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ABSTRACT

From healthcare diagnostics to financial forecasts and picture identification, machine
learning (ML) has become an essential tool for tackling difficult categorization issues
in many different domains. Out of all the ways out there, kernel-based approaches have
grown popular because they can deal with data that has non-linear correlations by
converting it into higher-dimensional spaces where classes are linearly separable. When
dealing with multidimensional, noisy, or unbalanced datasets, optimizing these kernel-
generated surfaces becomes much more challenging. The purpose of this research is to
examine machine learning models that successfully handle these classification

problems by making use of optimum kernel-generated surfaces.

In order to create new, better models that can surpass existing methods, this study aims
to examine current models for regression and classification-based learning problems,
especially twin variants of SVM and ELM models. We propose a number of regression
models that improve prediction accuracy while addressing some of the shortcomings of
TSVR-based models, including inefficiency in processing, noise and outlier impacts,
overfitting, and lack of knowledge about data distribution. In order to obtain lowest
learning, cost with higher prediction performance, we solve a system of linear equations
or use popular gradient-based algorithms to address unconstrained minimization issues.
We further investigate a small number of improved models for classification problems
that are based on optimal non-parallel kernel generated surfaces. These models aim to
address the aforementioned challenges, such as reducing the substantial computational
overhead, improving generalizability, and reducing noise sensitivity. Here, we bypass
the need for QPPs in their dual problems by transforming the limited optimization
issues into unconstrained minimization problems. Then, we solve these problems using
either a generalized derivative technique, smoothing schemes, or functional iterative
approach. We also address resilient loss functions for various twin versions of support
vector machines (SVMs) used for classification and regression learning. In order to
compare all of the suggested methods to different state-of-the-art methods on different
performance measures, they are all tested extensively. There is promising evidence
from the experiments that the proposed methods work. This study adds to the growing
body of knowledge on machine learning techniques and sheds light on how to tackle

important classification problems using kernel-based approaches. This approach might



be useful in areas where accurate categorization is crucial, such healthcare, banking,

and NLP.
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CHAPTER 1
INTRODUCTION

1.1 OVERVIEW

Machine learning (ML) has changed several industries by giving new ways to solve old
issues, especially those involving categorization. Researchers have been putting a lot
of effort into using kernel-based approaches to improve classification accuracy. By
raising the dimensionality of the data to a level where linear separation is possible, these
techniques improve how well traditional algorithms work. Investigating the most
effective kernel-generated surfaces is an innovative approach that might greatly

alleviate the classification problems encountered by more traditional models.

The kernel technique gives algorithms the ability to work in high-dimensional feature
spaces without having to manually calculate the data's coordinates; this makes kernel-
based approaches fundamental. In situations when the distribution is not linearly
separable, this method allows for the extraction of intricate patterns and correlations
from the data. Several machine learning models have made use of different kernel
functions, including linear, polynomial, and radial basis function (RBF) kernels.
Nevertheless, in order to get the greatest classification performance, it is essential to
pick the appropriate kernel for a particular dataset. In order to improve machine
learning models' classification accuracy, this work aims to investigate how to develop

and use appropriate kernel-generated surfaces.

An algorithm's performance is heavily dependent on the kernel function that is used.
There are advantages and disadvantages to each kernel function that could influence
how well the model understands the data. For example, RBF and other non-linear
kernels perform better on complicated datasets, but linear kernels excel on linearly
separable data. Parameters, in addition to the kind of kernel, are the primary
determinants of the kernel's efficacy. Thus, optimizing kernel parameters is crucial for

improving classification results by honing the model's decision limits.

Problems like the curse of dimensionality may arise when working with high-
dimensional data, which is a major obstacle to using machine learning for
categorization. This issue arises when the feature space is too sparse, which hinders the

ability of models to apply training data to new, unknown occurrences.
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Optimal kernel-generated surface research is an attempt to solve this problem by
providing a more understandable and tractable data representation. The goal of the
research is to improve the models' capacity to capture the important data features while
reducing the negative impacts of high dimensionality by identifying the best-fit

surfaces.

Finding the optimum settings for a kernel and choosing the right kernel function are
two parts of the optimal kernel-generated surfaces idea. Finding the optimal parameter
settings for optimal classification performance is a common challenge in this process
and often calls for advanced optimization methods like grid search or Bayesian
optimization. Incorporating methods like cross-validation further guarantees that the
parameters chosen are strong and can be applied to fresh data. We hope that by
thoroughly examining these surfaces, we might shed light on the connections between

model complexity, classification accuracy, and kernel parameters.

Evaluating the final classification models is an important part of this study, much as
kernel optimization is. The success of the machine learning models using optimum
kernel-generated surfaces will be evaluated using standard performance measures
including recall, accuracy, precision, and F1 score. In addition, confusion matrices may
help us understand the kinds of categorization mistakes we're making, which helps us
fine-tune our models. This thorough assessment will help shed light on the effect of

kernel settings on classification performance across different datasets.

1.2 MACHINE LEARNING

Machine learning (ML) is a subfield of Al concerned with creating models and
algorithms that computers may use to discover new patterns in data and perform better
on their own, without human intervention. In the last few decades, ML has grown into
a major technical breakthrough across many different industries, influencing fields as

diverse as marketing, healthcare, finance, and autonomous systems.

Machine learning, in mathematics, is the practice of developing algorithms that can
learn from past data and use that knowledge to make predictions about new, unknown
data. Machine learning (ML) is all about how well it can adapt to new situations; as it

learns from data, it becomes better at performing similar jobs in the future.

Page 2



Supervised, unsupervised, semi-supervised, some of the most famous techniques in
machine learning include reinforcement learning and other similar approaches.
Different approaches employ different types of data (labeled vs. unlabeled) and

different kinds of feedback (trial and error, etc.) to discover patterns or make judgments.
1.2.1 MACHINE LEARNING TECHNIQUES

Algorithms for machine learning aim to learn autonomously, without any help from
humans. Since learning is fundamental to intelligence, machine learning forms the

backbone of Al. A variety of machine learning approaches are available, including:

Supervised Learning

Predictions are made for certain data samples using these algorithms. The data and
labels used to generate the entry are classified as spam or non-spam. A training
technique gets a model ready for use in making predictions and, if necessary, in making
adjustments to those predictions. The model is trained until it reaches the critical

accuracy of the training data.
Support Vector Machine

This 1s designed to address issues with regression and classification. Support vector
machines (SVMs) divide training data into classes by finding a hyperplane (line). Your
chances of generalizing unseen data improve if you find the hyperplane that optimizes

the distance between classes.

In terms of classification performance, or the accuracy of the training set, SVM
provides the best option. The data is not overflown. Time series analysis is where

support vector machines (SVMs) shine. [1]

SVM refrains from making robust data assumptions. Make better use of resources to

ensure accurate data categorization in the future.

There are two types of support vector machines: linear and non-linear. A linear method

uses a line—a hyperplane—to depict the training data.
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(Source: Secondary source taken from

https://link.springer.com/article/10.1007/s42452-024-06244-y)
k-Nearest Neighbor (kNN)

For issues involving classification and regression, kNN is used (Figure 1.2). In terms
of categorization algorithms, this is among the most basic. Finds the value of the
parameter k, which represents the count of the closest neighbors. In order to classify
new data points, the training data is used to find their closest neighbors. One of the three
distance measures—the Minkowski, the Mahalanobis, or the one based on the equations
of geometry—is used to determine the distance. A higher value for k indicates a more

accurate categorization.

Training instance - Class 1
NK=3 A Class 2

- ( \  New example

AT,
g

FIGURE 1. 2 KNN Algorithm

(Source: Secondary source taken from https://github.com/mrolarik/basic-
machine-learning-using-scikit-learn/blob/master/007-K-Nearest-Neighbor-

(KNN).ipynb)
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Decision Tree Algorithms

The decision model benefits from the particular values of the data's attributes. Prior to
making a prediction judgment, all records are kept in the decision interval. A destination
variable is predefined for it. Classification and regression problems are addressed by
training decision trees using the available information. In machine learning, decision
trees are well-liked because of how quickly and accurately they work. [2] It functioned
well with both continuous and categorical input and output data. This method takes the
input variables as a starting point and uses them to partition the population or sample

into two or more similar subpopulations on top of each other.

Decisions in the strategic branch are based on a tree diagram. As a result, the tree's
dependability is severely diminished. This criterion for decision-making is distinct for
classification trees and regression trees, as shown in Figure 1.3. The decision to split a
node into two or more subnodes is made by decision trees using unique methods. For
each available variable, the trees split the nodes, and the tree with the most
homogeneous branches is chosen. C4.5, C5.0, and CART are the most popular decision

tree algorithms (Classification and Regression Tree).

ce<a<h b<a<e

a<h<e a<ec<hb b<e<a c<b<a

FIGURE 1. 3 Decision Tree Algorithm

(Source: Secondary source taken from https://www.linkedin.com/pulse/10-

algorithms-machine-learning-engineers-need-know-james-le)
Neural Network

Classification is seen by artificial neural networks (ANN) (Figure 1.4) as a very active

field of study and application. As the amount of entities and sets of phrases grows, the
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biggest challenge with RNA is determining how to best organize training, learning, and
transfer functions for record classification. When using ANN as a classifier, we look at
the various function combinations and how they work, as well as the accuracy of these

functions on various types of data.

Input Hidden Output
layer layer layer

Error back propagation

FIGURE 1. 4 Artificial Neural Network

(Source: Secondary source taken from
https://www.researchgate.net/figure/Structure-of-a-multilayer-neural-network-

with-only-one-hidden-layer_figS 372300002)

The healthcare industry is a real-world example of a domain where multidimensional
datasets have proven useful. Important considerations went into the categorization and
naming of these documents. The registration process is separate from the training
method and is utilized for educational games and game examinations. Using these data,
the results are generated and put to use in the testing. Part two of the recording serves
as the training set, while part three serves as the test set. This is accomplished by
assessing the precision that these records have yielded via testing. This leads to using
the same data to replicate the network. To guide the neural network, the back

propagation technique is used.

To lower the mean square error between the network's output and the real error rate, the

gradient decay technique (GDM) was used.

Unsupervised Learning
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The goal of unsupervised learning algorithms in machine learning is to derive

conclusions from datasets that include input data without indicated responses. [3]

Cluster analysis is the most popular non-supervised learning technique. It is used to
examine exploration data in order to uncover latent models or group data. When
modeling clusters, metrics like Euclidean or probabilistic distance are used to establish

the similarity measure.
Popular methods for clustering data consist of:

e Hierarchical clustering: builds a multilevel hierarchy of clusters by creating a

cluster tree.

o K-Means clustering: partitions data into k distinct clusters based on distance to the

centroid of a cluster.

e Gaussian mixture models: models clusters as a mixture of multivariate normal

density components.

e Self-organizing maps: uses neural networks that learn the topology and

distribution of the data.
¢ Hidden Markov models: uses observed data to recover the sequence of states.
1.2.2 ROLE OF MACHINE LEARNING IN CLASSIFICATION

Classification tasks, which include sorting data points into predetermined groups or

labels using input attributes, rely heavily on machine learning (ML). [4]

To succeed in classification, one must first create a model that can take labelled training

data and use it to reliably assign a class or label to previously unknown occurrences.

Machine learning is so effective because it can sift through massive datasets for
structures, correlations, and patterns; this allows models to generalize effectively and

swiftly complete complicated categorization tasks.

Pattern Recognition and Generalization

Machine learning's pattern recognition capabilities are crucial in the categorization
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process. It is not possible to handle big or complicated datasets using standard rule-
based systems since rules to classify data must be defined by people. But machine
learning algorithms can figure out the connections between characteristics in the input
and labels in the output on their own. To distinguish spam from real emails, a machine
learning model examines characteristics like word frequency, sender information, and
email metadata, among others. This process is known as spam email categorization.
When the model has been trained, it may use the patterns it has learnt to accurately

categorize fresh emails.

Machine learning is very good at generalizing, which means it can use what it has
learned from training data to solve problems with previously unknown examples. In
real-world applications, this capacity is vital since data is dynamic and changes
continually. Machine learning models are able to generalize effectively, which means
they can handle new data kinds and patterns with ease. As an example, a model that
was trained to categorize medical photographs might discover new illnesses by
observing commonalities among comparable images, even if the training dataset did

not include images of that particular condition.

Handling Complex and High-Dimensional Data

Classification jobs often include high-dimensional and complicated data, which
machine learning excels at managing. Datasets having a large number of characteristics,
such pictures, audio, or text, could be difficult for traditional statistical approaches to
handle. However, these massive datasets are no match for machine learning algorithms.
Face recognition is one area where images might have hundreds of pixel values that
could represent intricate patterns. In particular, deep learning models of neural networks
are able to learn and integrate hierarchical characteristics (such forms, textures, and

edges) from raw data in order to provide correct classifications.

Not only that, but machine learning algorithms are able to deal with feature-output label
non-linearities. Relationships between variables in real-world issues are usually not
linear, therefore this becomes even more crucial. For instance, decision trees and
support vector machines (SVMs) are two examples of machine learning models that
may categorize consumer behavior using demographic and transactional data. These

models can detect non-linear patterns that more conventional linear models might
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overlook. Machine learning models thus demonstrate superior performance compared

to conventional approaches in non-linear and high-dimensional classification problems.

Scalability and Efficiency

The efficient scalability of categorization jobs is greatly facilitated by machine learning.
The capacity to real-time categorize massive information is becoming more and more
crucial as data volumes continue to rise across many industries. Data processing and
classification speed is of the essence in several applications, including recommendation
systems, content moderation, and fraud detection. Through the process of learning from
massive volumes of data and creating real-time predictions, machine learning models

are able to handle these large-scale datasets.

Online retailers, for instance, use machine learning algorithms to instantly categorize
shoppers' orders, tastes, and actions as they peruse products. Businesses may use these
categories to better serve their customers by making more informed suggestions,
making inventory management more efficient and better for customers overall.
Similarly, autonomous vehicles use machine learning models to classify objects like
people, vehicles, and traffic signals based on real-time data processed by sensors. The

car can now drive itself safely thanks to this.

In addition, the scalability of machine learning allows it to deal with data quantities that
are always growing. Machine learning model training on massive datasets is now a
breeze thanks to cloud computing and distributed processing. leading to improved
classification speed and accuracy. A major benefit of machine learning is its scalability,
which makes it possible to use it in situations that are always changing and producing

new data.

Adaptability and Real-Time Learning

The flexibility of machine learning is equally crucial when it comes to categorization.
Data changes over time in many real-world applications, necessitating model
adaptation to new patterns or distributional shifts in the underlying data. Machine
learning models may be trained to increase their classification accuracy by continually
updating themselves with fresh data. This allows them to learn from ongoing

interactions. This is particularly helpful in contexts where user tastes could change over
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time, like recommendation systems, or when fraudulent behaviors might develop over

time, like fraud detection.

Two models that enable real-time adaptation are online learning and reinforcement
learning. By adding fresh data as it becomes available, online learning allows models
to be trained progressively. This way, they can adapt to novel patterns without starting
the model's training process again. Agents engage in reinforcement learning when they
improve their decision-making abilities via trial and error by learning to categorize
using environmental input. These methods allow machine learning models to maintain

their effectiveness in situations that are constantly evolving.

Probabilistic Predictions and Uncertainty Management

Making probabilistic predictions is a common use case for machine learning
classification models, particularly in contexts with inherent uncertainty. These models,
instead of giving a definitive designation, may provide probabilities that represent the
chances of each class. Domains like medical diagnostics benefit greatly from this as it
allows healthcare providers to make more educated judgments based on the likelihood

of an illness.

