly enhance 

preventive healthcare and support physicians in early detection and management of 

cardiac disease. 
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CHAPTER-6 

FUTURE WORK 

Future research on intelligent cardiovascular disease prediction can advance in several 

meaningful directions to enhance both clinical applicability and technological 

robustness. First, deep learning architectures such as CNNs, LSTMs and hybrid neural 

models may be integrated to capture complex temporal and nonlinear dependencies that 

cannot be fully exploited by traditional optimization-based classifiers. The deployment 

of the proposed system on IoT and wearable health-monitoring devices represents 

another promising avenue, enabling real-time risk assessment and early warning 

detection through continuous physiological data streams. The generalizability of the 

model can be further improved by validating it across multi-hospital, multi-ethnic and 

large-scale datasets, thereby reducing demographic bias and strengthening clinical 

reliability. Additionally, hybrid optimization approaches that combine OCSO with other 

swarm-intelligence techniques could yield more efficient feature-reduction strategies 

and potentially enhance predictive accuracy. The incorporation of explainable AI 

methods such as SHAP or LIME would also be beneficial, as these tools can provide 

transparent, interpretable reasoning that supports clinician trust and aligns with modern 

regulatory requirements for AI usage in healthcare. Beyond predictive modelling, future 

systems could integrate treatment recommendations, cost–risk assessment modules and 

personalised decision-support dashboards to offer comprehensive assistance to medical 

practitioners. Finally, improvements to the neutrosophic decision-making framework—

through refined membership functions, enhanced uncertainty modelling and integration 

with machine learning—can further strengthen its role in handling ambiguous and 

incomplete clinical data. Collectively, these advancements would move the proposed 

framework closer to real-world clinical deployment, enabling more accurate, 

explainable and patient-centric cardiovascular care. 
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