It is fairly uncommon for machine learning models to provide probability scores when
employed for illness classification; for instance, a "positive diagnosis" may be 0.85 and
a "negative diagnosis" could be 0.15. By doing so, they may gauge the prediction's
reliability and take into account other variables, such clinical signs or more testing,
before reaching a conclusion. Models that provide probabilistic results, such as
ensemble techniques, logistic regression, and Naive Bayes, may help with uncertainty

management and better classifications.

Applications like financial fraud detection or credit scoring need careful uncertainty
management due to the substantial ramifications of erroneous positives or negatives.
The use of machine learning models facilitates the establishment of suitable decision-
making thresholds by providing a quantitative assessment of this uncertainty. For
example, when calculating risk, a customer's credit score can indicate that the model

thinks they have a 70% likelihood of repaying the loan.

Versatility across Domains
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A major factor in machine learning's meteoric rise to classification dominance is its
adaptability. Natural language processing (NLP), image identification, healthcare, and
finance are just a few of the many fields that can benefit from its use. Medical picture
classification, illness outcome prediction, and medication development are all areas
where machine learning models are finding use in healthcare. They identify fraudulent
transactions, categorize creditworthiness, and predict market movements in the
financial sector. Language translation, sentiment analysis, and text categorization are

just a few examples of the many NLP jobs that make use of machine learning.

Machine learning is able to solve problems more effectively than traditional approaches
since it can generalize across domains. As an example, machine learning algorithms
sort through photos, videos, and text on social networking sites to find explicit or hate
speech. Just like human drivers use machine learning models to safely navigate
complicated traffic conditions, autonomous cars also use these models to categorize

items in their environment.

1.3 SVM-BASED CLASSIFICATION METHODS

Support vector machine (SVM) was first created to address binary classification issues;
it 1s a reliable classification system that places an emphasis on avoiding structural
hazards rather than empirical risks. In order to maximize model complexity while
minimizing misclassification errors, support vector machines (SVMs) are used. [5] A
positive label of +1 in support vector machines (SVM) denotes one set of classes and a
negative label of -1 another. It is the goal of conventional support vector machines
(SVMs) to maximize the distance between two parallel hyperplanes and two border
hyperplanes, each of which touches one class. These two boundary hyperplanes
intersect with data samples that are known as support vectors. The calculation is carried
out in such a manner that the last hyperplane for classification goes through the center
of the region enclosed by the two hyperplanes on the borders, which are spaced one
relative distance apart. Moreover, if the classes in the input space cannot be separated
linearly, support vector machines have the capability to change data samples into a
higher dimensional feature space by means of a mapping function ¢ (.). This procedure
makes the classes separate in the feature space. Based on the data sample x, the
hyperplanes' normal vector b, and the intersection point b, also known as the bias, the

final hyperplane for classification is @(x)t + b = 0. The boundary hyperplanes for the

Page 11



+1 class are now given as ¢ (X)t ® + b = £1. It would be wise to consider, ¢(X) =
[o(x1),0(x2),...,0 (x])]t be the feature space data matrix and e denote a vector of length

1 of binary ones. As an expression, the SVM optimization problem may be written as:
min |o|?

2
s.t.yi(o(x)tw+b) =1, i=12,..,1L (L.1)

A data sample is regarded correctly categorized if it falls above the border hyperplane
of the +1 class, and correctly classed as -1 class if it falls below the hyperplane of the -
1 class. Misclassified samples, also known as misclassified error points, are data
samples that do not meet the aforementioned criteria. When it's necessary, a slack
variable, or error term, is included to include a certain level of error in categorization
into the goal functions of support vector machines (SVMs). The optimization problem

for support vector machines with tolerance for errors is reformulated as follows:
1
minz loll?+CY &

in which & where The misclassification error, or slack variable, in the objective
function of is denoted by C, the tradeoff parameter between the two halves. Function
(1.2). What about the phrase Y!_; g; although maximizing under the previously
described conditions, where total error loss is the objective function. To begin, SVM's

loss function has to be specified:

0, zZ>S
s—2z, zZ<s

Hy(z) = { (1.3)

Where s is the location of the hinge point, which is typically 1 for support vector
machines. Many people refer to equation (1.3) defines the loss function as the Hinge

loss function. This allows us to rewrite (1.2) in a more generic form as follows:

min = 0| +C3 H,(y,(p(x,) @ +5))
4 = (1.4)

Nonetheless, to get the solution, a quadratic polynomial in the dual space is solved. One
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way to express the dual of equation (1.2) is by finding its matching Lagrangian and

using the KKT requirements, which are both necessary and sufficient:

11 I
min %ZZ&,-)«}@O(X,- ) P(x;)y,a; —Za’f
i=l1

i=1 j=I

Yio1yia; =0, (1.5)

s.t.
OSai <C.

At this point, the feature vectors' dot product ¢ (xi ).¢ (xj) or @(xi)t ¢(Xj) may be
substituted by a well-selected kernel function k (xi, x j ) = @(x1 ).¢(xj). Our underlying
assumption seems to be that determining the mapping function in advance is
computationally costly and that it is unknown a priori. Hence, we may restate (1.5) as

follows:

min %iiaf)’ak(xnxj )ya; - iaf
i=1

i=l j=1

Yiz1yia; =0, (1.6)

S.t.
OSQ’i <C.

In the linear example, we need just think about k(xi, x j) = xtixj. The dual problem (1.6)
has a computational complexity of O(l 3), which is typical for quadratic programming
problems (QPP). Equation (1.6) may be solved using the support vectors to get the
values of @ and b. Which side of the classifying hyperplane an unseen sample x falls

on determines the class it is allocated. The classification equation has this form:
flop) (X) = sign(p(x)' ® + b) (1.7)

Sparse vs dense models describe SVM, which classifies data using only the training

dataset's support vectors.
1.3.1 LEAST SQUARES SUPPORT VECTOR MACHINE

The least square support vector machine (LS-SVM) fails to detect the boundary
hyperplanes and instead identifies two hyperplanes near the border. By optimizing the
distance between the two class hyperplanes, this hyperplane arrangement aims to get

the samples from each class as close to them as feasible without sacrificing distance.
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Crossing the center of the separation, the classifying hyperplane is located one unit
distant from the class hyperplanes. The SVM slack variable's non-negativity condition
is also removed when the LS-SVM goal function uses a quadratic least squares loss

function. Here is the loss function defined using quadratic least squares:"
1
Qo(2) =EZZ (1.8)

The optimization challenge for LS-SVM is as follows:
N R o
— ‘ p—_ ,
min lloff+3325

Solving a system of linear equations may provide the answer to the problem mentioned
before. Given that LS-SVM doesn't need solving a massive QPP but rather a system of
linear equations, training it is much faster than SVM. However, LS-SVM became less
sparse as a result of classifying almost all of the training data samples. There is no

difference between the classifier used by LS-SVM and the one specified in (1.7).

1.3.2 RAMP LOSS SUPPORT VECTOR MACHINE

As mentioned before, SVM uses the linear Hinge loss function to locate
misclassification hotspots. Hinge loss is particularly susceptible to outliers and noise

because to its intrinsic fragility.

The likelihood of distant mistake samples being able to aid in optimization is greater
than that of close samples, due to their higher score. [6] The ramp loss function flattens
the loss function when it hits a pre-specified score, as indicated in equation (1.10)

below. This is done to address this.

0, z>1
R(z) ={1—2z s<z<1 (1.10)
1-—s5, z<Ss

Support vector machines are taught to be more robust against outliers and class noise
using the Ramp loss function as opposed to the Hinge loss function. An abbreviated

form of the original loss function, this is it. A non-convex cost function is the result of
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RSVM using the non-convex Ramp loss function. When the convex and concave halves

of this issue are put together, they create the following:

Ry(2) = Hy(2) — Hy(2) (L.11)

convex concave

One possible expression for the RSVM main optimization problem, which is the same

as (1.11), is:

S R ,
min EHQ’H +CZR\(Jf((0(xE) (U+b))

i=1

1 I
-l FCLH 00t D)= CY ) )

i=1

convex concave (1 1 2)

Equation (1.12)'s convex part is the classic expense function for support vector
machines. An easy way to solve the problem we were talking about before is the

concave-convex approach (CCCP).

1.3.3 MACHINE LEARNING FOR SUPPORT VECTORS USING PINBALL
LOSS

For SVM-type formulations, the pinball loss function is an extra robust choice.. As a

rule, the pinball loss function is:

z, z=20

—1Z, z<0 (1.13)

Le(z) = {

The quantile distance between the two classes is used by SVM with pinball loss (pin-

SVM) to optimize the margin between the two classes.

What follows is the primary QPP of pin-SVM:
1 I
. 2
min —|@| +C -
ol +Cs

st. y(p(x)w+b)=1-£&,

(y(p(x) w+b)) <7+, (1.14)
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Where, T > 0 proves to be a positive constant. With respect to T = 0, to solve the above
stated issue, classical SVM is used. Comparable to pinball loss is the generic Hinge

loss.
1.3.4 SUPPORT VECTOR MACHINE WITH FUZZY LOGIC

Fuzzy support vector machines (FSVMs) assign fuzzy membership values to data
samples using the membership function. Values for sample membership that are
incorrect are considered when choosing a final classifier. It follows that it's possible to
improve generalization performance by decreasing the membership values of irrelevant

samples. So, here is the key optimization challenge with FSVM:
l /

min —||@|*+CY mé
yimiFEY,

st.  y(p(x)o+b)=1-£,
& 20. (1.15)

On the other hand, the membership value of the i-th sample is called mi. Since well-
classified samples do not have membership values, only error samples may utilize them.
& = 0, as seen in the prior formulation. By determining the optimal membership

function, FSVM is able to significantly reduce outliers and noise.

1.3.5 SUPPORT VECTOR MACHINES WITH FUZZY LOGIC FOR
LEARNING ABOUT CLASS IMBALANCE

When presented with an unbalanced dataset, SVM favours the majority class. To make
SVM more compatible with datasets that contain changing imbalance ratios, Batuwita
and Palade (2010) proposed the FSVM-CIL as a fuzzy support vector machine for class
imbalance learning. The membership functions used by FSVM-CIL are defined as

follows:

T[.)(J.'Jln'(xi )f"_'_, iJf y,— = +]_
ﬂ‘lj =

n-fnn'(xi)r—’ 'ffyf =-1 (116)

Here, membership values between 0 and 1 are produced by the function fmv(.), and the
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intervals [0, r£] are specified by r+.

The authors proposed setting r+= 1 and r-=Ii/l> with the -1 class representing the

majority and the +1 class representing the minority.
1.3.6 SUPPORT VECTOR MACHINE FOR FUZZY ENTROPY

The entropy of a datum is the degree to which it is uncertain, according to information
theory. The entropy of a sample could be a useful metric for finding out which class it

belongs to. [7]

To address the imbalance problem, while entropy is the basis for EFSVM membership

values, samples belonging to the minority class are assigned the value 1.

Here is the equation for entropy: where p-i and p.; are the probability of the ith sample

belonging to the +1 and -1 classes, respectively.

Hi =—p+i In( p+) — p-i In( p-) (1.17)

p+i and p—i are calculated across the input space by use of the k-nearest neighbor

method. The authors go even farther by proposing a method to divide samples from the

) q
same class into several {Subj}j—l’ such that, Heub1 < Hsup2 < ... < Hgung.

The following is how EFSVM determines the samples' membership values in the jth

subset: the -1 class is the majority and the +1 class is the minority:

{I, if y,=+1
m; =

1-w(j—-1), otherwise (1.18)

where, J € (0, q—il) is used as the fuzzy membership specification.

1.3.7 ENTROPY-DRIVEN FUZZY LEAST SQUARES SVM FOR
IMBALANCED DATA LEARNING

An modification of EFSVM tailored for class imbalance learning, EFLSSVM-CIL
utilizes LS-SVM with entropy-based fuzzy membership values. Here is the
optimization problem that EFLSSVM-CIL aims to fix:
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min l||m||2 +£im fz
2 2 = 2

st y(p(x) @+b)=1-¢ (1.19)

EFLSSVM-CIL trains more quickly and does not need to answer any QPPs because it

solves a system of linear equations.

1.3.8 CLASS PROBABILITY AND AFFINITY-BASED FUZZY SUPPORT
VECTOR MACHINE

Similar to EFSVM, another sort of fuzzy support vector machine called Acquired
Conditional Probability Support Vector Machine (ACFSVM) uses methods use a
majority-only membership metric and a minority-only metric equal to 1. The ACFSVM
method, on the other hand, uses the sample's affinity and likelihood of belonging to a

class to calculate membership values.

The input/feature space used to generate the hyperplanes is also used to determine the

class probability and affinity. The kernel k-nearest neighbor technique and affinity are

used to calculate the class probability pi of the i th sample m?f ity is calculated using
the SVDD technique. Finally, we take the -1 Choose the most common category and

use it to get the sample membership values:

m; = .
ity

L iy, =+l
pm™Y otherwise (1.20)

In addition, the following optimization problem shows that ACFSVM classifies the

overall mistake linked with the +1 and the -1 classes:
1 I %
min 5 || +(_"12mj.§j +C22mk§k
j=1 k=1

st. yi(p(x) @+b)21-¢&,
&20. (1.21)

where, in practice, it is defined as C> = Cirim, where rim is the minority-majority
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imbalance ratio.
1.3.9 TWIN SUPPORT VECTOR MACHINES

Twin support vector machines (TWSVM) locate two proximal hyperplanes for each
class, which need not be parallel to one another, rather than two parallel class
hyperplanes. All of the class hyperplanes are within one unit of distance from each class
sample and quite close to the samples from their own classes. [8] In the linear situation,
the hyperplanes with the +1 class are X' 1 + by = 0, while the hyperplanes with the -1
class are x'a; + b2 = 0. i, bi{i = 1,2} comprise the hyperplane mysteries. Because it
solves two smaller-sized QPPs, TWSVM purportedly reduces time complexity by
around four times when compared to SVM. One loss component of TWSVM's
objective functions aims to minimize the proximal term, while the other minimizes the
error term, which violates the criterion that samples from the opposite class are at least
one unit far from the hyperplanes. The following are the matrix expressions of the first

two optimization problems of linear TWSVM:
.1
min ) | X\, + by ||2 +Cieé;

1. —ha+eEhY=e 8,
& = Oe,.

(1.22)
And
. 1 2 !
min B | X0, +boe, || +Cre 5,
st. Xo,+eb, > -5,
& 2 0e. (1.23)

The slack vectors are symbolized by and the penalty or tradeoff parameters are Ci{i =
1, 2}. &, and the vectors of 1s of length li are called e;. Here are the related TWSVM

dual formulations:

min %an(P’P)_'Q*a]—e’zal
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s.t. 0e2<au<Cie (1.24)
And

min %agP(Q‘Q)‘I Pa,—éa,

s.t. Oe1<an<Csre (1.25)

where, P = [Xie1] and Q = [X2e2] and ai{i = 1,2} these vectors represent Lagrange's
multipliers. In nonlinear situations, TWSVM finds the class hyperplanes by mapping
the input space to a kernel space k (x', D")@1 + b; =0 and k (x', D")@, + b2 =0 . One of

the main issues with nonlinear TWSVM is:

* 1 73 2 3
min 5 | k(X,,D )y +be ||~ +Ciexé,

st. —(k(X,,D)o,+eb)>e, - &,
¢ 2 Oe,. (1.26)

And
min KXo, D)y + by [P +Cacléy

st. k(X,DYw,+eb,)>e—&,,
£, > 0e,. (1.27)

As for the Wolfe duals, these are:
: 1 t t -1 ot t
min EQ'S(R R) ' S'a —eq
s.t. 0ex<a<Ciez (1.28)

And
. | t t -1 nt !
min EazR{S Sy Ra,-e¢ua,

s.t. Oe1<an<Csre (1.29)
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where, R = [k (X1, DY) e1] and S = [k (X2, D') e2]. A data sample is assigned a class

according to its proximity to a certain class hyperplane.

1.3.10 TWIN SUPPORT VECTOR MACHINES THAT MINIMIZE SQUARED
ERRORS;

Even though TWSVM has a lower training time complexity than SVM, two smaller
QPPs still need to be solved using it. Similar to TWSVM, LSTSVMSs use the same
protocol as PSVMSs, or least squares twin support vector machines. Two important
revisions have been made to the TWSVM models: Because the target functions take
into account the squared L2-norm of slack vectors, the non-negativity limitations of
slack vectors are rendered superfluous. Consequently, equality requirements supersede
any lingering inequality restrictions. Finding optimal solutions using primal variables
is the hallmark of LSTSVM, as opposed to the dual space used by LS-SVM. Since the
solutions are obtained via matrix inversions, the training cost of LSTSVM is lower than

that of TWSVM. Here is the basic set of optimization challenges for LSTSVM:

o1 Cr
min 5|| X0 +he | +7'§|f1

s.t. «(Xow1+exbr)=ez-E) (1.30)

And
min | X0+ bue, | + 2616,

s.t. Ximteib2)=ei-& (1.31)

By substituting &; and &; solving for (1.30) and (1.31), In the primordial space, the
objective functions that are confined inside them yield solutions. LSTSVM, on the other
hand, receives its answers from two matrix inversions, whereas TWSVM obtains its
solutions by solving two QPPs. Later on, we will talk about how to apply the nonlinear
kernel with LSTSVM and other TWSVM-based algorithms in the linear case
formulations described in (1.30) and (1.31).

1.3.11 VECTOR MACHINES WITH DOUBLE BOUNDS

Its goal functions are enhanced by including regularization components and an estimate
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of the squared bias, One improvement over TWSVM is twin bounded support vector

machines, or TBSVM. Here are the improvements:
min 7(”&% I~ +5; )+E|| 1@ +be || +Cied

st. —(X,o+eb)=e -E,
& = 0e,.

(1.32)
And
min Q(Hm I +b2)+l||x w, +be, ||* +C,e!&
2 2 2 2 22 2%2 -2%1%2
st. Xw,+eb,2e —&,,
&, 2 Oey. (1.33)

Structure-based risk reduction is the premise that TBSVM adheres to. Finding solutions

with TBSVM follows a similar process as TWSVM.

1.3.12 VECTOR MACHINES FOR STOCHASTIC GRADIENT TWIN
SUPPORT

The TWSVM solutions are iteratively obtained using the stochastic gradient descent
approach, which is very efficient for large-scale datasets in terms of time. By
maximizing the regularization terms, Probabilistic gradient twin support vector
machines' (SGTSVM) underlying premise is structural risk reduction. Furthermore,
solutions are generated in the primary space by reducing the total loss of the loss
components in the SGTSVM goal functions based on the class sizes. P. What follows

is an expression of the SGTSVM optimization problems:

o1 C C,
min  —(|| @, ||2 +blz)+_1|| X,w, +be, ||2 +—2ej(e, + X,0, +eb)),
2 2l b (1.34)

And

o1 C C, |
min  —(|| @, ||2 +b22)+_3 | Xy, +bye, ||2 +—Lel(e, — X0, —eb,),
2 21, [, (1.35)
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The plus function is defined here as plus(.) = max(0..) by means of techniques for
convergent gradient descent, the starting values of ®; and b;, where i = 1, 2, are
optimized repeatedly to zero. In conclusion, SGTSVM is more efficient than TWSVM
and TBSVM when handling large-scale problems because it reduces the reduced the

training time complexity from cubical limits to linear bounds?

1.3.13 NON-PARALLEL HYPERPLANE UNIVERSUM SUPPORT VECTOR
MACHINE

Unlike SVM, while TWSVM solves two smaller-sized QPPs to obtain two non-parallel
proximal hyperplanes, together with two parallel class boundary hyperplanes.
Maximizing TWSVM's unknowns (w1, bl) and (02, b2) are distinct procedures as we
have shown in the preceding sections. Undoubtedly, optimization involves both classes.
However, the unknowns (i, b) and (w2, b2) are optimized independently, which may
result in discrepancy between training and classification. An NPSVM is more
dependable than a hyperplane support vector machine that works in parallel, since it
builds all of the hyperplanes at once. In addition to improving classification accuracy,
NHSVM is logically consistent across its training and forecasting procedures, setting it
apart from previous nonparallel SVMs. But NHSVM has to resolve one big QPP. In
this work, Zhao et al. expand NHSVM to address Universum data issues, specifically
how to use NHSVM to leverage Universum data that already have embedded prior
knowledge. We may formulate the optimization issue for NHSVM using Universum

data (U-NHSVM) as follows:

. l 2 2 C 2
min (e P+ +| @, ||* +b5) +=H( Xy + b, 1>+l X0, + bye, |[P)

+ C2 (e:él + e;éz + e:fwn + e::f]f:) (1 3 6)

st. Xo+eb+ X +eb >¢ -,
oo ¥eb —X.o—eb e ~g.,
Xa.ra)l + £:’lu'b] = _(1 _E)EH W

= Xoop—e b =—H{l—g)e —w

u?

£20¢, &£20e, w,20e, yw. 20e,.

u

where, Xy is dimensional matrix (lu x n) comprising information from Universum, yu

and y*u dimensionless vectors linked to Universum samples, and a unit vector of length
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lu. In the dual space, U-NHSVM has to solve a big QPP with dimensions | + 2lu.
Applying a secure sample screening technique might lead to better computing
performance for U-NHSVM. In order to assign a class label to a fresh sample, the

closest hyperplane is used.

1.4 KERNEL METHODS

To successfully handle non-linear classification tasks, many machine learning
algorithms rely on kernel approaches. Kernel approaches enable the development of
very versatile and resilient classifiers by transforming data into high-dimensional
feature spaces and then using kernel functions to calculate correlations within those
spaces. To transform input data into higher-dimensional feature spaces, a subset of
machine learning techniques known as kernel methods use kernel functions. Kernel
approaches depend on the kernel trick, which directly computes inner products in the
feature space, as opposed to standard methods that explicitly compute this mapping.
Because of this implicit mapping, kernel approaches are computationally efficient and

do not suffer from the curse of dimensionality. [9]

When it comes to classification, regression, and clustering, kernel approaches are
practically indispensable. Their versatility in handling intricate data structures makes
them a top pick in a range of fields, including bioinformatics and financial modeling.
The idea of feature space transformations is fundamental to kernel approaches. Think
about a dataset where each point x is in the set Rn. The data is transformed into a higher-
dimensional space ¢:Rn—H, where H is a Hilbert space, in order to handle non-linear
separability. The mathematical representation of this transformation is ¢(x), where the

new space permits linear separation.

The dot product of the mapped vectors in the feature space, ¢p(x)-dp(x’), is calculated
using a kernel function K(x,x") without explicitly executing the mapping. Below we can

see how the kernel technique uses this to reduce computations:

K(xx")=¢(x)-¢(x").

If the Gram matrix, which is generated from paired kernel evaluations, is positive semi-

definite, then the kernel is valid, according to Mercer's theorem.

1.4.1 APPLICATIONS OF KERNEL METHODS
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Because they make it possible to efficiently manage complicated, nonlinear correlations
between data points, kernel approaches have revolutionized several areas of machine
learning. They offer strategies for dealing with high-dimensional and non-linearly
separable data, and they find extensive use in many applications, including as

clustering, regression, and classification. An in-depth analysis of these uses follows.
Classification

The use of Support Vector Machines (SVMs) in classification is among the most
common kernel technique applications. Straight lines (or hyperplanes in higher
dimensions) divide data points in classic linear categorization. Nevertheless, data is
sometimes not easily separated in the actual world. By using kernel functions, non-
linear support vector machines (SVMs) infer a linear decision boundary from the data

by implicitly mapping it into a higher-dimensional feature space.

Common tools for tasks such as handwriting recognition include Radial Basis Function
(RBF) kernel support vector machines. By applying a high-dimensional transformation
to the handwritten input, the RBF kernel makes the classes (such letters) easier to
distinguish. Because the kernel function does not explicitly calculate the
transformation, it is computationally efficient to determine the similarity between input
samples. Because data points (pixels) in handwritten letters or numbers often create
complicated patterns that are not linearly separable, this method has shown to be quite

effective in this area.

One further use case is in the field of picture classification. Kernel techniques may be
used to map images into a higher-dimensional space, as images are high-dimensional
data containing pixel values. Using the kernel method, support vector machines
(SVMs) equipped with kernels are perfect for jobs like object identification, picture
retrieval, and face recognition because they effectively categorize pictures according to
their pixel-level similarity. Kernel approaches are very adaptable, which is great for
dealing with picture complexity issues like changing illumination and background

noise.

The field of bioinformatics has made substantial use of kernel approaches, particularly
support vector machines (SVMs), to analyze gene expression, classify proteins, and

forecast diseases. Although linear models struggle to make sense of biological data due
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to its high dimensionality, complex patterns may be captured by using suitable kernels,
such as polynomial or RBF kernels. To better anticipate outcomes and understand the
disease, researchers in the field of cancer utilize kernel-based models to categorize

different forms of the disease based on protein structures or gene expression data.

Regression

When trying to predict continuous values from input data, as is the case in regression
tasks, kernel approaches are also often utilized. To describe complicated, nonlinear
interactions between the input variables and the goal outputs, kernels are used in
popular techniques like as Gaussian Processes (GPs) and Kernel Ridge Regression

(KRR).

For nonlinear predictions, Kernel Ridge Regression (KRR) integrates kernel functions
with ridge regression, a regularized version of linear regression. The data is mapped
into a higher-dimensional feature space via KRR's kernel, allowing for the use of linear
regression. When working with datasets that display intricate connections between
input and output variables, this becomes very helpful. Because of the nonlinear nature
of the link between financial data and stock prices, the KRR model has found use in
financial forecasting. When compared to standard linear regression, KRR's use of a

kernel function allows for more precise prediction.

Regression tools that depend significantly on kernels are Gaussian Processes (GPs). To
express the connection between input points, a GP utilizes a kernel function and
establishes a distribution across functions. If your data is scarce or noisy, this approach
will shine. The use of GPs has spread to many fields, including geostatistics, robotics,
and time series prediction. By analyzing the data collected at specific monitoring
stations, GPs may make predictions about the amounts of pollutants in as-yet-
unmeasured places in environmental models. In GPs, the kernel function aids in
estimating uncertainty and making predictions by capturing the continuous and smooth

character of the underlying data.

When basic linear models fail to adequately describe the input-output connection, KRR
and GPs come in handy. These techniques enhance prediction performance in a wide
range of applications by fitting complicated, non-linear models using the power of

kernel functions.
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Clustering

Clustering, which aims to organize data points into clusters according to similarity, is
another major use of kernel algorithms. Complex or non-linearly separable data
presents a significant challenge for traditional clustering algorithms like the k-means
technique. By using a kernel function, kernel k-means expands the k-means algorithm's

applicability to data distributions that are not linear.

Assigning data points to the feature space's closest cluster center is the standard
procedure for classical k-means. Without directly altering the data, kernel k-means may
calculate the similarity between data points in a higher-dimensional space using the
kernel technique. As a result, kernel k-means can handle more datasets than the classic

technique since it can cluster data with nonlinear decision limits.

Many fields have discovered uses for kernel k-means, such as document clustering,
picture segmentation, and voice recognition. Even when the picture attributes aren't
linearly separable, the approach may nonetheless group pixels with comparable textures
or color patterns, as shown in picture segmentation. Using kernel approaches, we can
get around issues like size, rotation, and illumination that make it hard to capture

intricate patterns in the photographs.

One use of kernel k-means in voice recognition is the clustering of audio characteristics
collected from speech signals. The use of kernel approaches allows for the identification
of clusters that represent various phonemes or words, even though these characteristics
are frequently not linearly separable. If word frequency distributions aren't linearly
separable, then kernel k-means may group documents according to their semantic

content, which improves the accuracy of text data clustering.
1.4.2 TYPES OF KERNEL FUNCTIONS

Machine learning methods that rely on kernels, such Support Vector Machines (SVMs),
kernel ridge regression, and Gaussian processes, rely on kernel functions as their
mathematical foundation. By using these functions, the model is able to capture non-
linear patterns in the data without having to explicitly compute the transformation. The

connection between data points in the modified feature space is defined. [10]
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Linear Kernel

Dot product of two input space vectors produces the linear kernel, the simplest kind of

kernel function. It may be stated mathematically as:

K(xy)y=xy

When the decision boundary is a hyperplane and the data is linearly separable, this
kernel works well. For high-dimensional datasets, where the amount of features often
surpasses the number of data points—as is common in text categorization and natural
language processing—its computing efficiency makes it a popular option. The linear
kernel may have trouble capturing complicated connections in nonlinear data, despite

its apparent simplicity.

Polynomial Kernel

Problems with polynomial relationships between features and goal variables are well-
suited to the polynomial kernel, which is an extension of the linear kernel that

introduces nonlinearity. Here is how the function is defined:

K(xp)=(x-ytc)’

The degree of the polynomial is denoted by d, and the constant ¢ regulates the trade-off
between the terms of higher and lower order. Choosing the right degree d is crucial to
the polynomial kernel's efficiency, but it may simulate feature interactions. The model's
adaptability is enhanced by using higher-degree polynomials; however, over fitting is

a potential consequence.

Radial Basis Function (RBF) Kernel / Gaussian Kernel

The RBF kernel's proficiency in dealing with nonlinear data makes it a popular choice
among users. A distance-based measure of how close two places are to one another, it

18 defined as:

Kte) = np (- L2221)

2a2

In this case, the parameter ¢ regulates the kernel's spread. For datasets with intricate,
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interdependent class structures, the RBF kernel's ability to generate localized decision
boundaries makes it an excellent choice. Nevertheless, achieving a balance between

model complexity and generalizability requires careful adjustment of the ¢ parameter.

Sigmoid Kernel

The hyperbolic tangent kernel, or sigmoid kernel, is a metric that draws from neural

networks and is defined as:
K(x,y)=tanh(a(x-y)+c)

In this case, a is a parameter that scales the function, while cc is a constant that moves
it. Parameter selection has a substantial impact on the performance of this kernel, which
may describe nonlinear interactions. Although it is comparable to neural network
activation functions, its numerical instability makes it less popular than the RBF kernel,

which is why it is seldom utilized.

Laplacian Kernel

An alternative to the RBF kernel, the Laplacian kernel calculates distances between

points using the L1 norm rather than the L2 norm. Here is the definition:

Koy = o (~1254)

a

Since the Li norm is less affected by outliers than the L, norm, this kernel shines in
cases when the data includes them. Although it can't match the RBF kernel's benefits,

it can provide superior resilience in datasets with noise.

1.5 STATEMENT OF AIM (TITLE OF THESIS)

The goal of this research is to find out how to solve difficult categorization problems
using machine learning models that use optimum kernel-generated surfaces.
Conventional approaches may fail miserably when faced with the challenge of
classifying datasets that are high-dimensional, nonlinear, and diverse. Improved
machine learning model generalizability and high accuracy in varied classification tasks
are the goals of this study, which aims to accomplish these goals via the use of kernel

approaches. In order to enhance the representational strength of machine learning
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algorithms, the research delves into the theoretical underpinnings, design, and
optimization of kernel-generated surfaces. Image recognition, bioinformatics, and
natural language processing are just a few of the many application domains that their
adaptability is tested in. These areas need accurate and reliable categorization. In order
to raise the bar for data-driven decision-making, this study intends to make a
contribution to machine learning by proposing novel ways to circumvent the

shortcomings of current categorization methods.

Therefore we chose our title as, “INVESTIGATE MACHINE LEARNING BASED
MODELS UTILIZING OPTIMAL KERNEL-GENERATED SURFACES TO ADDRESS
CLASSIFICATION CHALLENGES”

1.6 NEED AND SCOPE OF THE STUDY
Need of the study

The need for fast and effective categorization techniques is paramount in this age of
rapidly expanding data across several areas. When faced with the complexity of real-
world datasets, traditional classification methods often fail. These datasets are typically
unbalanced, nonlinear, and high dimensional. It is possible to obtain linear separability
by transforming data into higher-dimensional spaces, and machine learning-based
models, especially those using kernel-generated surfaces, provide a potential answer
for this problem. The optimization of these kernel approaches for varied and ever-
changing classification tasks, however, is still severely underdeveloped. To fill these
deficiencies, this research must investigate how optimum kernel functions might
improve machine learning models' accuracy, scalability, and resilience. Healthcare
diagnostics, fraud detection, picture identification, and natural language processing are
just a few examples of the many real-world applications that may benefit greatly from
further research into these techniques. Meeting the increasing need for efficiency and
accuracy in decision-making, this study seeks to systematically develop and evaluate
kernel-based techniques in order to contribute to the creation of more reliable and

adaptable categorization systems.

Scope of the study

This research delves into the creation and implementation of machine learning models

Page 30



that tackle categorization problems in many areas by making use of optimum kernel-
generated surfaces. Beginning with a thorough examination of kernel approaches, their
mathematical underpinnings and their capacity to convert complicated data structures
into separable forms in higher-dimensional spaces, the scope spans both theoretical and

practical elements.

It goes even beyond, addressing issues like non-linearity, large dimensionality, and
unbalanced datasets by developing and improving ML algorithms that use these kernels
for strong classification. Relevant areas of research include healthcare (where precise
illness categorization might prevent deaths), finance (for the purpose of detecting
fraud), and technology (for the purpose of performing tasks such as picture recognition
and natural language processing). It also intends to solve problems with scalability and
real-time adaptation, making sure the models can handle large-scale, ever-changing

situations.

This study aims to help intelligent decision-making systems progress by shedding light
on the inner workings of kernel-based categorization models and how they operate in

practice. By doing so, it hopes to close the gap between theory and practice.

1.7 OBJECTIVES OF THE STUDY

Following are the main objectives of this study: -

1. To address the limitations of existing classification and regression models in

supervised machine learning.

2. To investigate enhanced models based on optimal, non-parallel kernel- generated

surfaces for improved classification accuracy.

3. To design robust classification and regression methods capable of fitting training

data affected by noise, using various resilient loss functions.

4. To explore three distinct formulations of asymmetric Lagrangian v-twin support
vector regression with pinball loss (URALTSVR), applying gradient-based iterative

techniques.

5. To analyze the performance of a regularized, implicit Lagrangian twin extreme

learning machine in its primal form (RILTELM).
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1.8 DEFINITION OF THE KEYWORDS
Machine Learning (ML)

Machine learning is a subfield of Al that allows computers to automatically process
data, find patterns, and draw conclusions or make predictions with little to no human
input. Machine learning encompasses supervised, unsupervised, and reinforcement

learning approaches.

Kernel Methods

Machine learning techniques that do not directly change data but instead work in a high-
dimensional feature space using kernel functions. When dealing with non-linear
patterns, they find widespread usage in methods such as support vector machines

(SVMs).

Supervised Learning

A machine learning paradigm where a model is trained on labeled data, learning to
predict the output based on input features. Classification is a common application of

supervised learning.

Support Vector Machine (SVM)

One well-known ML technique for finding the best hyperplane to employ for class
separation in a dataset is the kernel approach. It is known for its effectiveness in high-

dimensional spaces.

1.9 LIMITATIONS OF THE STUDY

The study on machine learning-based models utilizing optimal kernel-generated
surfaces to address classification challenges has some limitations. These include the
complexity of selecting appropriate kernel functions, significant computational
demands for large datasets, and challenges in fine-tuning hyperparameters. The reliance
on specific loss functions and assumptions may restrict generalization to diverse
scenarios, while the models’ adaptability to dynamic datasets remains unexplored.
Additionally, interpretability of the advanced techniques and dependency on high-
quality data pose challenges, alongside limited validation in real-world applications.

These constraints offer scope for future research to enhance the models’ robustness and
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applicability.

1.10 PLAN OF WORK
Chapter 1: Introduction

This chapter establishes the foundation for the thesis, Addressing the urgent need to
tackle regression and classification problems using state-of-the-art machine learning
algorithms. It explains what support vector machines (SVMs) are and how they work,
with an emphasis on how approaches based on kernels and resilient loss functions may
improve model performance. This chapter also lays out the goals and scope of the study,
as well as why it's important to create cutting-edge models like extreme learning

machines and twin support vector regression for real-world use.
Chapter 2: Literature Review

The literature review provides a comprehensive analysis of existing research in the
domain of support vector machines, twin support vector machines (TWSVM), and

other advanced models.

It delves into the evolution of regression techniques, regularization methods, and robust
loss functions like pinball and Huber loss. The chapter identifies research gaps and
highlights the limitations of current models, paving the way for the proposed

methodologies and their application to complex classification and regression problems.

Chapter 3: Regularization-Based and Robust Asymmetric V-Twin Support

Vector Regression Using Pinball Loss Function

This chapter introduces a novel regularization-based V-twin support vector regression
framework incorporating the pinball loss function. It discusses how the asymmetric
nature of the loss function enhances robustness against outliers and addresses
imbalanced data. Mathematical formulations, optimization techniques, and
experimental evaluations are presented to validate the model's effectiveness in

regression tasks.

Chapter 4: Huber Loss Regularized Twin Support Vector Regression with Least

Squares Large Margin Distribution Machine
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This section delves into a mixed method that combines Huber loss with twin support
vector regression and the least squares large margin distribution machine. It examines
the benefits of Huber loss in handling noise and outliers and demonstrates how this
integration leads to improved generalization. The chapter includes detailed algorithmic

development and performance comparisons with existing models.

Chapter 5: Iterative Methods for Twin Bounded Support Vector Machines with
Squared Pinball Loss and Intuitionistic Fuzzy Least Squares Twin Bounded SVMs

Here we'll examine iterative functional approaches for enhancing twin bounded support
vector machines. It brings round pinball loss and intuitionistic fuzzy-based
mechanisms, providing a detailed mathematical framework and optimization strategies.
The chapter emphasizes the models' adaptability to complex datasets and discusses their

experimental outcomes.

Chapter 6: Regularized Implicit Lagrangian Twin Extreme Learning Machine in

Primal for Pattern Classification

This chapter introduces a novel pattern classification machine that uses a regularized
implicit Lagrangian twin extreme learning algorithm. Primordial space is where the
suggested model functions, offering computational efficiency and superior
classification accuracy. Theoretical analysis and extensive experimental evaluations are

provided to illustrate the model's advantages over traditional approaches.
Chapter 7: Conclusion, Recommendations, and Future Scope

The concluding chapter summarizes the research findings and highlights the
contributions of the proposed models to the field of machine learning. It discusses the
practical implications of the study and provides recommendations for deploying the
models in real-world scenarios. Additionally, the chapter outlines potential directions
for future research, including the exploration of alternative loss functions, scalability

improvements and applications in emerging domains.
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CHAPTER -2
REVIEW OF LITERATURE

Alnuaimi, Amer et al., (2024) [1] (ML) is an important part of Al, which is a larger area
that uses statistical approaches to teach computers to learn and make choices on their
own, without human intervention or programming. Computers can learn from data, spot
patterns, and form conclusions with little to no human input; this is the basic idea.
Supervised, unsupervised, semisupervised, and reinforcement learning are the four
primary subfields of machine learning. The two main types of supervised learning,
classification and regression, both include training models using labeled datasets. If you
want your output to be continuous, you should use regression; if it's categorical, you
should use classification. Improving models' ability to forecast class labels from given
input attributes is the main goal of supervised learning. The purpose of classification is
to provide predictions about related data using the values of a class variable or category
goal. When used to different kinds of statistical data, it yields useful results. Data
mining, predictive modeling and picture categorization are just a few of the many uses
for these algorithms. This study's overarching goal is to serve as a convenient reference
for the most popular machine learning fundamental categorization algorithms,
including their benefits and drawbacks. It goes without saying that no one article could
hope to cover every supervised machine learning classification method. Academics and
researchers alike will find it useful; it introduces the subject to beginners and helps them

better understand categorization procedures.

Almugqati, Mohammed et al., (2024) [2] Automated insights, forecasts, and decision-
making are the hallmarks of data science and machine learning, two cutting-edge fields
in contemporary technology. Important paradigms in this ever-changing field include
supervised and unsupervised learning, which each have their own set of problems. Both
supervised and unsupervised learning present complex problems, and this article covers
them all. Studies published in the years 2019-2023, inclusive, are reviewed in this
article. In this piece, we'll look at the difficulties of both supervised and unsupervised
study. Data labeling, overfitting, low generalizability, and balancing error equivalence
and decision-making objectives are some of the difficulties in supervised learning.
Overfitting, selecting the right method, and understanding outcomes are all examples

of challenges in unsupervised learning. Among these tasks is the management of
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outliers and noise, as well as the evaluation of clustering quality and the determination
of the appropriate cluster size. Whether you're new to machine learning or have years
of experience under your belt, this article should help shed light on these obstacles. To
get around these complications, researchers and practitioners are always inventing new
ways of doing things. For scholars and specialists in the subject, this article is a vital
resource that will equip them to successfully manage these issues. To fully harness the
potential of these effective technologies, it is crucial to have a complete grasp of these
obstacles as technology progresses. Lastly, a number of suggestions were made to help
academics in the future use machine learning in data-driven discovery and automation,

a path that will be fraught with both possibilities and obstacles.

Mohalder, Rathindra Nath et al., (2024) [3] Supervised Machine Learning is more often
known as Supervised Learning (SL) or SML. Being a subset of both Al and ML, it falls
under the umbrella of artificial intelligence. In order to train algorithms that accurately
anticipate outcomes or categorize data, it is characterized by the use of entitled datasets.
Part of the cross-validation procedure involves gradually feeding the input information
into a supervised machine learning model so that it can synthesis its weights and get a
good match. A supervised learning machine may help a business with a wide range of
practical issues. SML is on the lookout for algorithms that used externally provided
occurrences to generate common hypotheses, in order to prepare predictions for when
similar situations occur again. Effective intelligent systems often finish the supervised
Machine Learning (SML) classifications. This article presents an overview of
supervised learning algorithms, compares several types of supervised learning, and
ultimately determines which algorithm is the most successful for a given collection of
examples, variables, and features in machine learning. In this article, we'll look at eight
distinct SML algorithms. Those were the ones that were being imagined: ANNs,
Bayesian Networks, KNNs, Random Forests, DTs, Linear Regressions, SVMs, and
Logistic Regressions. The programming language Python is the basis for these eight
algorithms. Justify the performance of each method by using a sample dataset. Using
throughput, reaction time, and accuracy as metrics, please defend the algorithms above.
Predetermined parameters are the basis of the supervised learning approach. When
evaluating the efficacy and capability of a machine learning system, the performance
indicator is crucial. Based on the results, Decision Tree provides the most accuracy,

reaction time, and throughput among the prediction algorithms discussed in this
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research. After the DT method, the next two accurate SML techniques are SVM and

Logistic Regression.

Oluchukwu C, Asogwa et al., (2024) [4] Using a tested data set for the opinions of
Nigerian citizens during the naira redesign policy period, this research empirically
compared the performance of three supervised machine learning models: Multinomial
Logistic Regression (MLR), Multilayer back propagated Neural Networks (MNN), and
Multinomial Decision Trees (MDT). The models were trained using a classification
matrix criterion. About 600 copies of surveys about the views of Nigerian people on
their wellbeing during the era of naira redesign. A total of three models were evaluated,
and the results showed that ANN achieved the highest accuracy rate (94.4%), followed
by MLR (93.5%), and MDT (90.0%).

Rahaman, Md. Jamaner. (2024) [5] What we term "machine learning" (ML) really
refers to the process by which computers learn new tasks and tasks alone with the aid
of algorithms. These days, it seems like everyone wants everything done quickly and
automatically. The efficiency of machine learning has brought about a dramatic shift in
that regard. A smart machine can do tasks at a higher rate than a person. By using ML,
the occurrence of mistakes is significantly reduced. This paper aimed to provide a
description of several ML algorithms, including supervised, unsupervised, semi-
supervised, and reinforcement learning, along with their definitions, pros and cons, and
areas of work, in order to help people understand which algorithm to use based on
improving the necessity of ML algorithms in the present situation. In particular,
supervised learning methods such as Support Vector Machines (SVMs), Decision
Trees, K-Nearest Neighbors (K-NNs), Linear Regression, and Logistic Regression.
Principal component analysis (PCA) and K-Means clustering are tools for unsupervised
learning. A crash course on reinforcement learning and semi-supervised learning. By
the end of the article, readers will have a good grasp of the most popular machine

learning methods.

Zhang, Zheng et al., (2024) [6] One helpful way to spot unusual fish is to look for
certain surface characteristics that are out of the ordinary. Problems with present
approaches include high levels of subjectivity, low levels of accuracy, and subpar
performance in real time. In response to these difficulties, we provide YOLOv5s-based

real-time precise surface feature detection for in-water fish. Among the particular
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improvements are: 1) In order to enhance the model's capability to identify small
targets, we optimize the full intersection over union and non-maximum suppression
using the normalized Gaussian Wasserstein distance metric. 2) We use MobileViTv2
to increase detection speed and the DenseOne module to improve the reusability of
aberrant surface features into the feature extraction network. 3) To address the difficulty
of extracting deep features from complicated backdrops, we combine the omni-
dimensional dynamic convolution and convolutional block attention modules in
accordance with the ACmix concept. With 160 validation sets of aberrant fish in water,
we conducted comparison studies and achieved a recall of 99.5%, a precision of 99.1%,
a mAPS50 of 73.9%, and a frames per second (FPS) of 88. By1.4,1.2,3.2,8.2%, and 1
FPS, respectively, our model outperforms the baseline. In terms of comprehensive

assessment indices, the upgraded model also beats other top-tier models.

Heydari, Zahra et al., (2024) [7] A precise assessment of domestic water end uses (such
as showers, toilets, faucets, etc.) is necessary for water sustainability in the built
environment. We utilize real (measured) and synthetic (labeled) data sets to assess how
well four models—Random Forest, RF; Support Vector Machines, SVM; Logistic
Regression, Log-reg; and Neural Networks, NN—classify the end-use of water in
residential areas. Conditional Tabular Generative Adversarial Networks were used to
create synthetic labeled data. Training each model with its optimal hyperparameters
was then accomplished using grid search. In terms of overall model performance, the
RF model was the best, but in terms of computational efficiency for specific end uses,
the Log-reg model had the shortest execution times under various balanced and
imbalanced (based on number of events per class) synthetic data scenarios. Although it
took more time to run than the other classification models, the NN model performed
quite well. All models in the balanced data set scenario obtained F1-scores that were
quite near to each other, with values ranging from 0.83 to 0.90. Nevertheless, the RF
and NN models demonstrated superior performance when confronted with unbalanced
data that mirrored real-life situations, whereas the SVM and Log-reg models performed
worse. In general, we found that when it comes to water end-use data, decision tree-
based models are the best option for categorization tasks. Our research contributes to
the advancement of home smart water metering systems by generating synthetic labeled
end-use data and shedding light on the relative merits of several supervised machine

learning classifiers for this purpose.
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Laurer, Moritz et al., (2023) [8] The use of supervised machine learning to sift through
massive political text corpora is on the rise. The need for thousands of training data
points that are manually annotated is the primary drawback of supervised machine
learning. Because most novel research issues in the social sciences need fresh training
data for a task designed to address the subject at hand, this is an especially pressing
concern in that field. Deep transfer learning's ability to build "prior knowledge" in
language models is examined in this research as a potential solution to this problem. By
training on general tasks such as natural language inference (NLI; "task knowledge"),
models such as BERT may acquire statistical language patterns during pre-training
("language knowledge"). This allows them to rely less on task-specific data. Using eight
different activities, we show that transfer learning is beneficial. Our BERT-NLI model,
which was fine-tuned using 100 to 2,500 texts, outperformed classical models that did
not include transfer learning by an average of 10.7 to 18.3 percentage points across all
eight tasks. In comparison to traditional models trained on around 5,000 texts, our
research shows that BERT-NLI fine-tuned on 500 texts delivers comparable
performance. On top of that, we prove that transfer learning excels when faced with
unbalanced data. Finally, we outline new avenues for political science research and talk

about the constraints of transfer learning.

Wei, Yuzhen et al., (2023) [9] To better understand the role of genes in maize, it is
essential to first distinguish between genetically modified (GM) and non-GM kernels.
To differentiate between genetically modified (GM) and non-GM maize kernels, a
comprehensive and innovative detection system was developed using near-infrared
spectra. A total of seven hundred and seventy-one maize kernels of three different types
were photographed using hyperspectral imaging equipment, and their average spectra
were then retrieved for use in the modeling process. The backpropagation neural
network-genetic algorithm model outperformed the other standard feature engineering-
based modeling approaches with a prediction accuracy of 0.861. Next, innovative deep
learning-based modeling approaches were created. Before building the deep learning
models, the original spectra were converted into two-dimensional matrices to extract
the interaction information between bands and make them suitable for the application
situations. At last, we built a VGG net—a modified convolution neural network—with
dilated convolution to categorize the maize kernels, and we achieved a prediction

accuracy of 0.961. This study introduces a new and innovative method for identifying
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genetically modified (GM) maize kernels. By using deep learning visualization
technologies, future study will enhance the detection system for monitoring illicit GM

organisms.

Matura, Rishi et al.,(2023) [10] Machine learning has become more popular in recent
years due to its extensive industry-specific applications. Various methods of machine
learning, including supervised and unsupervised classifiers as well as reinforcement
learning, are covered in this paper. We also look at machine learning's downsides, such
as how much labeled data is needed and the risk of bias during training, among other
things. We have now covered the basics of the discipline and covered some of the
possible future advances, such how machine learning may be used in healthcare and
finance. Also included are comparisons of two machine learning methods, one of which
is the Decision Tree algorithm and the other is the Naive Bayes algorithm. Taken as a
whole, this study is a great resource for anybody interested in the present and future of

machine learning.

Talaei Khoei, Tala et al., (2023) [11] A number of application sectors, including
cybersecurity, have been profoundly affected by the advent of machine learning
methods. Data pre-processing, model selection, and parameter optimization are a few
of the many steps that must be integrated into the creation of top-notch machine
learning applications. While prior studies have provided some insight into these
methods, they have mostly targeted narrow fields of application. The absence of an all-
encompassing review of the fundamental stages of machine learning architecture in the
domain of cybersecurity is a significant void in the existing literature. This study fills
that need by offering a comprehensive overview of recent research in machine learning,
including methods that may be applied to any field. Reinforcement learning,
supervised, semi-supervised, and unsupervised models are the four main types of
models. The models for each of these classes are detailed here. The study also covers
the latest developments in data pre-processing and hyperparameter tuning methods.
Also reviewed are the research gaps and major obstacles that the cybersecurity area is
now facing, according to this poll. Our analysis of these gaps leads us to suggest several
interesting avenues for further investigation. Ultimately, we hope that this survey will
be a helpful resource for scholars looking to learn more about machine learning, and

that the insights it provides will help to promote innovation and advancement in a wide
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range of application fields.

Ali, Zeravan et al., (2023) [12] Extracting usable information from the massive amounts
of data created daily, processing it to learn, and then acting on that knowledge is the
main goal of machine learning. Some examples of machine learning's application fields
include chemical informatics, medical diagnostics, bioinformatics, search engines,
pattern identification, and original language processing. XGBoost is the best machine
learning algorithm in terms of categorization variety, interpretability, and prediction
accuracy. It was launched not long ago and has shown to be quite good at modeling
complicated systems. With its robust architecture, high degree of customization, and
portability, XGBoost stands out as an exceptional distributed scaling improvement
library. Artificial intelligence algorithms are integrated via augmented scaling. Several
data science tasks may be efficiently and effectively handled by this parallel tree
enhancement. Because it allows the use of clean low-level libraries and high-level APIs,
Python is still the language of choice for scientific computing, data science, and
machine learning. This enhances performance and productivity. One of the most well-
known Python-based supervised and semi-supervised learning (SSL) methods is

presented in this article.

Miric, Milan et al., (2023) [13] Summary of the Research More and more, researchers
are building quantitative variables for their analyses from unstructured text data.
Traditionally, researchers have used keyword-based ways to accomplish this purpose.
These approaches include researchers providing a dictionary of keywords that are
mapped to the relevant theoretical ideas. To identify unstructured text documents and
generate quantitative variables, one may utilize contemporary machine learning (ML)
methods for text classification and natural language processing. In this article, we
provide an example of how to use ML techniques for this and talk about one use case
for finding Al patents. We show the benefits of the ML approach by comparing and
contrasting several ML approaches with the keyword-based approach. To further show
how Al technology has evolved in general, we use the categorization results produced
by ML models. Executive Synopsis Researchers and business analysts may find a
plethora of information in text-based materials. To make these papers usable in future
studies, researchers must frequently figure out how to categorize them. In this research,

we show how supervised machine learning techniques may be used to automate the task
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of grouping textual materials into pre-established categories. We outline the potential
applications of such procedures, how they compare to other methods, and the benefits
and drawbacks of each. Using the abstract language of all U.S. patents, we use these
techniques to detect Al-based innovations. In doing so, we are able to reveal intriguing
trends in the evolution of Al innovation nationwide. The data and code used in this

article are also made available for future researchers to use.

Taye, Mohammad. (2023). [14] Since its inception, deep learning (DL) has dominated
the ML computational landscape, outperforming humans on a number of challenging
cognitive tasks while maintaining or improving upon their performance. Thanks to its
ability to learn from data, deep learning technology—which evolved from ANN—has
become a major player in the computer industry. One advantage of deep learning is its
capacity to learn from massive amounts of data. Rapid development and effective
application of deep learning have occurred in many more conventional domains in
recent years. Popular machine learning methods have been surpassed by deep learning
in several fields, such as cybersecurity, bioinformatics, medical information processing,
robotics and control, and natural language processing. Also, this essay wants to provide
a better overview of the most important parts of deep learning, including the most recent
advances in the area, so that people have a better place to start when trying to grasp the
topic on a deeper level. The importance of deep learning, as well as several deep
learning methods and networks, are also covered in this study. Furthermore, it outlines
potential practical domains for using deep learning methods. Finally, we provide some
recommendations for further study and indicate certain traits that may be present in
further iterations of deep learning models. Academics and professionals in the business
world may both benefit from the thorough introduction to deep learning modeling that
this essay aims to provide. Finally, we provide more problems and answers to help
researchers understand the current gaps in the research. Several methods, deep learning

frameworks, tactics, and uses are covered in this paper.

Jain, Sambhav et al., (2022) [15] This research proposes using parametric non-parallel
support vector machines to classify binary patterns. The model's sparsity is preserved
and its resilience to noise is enhanced by a reevaluation of the support vector machine
optimization. Since our model shows characteristics with support vector machines, we

may expand other support vector machine-related learning approaches to make it
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scalable for large-scale problems. We confirm our assertions with experimental

findings on many benchmark UCI datasets.

Liu, Gaoyuan et al., (2022)[16] Our goal is to solve the intrusion detection issue in
WSNs by establishing an edge-based intrusion detection system using edge computing,
taking into account all of the WSN's combined properties. The WSN is well-defended
by an intrusion detection system (IDS), a technology that proactively protects networks
from security breaches. We present a WSN intelligent intrusion detection model in this
paper. It forms an edge intelligence framework that performs intrusion detection when
the WSN encounters a DoS attack by combining the k-Nearest Neighbor algorithm
(kNN) from machine learning with the arithmetic optimization algorithm (AOA) from
evolutionary calculation. By adjusting the optimization using the Lévy flight strategy
and using a parallel method to improve communication between the populations, we
may increase the model's accuracy. The benchmark function test shows that the
suggested PL-AOA method improves the kNN classifier, and it works. By simulating
the WSN-DS dataset in Matlab2018b, we find that our model outperforms the original
kNN by around 10% in DoS intrusion detection, and it reaches 99% ACC. The
suggested intrusion detection model provides beneficial benefits and is practically

significant, according to the testing findings.

Muraina, Ismail et al., (2022)[17] Every day, we all encounter a plethora of decision-
making tasks that need careful consideration and, all too frequently, we let our guard
down and succumb to a variety of prevalent biases and logical fallacies. Decisions on
the machine learning algorithm or model to use for analysis are fraught with peril since
they are dependent on a myriad of variables, including the nature of the issue, the
criteria for selecting a model, and the anticipated results. The research investigates the
potential of an Al-powered expert system to facilitate the prompt selection of
appropriate algorithm(s) for achieving set goals. To reach a suitable decision-making
method, the research also models a sequence of effective channels using VisiRule
software. A variety of algorithms were utilized to guide the selection process, including
supervised and unsupervised machine learning, clustering, association rules,
dimensionality reduction, and various methods of classification and regression.
VisiRule, an Al-based expert system, was utilized for this purpose. With thorough

descriptions of each choice, this study's results show the straightforward ways to choose
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the most relevant and suitable model or algorithm for the current analysis. With
VisiRule, solving decision-making difficulties has never been easier, and you won't
even need any code. Artificial intelligence rule-based expert systems might address
decision-making problems with no effort, no coding required, and very attainable,

accurate results..

Sharma, Shallu & Mandal, Pravat. (2022) [ 18] Devastating and incurable, Alzheimer's
Disease (AD) is a kind of neurodegeneration that affects the brain. Patients with AD
are able to maintain a normal lifestyle with the aid of early detection. We have described
ML approaches that use several feature extraction strategies to combine complementary
and correlated properties of data obtained from various neuroimaging modalities. In
order to create an ML-based AD diagnostic system, we detail a number of feature
selection, scaling, and fusion approaches, as well as the problems that have been
encountered. On top of that, we have included theme analysis to compare the ML
process for potential diagnostic solutions. An improved computer-aided early
diagnostic method using multi-modal neuroimaging data from AD patients is one area

that might benefit from this extensive study.

Fernandez Pascual, Angela et al., (2022) [19] One of the most difficult problems in
machine learning is outlier identification, which involves finding data points that are
very out of the ordinary. Particular points like these might throw off a model's training
and lead to less precise predictions while the model is being constructed. Because of
this, the first step in solving a machine learning issue is usually to find and eliminate
them before developing a supervised model. There are a plethora of effective outlier
detection algorithms available today; however, the key issues with these algorithms are
their reliance on unsupervised learning and the hyperparameters that need to be fine-
tuned for optimal performance. A novel supervised outlier estimator is presented in this
study. To do this, a supervised model is pipelined with an outlier detector in such a
manner that the outlier detector's hyperparameters are optimally set by the targets of
the supervised model. Using this pipeline-based method, integrating several outlier
detectors, classifiers, and regressors is a breeze. Eight regression problems and nine
relevant outlier detectors were integrated with three regressors and two classifiers in
the trials. Another eight issues were divided between binary and multi-class

classification. After analyzing and comparing the nine outlier detectors' efficacy, we
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can say that the idea is valuable as an objective and automated technique to properly

identify detector hyperparameters..

Jain, Nipun et al., (2022)[20] One key benefit of machine learning is the reliability of
the predictions it produces from datasets. As a result, computers may be trained to carry
out complicated tasks autonomously. When it comes to analyzing large datasets,
machine learning is king. Businesses and entrepreneurs may benefit from machine
learning since it speeds up the process of identifying possibilities and hazards.
Companies that collect and process massive volumes of data are finding that machine
learning is the most effective tool for their data analysis and model building needs. Not
only is machine learning fundamental to AL but it also has a major impact on Al's
history and future. The accuracy of classifications achieved by applying algorithms to
issues with varying parameter settings varies greatly. Finding the optimal settings for
algorithm parameters to address technical issues with performance measures is a
difficult task in machine learning. Supervised, unsupervised, and reinforcement
learning are only a few of the machine learning techniques covered in this article. A
variety of machine learning algorithms including Decision Tree, Naive Bayes, K-
Nearest Neighbor, Random Forest, and SVM Classifier are used mostly in supervised
machine learning tasks like classification and regression. Using examples and
illustrations, the author provides a clear explanation of all methods that rely on
categorization. In addition, the authors provide examples of domains or applications

that make use of these categorization techniques.

Sekeroglu, Boran et al., (2022) [21] The use of Al and ML to solve issues or augment
human specialists is crucial in almost every aspect of human existence. It remains a
difficult issue for academics to determine which machine learning model would
generate a better outcome for a specific problem within the broad real-life application
domains. Several aspects, including the features of the dataset, the training approach,
and the model's responses, might influence the model's performance. Hence, in order
to ascertain the efficacy of the proposed tactics and the capability of the model, a
thorough evaluation is necessary. Ten standard machine learning models were applied
to seventeen different datasets in this research. Training procedures 0f60:40,70:30, and
80:20 hold-out, in addition to five-fold cross-validation, are used in the experiments.

Mean absolute error, mean squared error, and coefficient of determination (R2 score)
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were the three metrics utilized to assess the experimental outcomes. The models that
were taken into consideration are examined, and the benefits, drawbacks, and data
dependencies of each model are highlighted. Decision trees, linear regression, support
vector regression with radial and linear basis function kernels, random forests, extreme
gradient boosting, deep neural networks, and deep Long-Short Term Memory (LSTM)
neural networks all performed poorly in comparison to the deep Long-Short Term
Memory (LSTM) model, which emerged as the top performer after an excessive
number of experiments. When evaluating models in regression research without data
mining or selection, cross-validation should be examined due to the substantial

influence it has on experimental outcomes.

Gupta, Monica. (2022) [22] Rather of being expressly programmed to do a given
activity, computers may now act and make judgments based on data thanks to machine
learning. You can get the answer to your query from the data you have using this tool
and technology. When fed fresh data, these systems are meant to become smarter with
time. Machine learning is a branch of artificial intelligence that is rapidly expanding its
scope. It all starts with the premise that computers should have access to data so they
can figure things out for themselves. The goal of machine learning (ML) is to discover
rules for optimum behavior and to train computers to adapt to new situations by
analyzing datasets for patterns. For decades, many of the underlying algorithms have
been known. The article has covered a range of machine learning algorithms. There are
many applications for machine learning algorithms, but one might argue that they can

learn to handle data management on their own after some initial training..

Pruneski, James et al., (2022)[23] The majority of machine learning approaches used
in healthcare research are based on supervised learning. Using a given ground truth, it
may categorize situations as positive or negative or make predictions about interesting
outcomes. A variety of methods, including supervised learning, are gaining traction in
the "big data" movement, from simpler tree boosting to more involved regression
modeling. There is a dearth of literature that details the benefits and drawbacks of the
various modeling approaches, despite the fact that these tools are booming in use and
power. Medical personnel seldom get instruction on how to properly employ machine
learning models in the course of their work. It is critical that doctors and other medical

professionals have a firm grasp of the mechanisms behind machine learning's growing
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influence in the medical field. The goal of this research was to compile a list of popular
supervised learning methods with examples from the orthopedic literature that illustrate
their application recently. Improving communication inside and across research teams
is another objective, as is addressing differences in understanding of these

methodologies.

Ono, Sachiko et al., (2022) [24] Machine learning is a set of procedures that computers
go through to discover patterns in large datasets. Machine learning has grown and found
use in medical research because to the abundance of diverse health data and the recent
advancements in computing power. At present, supervised, unsupervised, and
reinforcement learning are the three main categories of machine learning. In the field
of medicine, supervised learning is often used for prognoses and diagnostics,
unsupervised learning for illness phenotyping, and reinforcement learning for
optimizing positive outcomes, including overall emergency department patient waiting
time optimization. This article gives a quick rundown of four popular prediction
algorithms—random forests, gradient-boosted decision trees, support vector machines,
and neural networks—and explains the idea and use of supervised learning in medicine,
the most popular machine learning approach in the medical field. Deep learning
algorithms, which evolved from neural networks, are one kind of algorithm that can
handle more complicated problems. Medical imaging, including retinal fundus photos
for diabetic retinopathy diagnosis, and basic categorization tasks are two popular
applications of deep learning in the medical field. Algorithms may fail in the absence
of domain expertise, despite machine learning's potential to improve healthcare by
analyzing massive amounts of data that humans just cannot handle. For machine
learning to be useful in healthcare, algorithms and human intelligence must work

together.

Dahiya, Neelam et al., (2022) [25] With the expansion of human understanding and the
proliferation of databases, one of the most pressing issues is figuring out how to extract
useful information from massive amounts of raw data. One method that may assist solve
this problem more quickly and accurately is machine learning. A key component of
machine learning is training the algorithm using training data; from there, the algorithm
builds rules; and finally, using test data, assessment is carried out autonomously

produce results. We shall examine the many uses and benefits of machine learning in
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this post. Following this introduction, the paper delves into a comprehensive catalog of
supervised and unsupervised algorithms, detailing their many applications and kinds.
With the knowledge gained from this article, the researcher may pinpoint possible uses
for machine learning and choose suitable approaches for every situation. Furthermore,
the researcher may have a comprehensive grasp of machine learning. This study has the
potential to be advanced by comparing and contrasting deep learning with machine
learning techniques. There is a lot of hope that this area may lead researchers to
solutions for many agricultural problems and medical conditions (including cancer,

skin disorders, etc.).

Arista, Artika. (2022). [26] Whether or whether they have COVID-19 is a mystery to
many individuals today. A case of COVID-19 manifests itself with a persistent fever,
dry cough, and sore throat. See a doctor or visit a clinic without delay if you have any
symptoms of coronavirus illness 2019 (COVID-19). Therefore, it is critical to study up
on and fully grasp the key distinctions. COVID-19 symptoms may be rather diverse.
Specifically, the studies were conducted utilizing the (DT) and (LR) Machine
Improving Algorithms for Classes. Python code was written and tested in Jupyter
Notebook 6.4.5. The results of the tests performed on the COVID-19 symptoms dataset
showed that the DT model had better testing performance and cross-validation than the
LR machine learning models. Since the DT model had a cross-validation success rate
of 98.0%, it 1s evident that it is the victor. The DT model has completed performance
testing with a 98.0% success rate. Taking into account both the cross-validation
performance and the testing results, the LR has achieved the second-best outcome. The
LR model obtained a 96.0% accuracy rate in the cross-validation results. With a
precision of 97.0%, the LR model has shown itself in performance tests. Therefore, in
terms of testing and cross-validation, the DT performs better than the LR on the

COVID-19 symptoms dataset.

Bhatt, Prahar et al., (2021) [27] With the capacity to automatically identify surface
flaws from photos, industrial applications can't function. There was a subset of issues
that could be effectively addressed using traditional image processing methods. Noise,
changing illumination, and backgrounds with intricate textures were all challenges that
these methods failed to overcome. To automate the process of finding defects, deep

learning is being investigated more and more. Three distinct approaches to effort
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categorization are offered in this survey report. The context of defect detection, learning
approaches, and methods for localizing and classifying defects form the basis of these.
This approach categorizes the current literature. Following current tendencies in the

deep learning field, the article suggests avenues for further study..

Nair, Nikhitha et al., (2021)[28] Deep learning frameworks have recently emerged and
show promise as a unifying paradigm for supervised and unsupervised learning,
opening the door to more abstract data representations. Face recognition, text mining,
language translation, picture prediction, several fields have profited from deep
learning's numerous successful explorations, including action detection and many
more. Core vector machines, kernel machines, support vector machines, and extreme
learning machines are just a few of the machine learning approaches that can handle
both linear and nonlinear data. If we want better data dispersion, these Kernel machines
are crucial for mapping the input space data to a Kernel-induced high-dimensional
feature space. The data distribution will be better suited to the classification challenge
at hand in this Kernel-induced high-dimensional feature space. By picking the right
Kernel function, the Kernel technique makes it easy to convert machine learning
methods that rely only on inner product calculations between data vectors into a Kernel-
based strategy. To compute the inner product of the modified data vectors in an
implicitly specified Kernel-induced feature space, Kernel-based methods make use of
the Kernel functions. Kernel machines, in contrast to neural networks, ensure that
structural risks are minimized and that global optimum solutions are reached.
Functionality like as theoretical tractability and outstanding performance in real
applications are also shown by the Kernel machines. The researchers were inspired to
develop deep Kernel machines by using the rising trends of deep learning with Kernel
approaches, thanks to their efforts. To overcome their shortcomings and make the most
of their strengths, researchers combine Kernel methods with deep learning networks.
Then, they use deep Kernel learning techniques to boost the algorithm's performance
in various tasks. Deep Kernel machines can be constructed in various ways by
combining Kernel methods with deep learning architectures. These methods include
using Kernels as the deep learning network's final classifier, incorporating kernelization
into deep neural networks to improve feature enrichment, and constructing deep Kernel
machines that use deep or multiple Kernels for different tasks. The purpose of this

review is to provide a broad overview of the many methods used to construct deep
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Kernel learning architectures, with the goal of improving the characteristics and

performance of learning algorithms for use in real-world scenarios.

Wen, Hui et al., (2021) [29] We provide a kernel holistic learning and division (KHLD)
based neural network classification improvement algorithm. The suggested approach
uses the RBF kernel, or learnt radial basis function, as its research goal. Here, we
suggest a kernel that, in the training sample space, may be thought of as a subspace area
made up of the same pattern category. By expanding the area of the original examples'
sample space, we may access subspace information that is significant across instances,
and the classifier's border doesn't have to be close to the original instances; this
improves the classifier's generalization performance and resilience. The instance
optimization and screening strategy used to describe KHLD is applied in concrete by
generating a new pattern vector inside each RBF kernel. Experiments on synthetic
datasets as well as many UCI benchmark datasets demonstrate the efficacy of our

approach.

Pal, Sujan & Sharma, Prateek. (2021)[30] When it comes to data-driven research in
the Earth sciences, machine learning (ML) has made great strides as an Al tool. To
provide lower boundary conditions to atmospheric models, Land Surface Models
(LSMs) record the water, energy, and momentum exchange between the land surface
and the atmosphere. These models are crucial parts of climate models. Focusing on how
ML might enhance land modeling and providing a detailed discussion of the most
important ML approaches are the goals of this review study. In order to compile a
comprehensive list of articles, literature searches were carried out using the appropriate
keywords. Additionally, the articles' bibliographies were taken into account. So far,
ML-based strategies have improved evapotranspiration and heat flux estimates,
optimized parameters, predicted crop yields more accurately, and benchmarked models,
all while enhancing the performance of LSMs and reducing uncertainties. Random
Forests and Artificial Neural Networks are two popular ML methods that are used for
these tasks. We draw the conclusion that land modeling has room for development in
areas such as efficient model performance, data assimilation, parameter calibration,
reduction of uncertainty, and high-resolution data preparation via the use of machine
learning. Long short-term memory, convolutional neural networks, and other deep

learning approaches may be used with the standard techniques.
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Mazlan, Aina et al., (2021) [31] When it comes to healthcare and medicine, data-driven
models that can anticipate outcomes are crucial. Nevertheless, using machine learning
(ML) techniques may tackle the most difficult aspect of predictive modeling: building
a prediction model. A gene expression dataset is used to train the model utilizing the
approaches, which do not need explicit programming. This becomes a tedious and
complicated operation when dealing with the massive amounts of gene expression data.
In light of the growing interest in cancer classification within bioinformatics and
computational biology, this work offers a concise overview of current developments in
machine learning (ML) and deep learning (DL). The primary emphasis of this study is
on the advancement of ML and DL-based cancer classification algorithms. There have
been several approaches to the cancer categorization issue, but newer research indicates
that supervised and DL-based algorithms are the most effective. Furthermore, the
healthcare dataset's sources are also detailed. The development of many machine
learning methods for insight analysis in cancer classification has brought a lot of
improvement in healthcare. It would seem that there is an urgent need to handle the
growing number of healthcare applications by developing more effective categorization

algorithms.

Paturi, Uma Maheshwera Reddy et al., (2021) [32] This study models and optimizes
employing machine learning techniques like support vector machines (SVMs), artificial
neural networks (ANNs), and wire electrical discharge machining (WEDM) to
determine the surface roughness of Inconel 718 and genetic algorithms (GA). As a
result, we used surface roughness measurements derived from real-time WEDM trials
run with varying degrees of control variables such pulse on/off duration, peak current,
servo voltage, and wire feed rate. Using the grid search approach, we were able to
modify the SVM parameters and find that the optimal ANN model architecture is 5-10-
10-1. The R-value, which measures the degree of agreement between experimental and
model predictions, was used to assess the efficacy of the ANN and SVM models in
comparison to those of the response surface methodology (RSM). With an R-value of
0.99998 compared to experimental findings and a minimum MAPE of 0.0347%, the
SVM predictions were the most accurate of all the models examined. Further, the
surface roughness was improved by 61.31% after using the GA technique with the
proposed RSM equation as the fitness function. Using the suggested SVM and GA
method, we can optimize the WEDM process for Inconel 718 by rapidly predicting and
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optimizing the surface roughness.

Saravagi, Deepika et al., (2021)[33] In the last ten years, the healthcare sector has seen
a meteoric rise in the popularity and interest in machine learning algorithms across
academic groups. New models to study spondylolisthesis (slippage of one vertebra over
another) concerns have been developed via interdisciplinary cooperation, and they
show great promise and have a lot of potential. Spondylolisthesis detection and
prediction machine learning methods are reviewed in this article. From the standpoint
of both modeling and applications, it would be an invaluable resource. Searching
Scopus, PubMed, IEEE, Google Scholar, ResearchGate, Springer, and Elsevier
databases systematically using predefined inclusion-exclusion criteria allowed us to
retrieve publications. Title, abstract, and The articles were analyzed using full-text
reviews. Finally, we will discuss some of the challenges and opportunities in this area.
For every task that was examined, we checked the models and frameworks that were
used and the overall performance according to the metrics that were employed. The
findings demonstrate that machine learning models may provide remarkably precise

results when compared to state-of-the-art image processing technologies.

Hasan, Ruby. (2021). [34] One of the leading killers on a global scale in recent years
has been cardiovascular disease. Changes in diet, work practices, and general way of
life have all played a role in this worrying problem, which affects countries all over the
world, from the most developed to the least. Reducing the expanding patient population
and, ultimately, death rate, may be achieved by early diagnosis of the beginning
indicators of cardiovascular illnesses and continued medical care. But it's hard to keep
tabs on people and provide consultations when there aren't enough medical facilities
and specialists. In order to make patient monitoring and treatment easier, technological
interventions are necessary. Efficient prediction models for cardiovascular disorders
may be developed using healthcare data gathered from numerous medical procedures
and ongoing patient monitoring. An exceptional achievement in medicine may be the
early detection of cardiovascular diseases, which may help in the decision-making
process about lifestyle modifications in high-risk patients, therefore reducing problems.
In this research, we take a look at how various machine learning algorithms have been
utilized to forecast the occurrence of cardiac problems by analyzing past records and

current medical data. In this article, we will go over all of the methods and then compare
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and contrast them. Here we take a look at five widely used methods for estimating the
likelihood of a heart attack and compare them in the literature. Several methods are
used, including KNN, Decision Tree, Logistic Regression, Random Forest, and
Gaussian Naive Bayes. The study goes on to detail the pros and cons of each method

used to build the prediction models.

Kamiri, Jackson et al., (2021) [35] Because research techniques impact the quality and
dependability of the outcomes, they play a crucial role in machine learning. Examining
existing approaches to machine learning research as well as new topics and their
potential effects on the field were the primary goals of this article. The researchers
accomplished this by reviewing 100 publications published in IEEE journals since
2019. Machine learning, according to this study, relies on quantitative research
methodologies, with experimental research designs being the prevalent strategy.
Researchers today often use many algorithms to tackle an issue, according to the study.
Researchers are increasingly relying on optimal feature selection as a means to enhance
the efficiency of machine learning algorithms. Even though academics are starting to
take processing time into account when evaluating algorithms, confusion matrices and
their variants are still the most used approaches. The most popular tools for developing,
training, and testing models are the Python programming language and associated
libraries. Some of the most popular methods for handling classification and prediction
issues include Decision Tree, Artificial Neural Networks, Naive Bayes, Support Vector
Machine, and Random Forest. It is quite probable that the recurrent patterns found in

this study will pave the way for new areas of research in machine learning.

Eckart, Lietal., (2021)[36] When dealing with very complicated information, machine
learning is a common method for discovering patterns and correlations. Some machine-
learning methods are finding practical use thanks to recent developments in storage and
processing power. A comparison between traditional statistical methods and machine
learning algorithms is the goal of this study. Many scientific disciplines have long made
use of these techniques for data grouping and information extraction. The key
information about the various approaches, their data set needs, and the limits of each
method make it difficult to apply them correctly. It would be much easier to include
new machine learning algorithms into the present assessment if it were simpler to

choose the correct approaches. Various machine learning algorithms are catalogued in
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this work. A detailed comparison is made between four approaches (k-means algorithm,
artificial neural network, regression method, and self-organizing map), and various
selection criteria are highlighted. Lastly, we provide an estimate of the task and
application domains, as well as any constraints, which can aid in making decisions for

particular multidisciplinary analyses.

R M, Achshah et al., (2021)[37] Machine learning algorithms are the backbone of
artificial intelligence. Machine learning algorithms come in a variety of flavors;
developers choose the one that works best with their specific situation by weighing its
benefits and drawbacks. This study examines the advantages and disadvantages of
many popular ML techniques, including logistic regression, XG-Boost, naive bayes,
decision tree, random forest, artificial neural network, convolution neural network, and
linear regression. To help newcomers understand and choose the best supervised
learning algorithm for their task, it analyzes and contrasts the aforementioned
algorithms while outlining the core ideas. Choosing the best ML algorithm for a given
application might be challenging for beginners. The purpose of this study is to provide
a straightforward method for comparing algorithms' training data in order to choose the
most appropriate one. We look at how each method performs with a variety of training
datasets. We choose the most effective method by considering the following criteria:
speed, dimensionality, normality of distribution, outliers, noise, missing values, and
training data preparation requirements. The precision and accuracy of the chosen
algorithm are crucial. Training all of the algorithms on the dataset and selecting the one
with the highest accuracy score is a massive and laborious undertaking. So, it's peaceful

if one can use the suggested method to compare and pick, which saves time.

El Guabassi, Inssaf et al., (2021) [38] As the need for accurate future predictions grows
among the world's population, the ability to foretell relevant data in any field is quickly
becoming an absolute must. Finding out what may happen is one method to know for
sure what the future holds. To this end, machine learning provides a means of efficiently
sifting through massive datasets in search of actionable insights. In order to assess
students' progress, this study primarily aims to construct a prediction model. The results
are therefore trifecta of donations. First, we will train a number of to our instructional
dataset using supervised machine learning methods. Decision Tree, Random Forest,

Partial Least Squares, Log-linear, Support Vector, ANCOVA, and Logistic Regression
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are all part of this class of algorithms. The second objective is to evaluate the prediction
model's associated algorithms using various metrics. The final goal is to identify the
most critical aspects that impact the pupils' achievement or lack thereof. The findings
of the experiments demonstrated that the Log-linear Regression method yields superior
predictions, and they also identified the behavioral elements that impact students'

performance..

Khalifa, Ramy et al., (2020) [39] In this work, we provide a Logical Analysis of Data
(LAD)-based regression model. One method for generating patterns in supervised data
mining is LAD, which is a combinatorial Boolean approach. Its primary use is in
classification issues, where it has outperformed competing methods in terms of
accuracy. In this work, we broaden the use of LAD to handle supervised data with
continuous replies. An LAD regression model (LADR) is developed by us. Three
discretization techniques are evaluated, each of which converts response values into a
set of criteria. At each cutoff, LAD treats the data as a problem of two-class
classification and pulls out the corresponding prescriptive patterns. Fitting a numerical
continuous dependent response with the patterns created from the original data using
cbmLAD software is what LADR regression is all about. As a result, we get a
normalized regression model where the independent variables are all binary. When
compared to linear regression (LR), support vector regression (SVR), decision tree
regression (DTR), random forest (RF), and polynomial regression (PolyR), LADR
outperforms all five methods on all six datasets. The Mean Absolute Error (MAE),
Coefficient of Determination (R2), and Mean Square Error (MSE) are used to assess

the performance, which is based on a 10-fold cross validation.

Apsemidis, Anastasios et al., (2020) [40] Classical process monitoring methods need
to evolve to address the growing complexity of contemporary issues in industrial
settings. One explanation for the surge in popularity of new Machine and statistics
Learning approaches in the statistics world is this precise reason. This article delves
into the specifics of process monitoring machine learning kernel methodologies and
techniques. We review the process monitoring papers that employ kernel models and
how these models are coupled with other Machine Learning techniques after we
introduce the principle of kernel methods. In conclusion, we review the whole body of

literature and highlight key aspects.
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Maulud, Dastan et al., (2020) [41] When it comes to machine learning and statistics,
linear regression is among the most popular and all-encompassing algorithms.
Discovering a straight line between a few factors is the goal of linear regression. Both
simple regression and multiple regression are forms of linear regression (MLR). This
study analyzes the performance of linear and polynomial regression based on the best
way to improve prediction and accuracy, and it examines many studies by different
researchers on the topic. Datasets are the primary emphasis of the reviewed
publications; a model's efficacy can only be verified by correlating it with the actual

values of the explanatory variables.

Razaque, Abdul et al., (2020) [42] Since it aids in the development of alternate
recommendation systems for academically inferior students, predicting students'
performance is a critical topic for learning environments. Consequently, several
initiatives aimed at enhancing education were put into place. However, most of the
present methods don't evaluate students' development. In this study, six machine
learning models—Decision Tree, Random Forest, Support Vector Machine, Logistic
Regression, Ada Boost, and Stochastic Gradient Descent—were used to evaluate the
students' progress. The criteria used to evaluate the performance include sensitivity,
accuracy, precision, and f-measure. The findings show that Stochastic Gradient Descent
is the most efficient model among the ones we chose for training tiny datasets. On top
of that, when compared to other models, it gives results with better precision. The goal
of this contribution is to create the most effective model that may be used to draw

conclusions about students' academic performance.

Kenge, Rohit. (2020).[43] Computer algorithms and data samples are the building
blocks of a mathematical standard model for decision-making that does not need
programming, a process known as machine learning. When a computer system learns
to do a job automatically, it indicates it has never been trained to do that task before.
We dove deep into the notion of machine learning, investigating its applications,
methods, models, and constraints, as well as its connections to related disciplines. In
the field of machine learning, supervised, unsupervised, and semi-supervised methods
are the most common. In addition to this Robot learning, feature learning, sparse
dictionary learning, reinforcement learning, and self-learning are some of the concepts

in machine learning. Following are a few examples of training models: a Bayesian
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network, decision trees, support vector machines, artificial neural networks, regression
analysis, and evolutionary algorithms. Machine learning has a few drawbacks that we
discovered, including its high installation cost, prejudice, and lack of accuracy and
ethics. In order to confirm these restrictions, we used a Google form to poll 400
consumers in the Nashik city and asked them two questions: When using e-commerce
mobile applications, do customers experience any bias? When dealing with medical
concerns at hospitals, does the consumer feel robbed? Our sample survey data shows
that consumers have a negative impression of health care providers due to unethical
treatment and a biassed experience while utilizing e-commerce applications. In
addition, we suggested a few ways around machine learning's shortcomings, including
an online self-declaration form, standardized medical bill proposals, and individualized

approaches to hardware installation.

Mahesh, Batta. (2019).[44] The study of statistical models and techniques that
computer systems use to carry out a given job autonomously from human programming
is known as machine learning (ML). Algorithms for learning in a wide variety of
programs that we use often. Learning algorithms that has learnt how to rank online sites
is one of the reasons why web search engines like Google operate so well every time
someone uses them to search the internet. For example, these algorithms find usage in
data mining, image processing, predictive analytics, and many more fields. One major
benefit of machine learning is the ability for algorithms to learn and execute tasks
autonomously once given data. This article has provided a high-level overview of
machine learning algorithms, as well as some predictions about their potential future

uscEs.

Gao, Qian-Qian et al., (2019) [45] For binary classification issues, this research
proposes a novel QLSTSVM, which stands for quadratic kernel-free least square twin
support vector machine. One benefit of using QLSTSVM for nonlinear classification
issues is that the kernel function and associated parameters don't need to be selected.
We immediately answer the reformulated consensus QLSTSVM by employing the
alternate direction approach of multipliers after applying the consensus procedure. The
QLSTSVM may also be solved using the Karush-Kuhn-Tucker (KKT) conditions,
which help to decrease CPU time. Two synthetic datasets and several benchmark

datasets from the University of California, Irvine (UCI) are used to evaluate the
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performance of QLSTSVM. In terms of classification accuracy and operation time,
numerical studies suggest that the QLSTSVM may surpass many current approaches

for solving twin support vector machines with Gaussian kernels.

M. Pradhan et al., (2019) [46] The potential for enhanced remote sensing technology to
use hyperspectral data for a variety of applications has grown thanks to the fast
development of multichannel imaging sensors. To get high performance in supervised
hyperspectral data classification, it is crucial to collect an appropriate training set. But
in many image analysis applications, including hyperspectral images (HSIs), getting a
labelled training sample may be a tedious, costly, and time-consuming ordeal. The
image analysis framework relies heavily on the active learning (AL) approach to
circumvent this issue. According to the research, HSI classification using AL has not
yet concentrated on learning rate in terms of calculation time, but on correctness. This
study presents an integration of the multiview-based AL approach with the kernel-based
extreme learning machine (KELM) classifier. The widely-used kernel-based support
vector machine (KSVM) was also compared to our method. Two Hyperspectral Image
datasets, one from the Kennedy Space Centre (KSC) and the other from Botswana
(BOT), were used to verify our findings. The proposed approach (KELM-AL) achieved
the classification accuracy up to 91.15% in KSC dataset while 95.02% in case of BOT
dataset with computation time of 149.78 s and 104.98 s, respectively. While KSVM-
AL achieved the classification accuracy up to 91.59% in KSC dataset while 95.96% in
case of BOT dataset with computation time of 7532.25 s and 6863.60 s, respectively.
This shows that classification accuracy obtained by KELM-AL is comparable to
KSVM-AL approach but significantly reduces the computational time. As a
consequence, the suggested approach reduces computing time significantly while

demonstrating promising results with sufficient classification accuracy.

Cao, Jianfang et al., (2019) [47] To improve upon the present state of the art in image
classification algorithms, it is suggested to use adaptive feature weight updates. This
will help overcome the shortcomings of both basic multifeature fusion methods and
algorithms that rely on a single feature for classification. In order to find the best weight
combinations, we employ the MapReduce parallel programming paradigm on the
Hadoop platform to adaptively fuse hue, local binary pattern (LBP), and scale-invariant

feature transform (SIFT) characteristics that are derived from photos. Afterwards, the
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best SVM classification model is obtained by using the support vector machine (SVM)
classifier for parallel training. This model is subsequently evaluated. The SUN, Pascal
VOC 2012, and Caltech 256 databases were used to construct a vast picture archive. In
the experiment, we measure the speedup, classification accuracy, and training duration.
We find that in a cluster setting, the speedup tends to expand linearly. In comparison to
popular classification algorithms like CNN and power mean SVM, this approach
outperforms them in terms of hardware costs, performance, accuracy, and time. The
classification accuracy rate goes over 95% as the quantity and variety of pictures both
grow. The suggested algorithm's training time is only one-fifth of that of conventional
methods with a single node when the number of pictures approaches 80,000. The
algorithm's efficacy is shown by this outcome, which lays the groundwork for efficient

processing and analysis of picture large data.

Mahesh, Batta. (2019). [48] The study of statistical models and techniques that
computer systems use to carry out a given job autonomously from human programming
is known as machine learning (ML). Algorithms for learning in a wide variety of
programs that we use often. Learning algorithms that has learnt how to rank online sites
is one of the reasons why web search engines like Google operate so well every time
someone uses them to search the internet. For example, these algorithms find usage in
data mining, image processing, predictive analytics, and many more fields. One major
benefit of machine learning is the ability for algorithms to learn and execute tasks
autonomously once given data. This article has provided a high-level overview of
machine learning algorithms, as well as some predictions about their potential future

uscEs.

Rong, Shen et al., (2018) [49] The impact of temperature fluctuation on the sale of iced
items is the focus of this research. We will begin by gathering information on last year's
forecasted temperatures and iced product sales, and then we will compile and sanitize
the data. At last, using data mining theory to the cleaned-up data, we will construct a
mathematical regression analysis model. The process of investigating the connection
between two variables—the independent and the dependent ones—is known as
regression analysis. In this work, we provide a linear regression model that fits the real
world by first defining a basic model based on an actual issue and then implementing

it using Python3.6, the most recent and widely used programming language. Pure
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object-oriented programming, platform independence, and a language that is both brief
and beautiful are all qualities that Python 3.6 enjoys. To provide the groundwork for
the corporation to fine-tune its production on a monthly, weekly, or even daily basis,
we will invoke the relevant library function to forecast iced product sales based on
temperature variance. This means that overproduction won't happen. Furthermore, the
alternative scenario is that the profit will be impacted by the reduced output, since the
increase in temperature will also be prevented. As a result, the regression model is

useful as a benchmark in other areas of marketing as well.

Y C a, Padmanabha et al., (2018) [50] Despite the low cost of unlabeled data, most
application domains do not have enough labelled data. Because skilled domain
specialists are needed to provide labels to the unlabeled data patterns, obtaining labelled
examples is a challenging task. As a compromise between fully supervised and
completely unsupervised learning, semi-supervised learning tackles this issue. A
selection of semi-supervised learning (SSL) strategies, including methods for self-
training and co-training as well as multi-view learning and TSVMs, are covered in this
work. Compared to more conventional supervised and unsupervised learning methods,
the accuracy of SSL's conventional classification into semi-supervised clustering and
semi-supervised classification is much higher. Scalability and applicability of semi-

supervised learning are also covered in the study.

Akinsola, J E T. (2017). [51] Statistical machine learning aims to create algorithms that
can learn from human-provided examples, generalize those findings, and then employ
those predictions to the future. Supervised classification is a typical task for Al systems.
Discover which supervised learning algorithm works best with your dataset, instance
count, and characteristics by reading this article's summary of supervised machine
learning (ML) classification algorithms, which compares and contrasts several
approaches. The seven machine learning algorithms that were considered using the
Waikato Environment for Knowledge Analysis (WEKA) application were Decision
Table, Random Forest (RF), Naive Bayes (NB), Support Vector Machine (SVM),
Neural Networks (Perceptron), JRip, and Decision Tree (J48). The 786 classification
cases found in the Diabetes data set were used to construct the algorithms. There is a
single dependent variable and eight independent factors in the research. When

compared to other methods, support vector machine (SVM) proved to be the most
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accurate and precise. After Support Vector Machines (SVM), Random Forest and Naive
Bayes were the most accurate algorithms for categorization. There are two primary
components, as shown by the results: first, the time needed to build the model and its
correctness; second, the kappa statistic and its MAE. As a result, ML algorithms need
precision, accuracy, and a low margin of error to achieve supervised predictive machine

learning.

Mohamed, Amr. (2017).[52] Decision Tree, K-Nearest-Neighbor, Artificial-Neural-
Network, and Support Vector Machine are four popular supervised machine learning
algorithms that have been compared. This report primarily focused on the main points
of each method, including its benefits and drawbacks. The research concludes with
practical application to compare their performance. Their efficacy has been assessed
using a number of metrics, including specificity and sensitivity. According to the results
of this research, no one metric can reveal all aspects of a classifier's efficiency, and no

single classifier can meet all requirements.

Zareapoor, Masoumeh et al., (2017) [53] It may be computationally challenging to do
classification with a huge number of features and thousands of classes. Classification
performance and computing cost may both be negatively impacted by the inclusion of
irrelevant information. Additionally, class-confusability occurs often in classification
with thousands or more classes, and training error increases with confusable classes. A
feature extractor and a classifier should be wisely combined to create a robust
classification model that can handle high-dimensional data with many classes, such as
k [U+202F]>[U+202F]10*. Although support vector machines with the right kernel
show promise for making decisions based on well-behaved features, they may have
unintended consequences when trying to model massive datasets with a high number
of classes. Architectures with remarkable learning and feature collection capabilities
include deep belief networks. In this research, we provide a hybrid system that
combines the training of a supervised deep belief network (DBN) to choose generic
features with the training of a kernel-based support vector machine (SVM) using those
features. Our hybrid model outperforms state-of-the-art methods on real-world datasets
with 20,000 to 65,000 classes, thanks to the accuracy-preserving substitution of linear

kernels for nonlinear ones caused by the high number of classes.

Fan, Mengbao et al., (2016) [54] When it comes to nondestructive assessment of
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product quality and structural integrity, eddy current testing is a common, cost-
effective, and non-contact option. One of the most important performance criteria for
defect characterization is the excitation frequency. Optimal frequency for detection
sensitivity and broad spectrum content have been the subject of several intriguing
articles in the literature. Nevertheless, there has been a dearth of study into optimizing
frequency in relation to characterisation results. In order to improve the efficiency of
surface defect categorization, this research investigates the optimal excitation
frequency. Using a support vector machine (SVM) and kernel principal component
analysis (KPCA), the effects of excitation frequency on a set of defects were uncovered
in terms of detection sensitivity, contrast between defect characteristics, and
classification accuracy. When the excitation frequency is adjusted close to the
frequency at which the maximum probe signals are recovered for the greatest flaw, it is
seen that probe signals are the most sensitive for a group of defects. Optimal
hyperplanes are used by the SVM to minimize structural risk after KPCA, which results
in optimal margins between defect features. This leads to the highest possible level of
categorization accuracy. The major contribution is that the effects of excitation
frequency on defect characterization are explained, and methods based on experiments
are suggested to find the best excitation frequency for a set of defects, not just one, in

terms of characterization performance.

Peng, Chong et al., (2016)[55] We present a novel discriminative regression-based
supervised learning model. With the use of class information, this new model can
estimate a regression vector that represents the similarity between test and training
samples. Because of this, our model is unique compared to traditional regression
models and locally linear embedding methods, and it is well-suited to high-dimensional
supervised learning challenges. Whether your data is high- or low-dimensional, our
model can handle it all, and it's easy to add support for nonlinear relationships. Two
optimization techniques are given for the model's convex objective function. Each of
these optimization strategies yields a scalable solution with a linear time complexity
that can be proven analytically. The experimental findings show that the suggested
strategy works well with different types of data. Linear solvers provide encouraging
results on large-scale classification, and our technique outperforms several popular
classifiers on high-dimensional data while being on par with them on low-dimensional

data.
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Bai, Yanqin et al., (2015) [56] When it comes to classification problems, support vector
machines (SVMs) have shown to be both successful and promising. Classification and
prediction of illnesses using real-world data has recently seen the effective use of
SVMs. We provide a novel approach to binary classification using a quadratic kernel-
free least squares support vector machine (QLSSVM). An benefit of the QLSSVM
model over the existing least squares SVM is that it is a kernel-free convex quadratic
programming problem. The decision variables of QLSSVM are divided into local and
global variables using the consensus approach. The consensus QLSSVM is developed
by transforming the QLSSVM into an alternating direction multiplier approach using a
Gaussian back substitution, and then the problem is solved. We conclude by
demonstrating our QLSSVM via numerical experiments using two distinct training data
sets. To validate our QLSSVM's performance, we first apply a numerical test using
synthetic data. The second one shows that our model outperforms other existing
approaches in illness classification using the diseases data set from the University of
California, Irvine, Machine Learning Repository. This allows us to apply our QLSSVM
to this domain. More specifically, our numerical example shows how successful our
QLSSVM is for a specific illness diagnosis using a customized data set for heart disease

given by the Hungarian heart disease database.

Igbal, Muhammad et al., (2015) [57] Giving computers the ability to learn from their
own data and experiences is a primary goal of machine learning. Machine learning has
already found many useful uses; for example, there are classifiers that can be trained
on email messages to differentiate between spam and non-spam, systems that can
analyze sales data to forecast client purchasing behavior, fraud detection systems, and
many more. In this research, we will concentrate on the strengths and weaknesses of
supervised learning classification algorithms, however machine learning may be
implemented as association analysis via unsupervised learning and reinforcement
learning as well. Using predictor characteristics to construct a succinct model of the
distribution of class labels is the objective of supervised learning. When testing cases
with known predictor feature values but unknown class label values are encountered,
the resultant classifier is used to ascribe class labels to these instances. We hope our
work will pave the way for future researchers to evaluate and contrast supervised
learning algorithms' efficacy and impuissance, as well as to direct new fields of

research.
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Tian, Yingjie et al., (2015) [58] A new binary classification method called
NSVMOOP—a nonparallel support vector machine based on a single optimization
problem—is introduced in this study. Incorporating the structural risk reduction
concept, our NSVMOOP is designed to accomplish class separation using the
maximum angle between feature space normal vectors and decision hyperplanes. In
contrast to previous nonparallel classifiers like the representative twin support vector
machine, it employs a modified sequential minimization optimization approach to solve
a single quadratic programming problem, resulting in the simultaneous construction of
two nonparallel hyperplanes. Both theoretical and experimental analyses are conducted
on the NSVMOOP. Results from experiments conducted on synthetic and publically

accessible benchmark datasets demonstrate its practicability and efficacy..

Santos, Adam et al., (2015) [59] In this research, we provide four different kernel-based
algorithms—one-class support vector machine, support vector data description, kernel
principal component analysis, and greedy kernel principal component analysis—for
damage identification in different operational and environmental settings. For this
performance evaluation, we retrieved acceleration time-series from a lab-based array
of accelerometers. This work primarily contributes by demonstrating that the suggested
algorithms may be used for damage detection and by comparing their classification
performance to that of four other algorithms that have already been established as
trustworthy methods in the literature. It turned out that each of the suggested algorithms

outperformed its predecessors in terms of categorization accuracy.

Pal, Mahesh et al., (2013) [60] This letter assesses the efficacy of a novel ELM
algorithm that uses hyperspectral and multi-spectral remote sensing data for land cover
categorization. Support vector machines (SVMs), the most popular methods, are used
to compare the outcomes. We compare the outcomes according to computational cost,
classification accuracy, and user-defined parameter count for simplicity of use. The
interoperability of the two techniques was ensured by using a radial basis kernel
function with both the SVM and the kernel-based extreme-learning machine
algorithms. As far as classification accuracy goes, the findings show that the new
method is on par with or even better than SVM. What's more, it has a far lower

computing cost and doesn't need a multiclass approach to work.

Pozun, Zachary et al., (2012) [61] Here, we provide a strategy for improving transition
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state theory dividing surfaces via SVM optimization. No previous knowledge or
intuition about reaction processes is necessary for the generation of the resultant
dividing surfaces. We use a machine-learning cycle that refines the surface via
molecular dynamics sampling in order to provide optimum division surfaces. The
crucial low-energy saddle points are included in the machine-learned surfaces, as we
show. In order to discover unanticipated chemically relevant processes, it is possible to
extract reaction mechanisms from machine-learned surfaces. Also, in contrast to a
distance-based dividing surface, we demonstrate that machine-learned surfaces
considerably enhance the transmission coefficient for an adatom exchange involving

several linked degrees of freedom on a (100) surface..

Gonen, Mehmet & Alpaydin, Ethem. (2011) [62] The use of a weighted linear sum of
kernels to combine several kernels is an approach that has been suggested in various
techniques in the last few years. These many kernels may be using data from a variety
of sources, or they might be corresponding to various ways of looking at the same data
in terms of similarity. We observe that these approaches include novel regularization
parameters that impact the solution quality, in addition to the conventional ones from
the canonical support vector machine formulation. In this study, we suggest optimizing
them using response surface methodology using cross-validation data. Our suggested
regularized variation is compared to multiple kernel learning on several bioinformatics
and digit recognition benchmark data sets with respect to accuracy, support vector
count, and number of kernels used. We observe that our suggested variation
accomplishes comparable or improved accuracy with fewer kernel functions and/or
support vectors by implementing appropriate regularization. Additionally, it enables
enhanced knowledge extraction by eliminating superfluous kernels and ensuring that

the preferred kernels accurately represent the problem's characteristics.

Khemchandani, Reshma et al., (2009) [63] Two similar SVM-type problems, smaller
than the one in a standard SVM, are solved to find a pair of non-parallel planes in twin
support vector machines (TWSVMs). Nevertheless, the selection of the kernel affects
the performance of the TWSVM classifier, much like other classification algorithms.
In this work, we define the TWSVM kernel selection issue as an iterative alternating
optimization problem over the convex set of finitely numerous basic kernels. Using a

few machine learning benchmark datasets developed at UCI, we show that the
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suggested categorization technique works.

Jain, Pooja et al., (2009) [64] Applying supervised machine learning techniques to a
dataset consisting of 11,360 domain pairs representing protein structures (within a
range of 35% sequence identity) and three secondary structural components, we
investigate the possibility of automating protein structural categorization. Given a one-
dimensional representation of the domain structures, fifteen algorithms from five
classes of supervised algorithms are tested for their capacity to learn for two protein
domains, the most fundamental shared structural level in the SCOP hierarchy. This
model contains evolutionary data in terms of sequence identity and structural data
describing the secondary structure components and domain lengths. There are two
stages to the assessment process: picking the top performing base learners and then
testing boosted and bagged meta learners. With F-measures of 0.97, 0.85, 0.93, and
0.98 for protein categorization to the Class, Fold, Super-Family, and Family levels in
the SCOP hierarchy, the most accurate model was determined to be the boosted random
forest, a collection of decision trees. Its cross-validated accuracy was 97.0%. By
improving the accuracy of instance classification in less populated classes, the meta

learning regime—particularly boosting—improved performance.

Agarwal, Sumeet et al., (2008) [65] In this paper, we use kernel-based machine learning
techniques to online learning scenarios and examine the associated need to simplify the
learned classifier. When dealing with circumstances that entail flowing data, whether
in medical or financial applications, online approaches really shine. We demonstrate
that a classifier can be constructed using the span of support vectors idea that meets
space and time limitations and performs adequately; this classifier may therefore be

applicable to such online scenarios.

Kotsiantis, Sotiris. (2007). [66] Finding algorithms that can generalize from examples
given to them and use them to predict future occurrences is the goal of supervised
machine learning. Basically, supervised learning is all about creating a clear model of
how class labels are distributed based on predictor attributes. When testing cases with
known predictor feature values but unknown class label values are encountered, the
resultant classifier is used to ascribe class labels to these instances. This study provides
an overview of several classification strategies in supervised machine learning.

Undoubtedly, this article is not meant to be an exhaustive examination of all supervised
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machine learning classification algorithms (also called induction classification
algorithms). However, we do hope that the references provided will address the key
theoretical concerns, leading researchers to intriguing new avenues of inquiry and

potentially uncovering unexplored combinations of bias.

Kotsiantis, Sotiris et al., (2006) [67] For example, so-called Intelligent Systems often
do supervised categorization. Statistics (Bayesian Networks, Instance-based
techniques) and Artificial Intelligence (Logic-based techniques, Perceptron-based
techniques) have therefore given rise to a plethora of methods. Using predictor
characteristics to construct a succinct model of the distribution of class labels is the
objective of supervised learning. When testing cases with known predictor feature
values but unknown class label values are encountered, the resultant classifier is used
to ascribe class labels to these instances. Different classification techniques are detailed
in this work, along with the most current effort to improve classification accuracy,

which is called ensembles of classifiers.

Kivinen, Jyrki et al., (2004)[68] With all the training data provided in advance in a
batch environment, kernel based techniques like support vector machines have been
very successful with a variety of challenges. The so-called kernel technique and the
high margin notion are combined in support vector machines. Few online settings that
are appropriate for real-time applications have made use of these technologies. Online
education in a Reproducing Kernel Hilbert Space is the focus of this research. Our
simple and computationally efficient techniques cover a broad variety of tasks,
including classification, regression, and novelty detection, by considering classical
stochastic gradient descent inside a feature space and using some straightforward
strategies. We also consider the need of big margins for classification in the online
situation with a drifting objective, and we show that the kernel method may be used
there. In addition to demonstrating that the hypothesis converges to the minimiser of
the regularized risk functional, we estimate worst-case loss limits. We provide practical
data that back up the theory and show how effective the new algorithms are for

detecting online innovation.
RESEARCHGAP

In order to tackle classification problems, this work seeks to examine machine learning
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models that make use of optimum kernel-generated surfaces. Machine learning models,
especially those trained on complicated and high-dimensional datasets, may be
improved by investigating the function of kernel approaches. Class imbalance, noisy
data, among the common classification issues that this research seeks to address via the
optimization of kernel functions are the curse of dimensionality and others. This study
aims to provide insight into the potential for optimal kernel-generated surfaces to
enhance the accuracy and generalizability of classification algorithms, their use is
investigated across different datasets. Improved and more efficient machine learning
models with broad applicability (e.g., image recognition, bioinformatics, and data

mining) are anticipated outcomes of this strategy.
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CHAPTER 3
REGULARIZATION-BASED AND ROBUST
ASYMMETRIC V-TWIN SUPPORT VECTOR
REGRESSION USING PINBALL LOSS FUNCTION

3.1 REGULARIZATION BASED LAGRANGIAN ASYMMETRIC-
V-TWIN SUPPORT VECTOR REGRESSION USING PINBALL
LOSS

In regression issues, whether the samples are inside or beyond the range of the estimate
functions, and if so, which ones. In this part, a novel twin support vector regression
technique is described using the robust pinball loss function, which is an extension of
e-insensitive loss function. By splitting the outliers asymmetrically over both regions,
pinball loss limits the fitting error and exploits the properties of e-insensitive loss. An
asymmetric tube may be built by introducing the asymmetric loss function, also known

as the pinball loss function.

The computation cost of the suggested model is reduced by using a straightforward
linearly convergent approach to get the solution. By including regularization into the

SRM theory's goal functions, the problem becomes very stable and convex.

Experiments on common real-world datasets based on many quality measures and on
synthetic datasets with symmetric and asymmetric structural noise (e.g.,heteroscedastic
and Gaussian noise) demonstrate the efficacy of the proposed approach. Pinball loss

also does a better job of surviving outliers than TSVR.
3.1.1 THE LOSS FUNCTIONS

¢ -insensitive loss

The ¢ - is defined as the insensitive loss function.

€ - concept of loss that is not sensitive

a—eg a=e€
L.(a) =4 0, e<a<g,
—a—¢ a<—g,
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The pinball loss

Here is the description of the pinball loss function:

pinball loss definition

1
E{I_EL I}FJ
L (x) =+ 0, —E<X<E,
L (x-g),  ¥E-8,
2(1-£)

where £ is a variable linked to imbalance and £ =0.5, it is going to resemble € - heartless

death.

3.1.2 STRENGTHENED STANDARDIZATION THE LASY-N-TSVR IS A
LAGRANGIAN ASYMMETRIC V-TWIN SUPPORT VECTOR REGRESSION
MODEL THAT INCORPORATES PINBALL LOSS.

This section examines the application of the pinball loss function in dealing with
asymmetric noise and outliers in difficult real-world circumstances using the LAsy-[]-

TSVR, an improved regularization-based technique.

Instead of calculating QPPs, the suggested technique solves the linearly convergent
iterative approach, which boosts prediction performance while reducing computational

cost.

This linearly convergent iterative technique takes into account the inputs and
determines the initial matrix inversion. We substitute its 1-norm for the slack variables
vector. {1 and (», By squaring the vector of slack variables in the 2-norm, we
demonstrate that there is a globally unique solution. Our suggested LAsy- [ -TSVR

formulation makes the issue enormously convex. Put limitations on regularization.
ﬁ 2 b2 d ﬁ 2 b2
> (Hlwyl] * + b1) an > (w2l * + b3)

The optimization problem may be modified to adhere to SRM theory by including the
TSVR and Asy-[]-TSVR scenarios. These scenarios strengthen the dual formulations

and ensure that the model is well-posed.
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LINEAR LASY-v -TSVR

The procedures for regression f;(x) = wix + b;and f,(x) = wix + b, when the

revised QPPs are solved yield.

. C, | N R )
min _2 (RN +'5|_}+; | y—(Bw, +eb)|" +=C/ & +Cvg;
2 p

subject to. y — (Bwy + ebyy = —eg; — 2(1 —§){; (3.1)
and
s C-i 2 2 1 2 ] 3 2
I ‘E‘{" w, | +bz)+5 |y —(Bw, +eb,)||” +=C.,L58, +Covy8;
p
Subject to
(BWZ + ebz) - y 2 _352 - 2{'—(2 (32)

where (gla = 1,...,4>0,¢;,6; = 0 and vy, v, are input parameters; C, =
(o le)l, g, =,y sz)t make up the variables that provide a degree of
flexibility & functions as pinball's loss function. Forget about the slack variables' non-
negative requirements at this point in (3.1) and (3.2). Equations (3.1) and (3.2) may be
transformed into their Lagrangian functions by using the Lagrangian multipliers o3 >

0eNRPas

L=Sw I +8)+ = | y—(Bus +eb) P +=CLid + Cyisl —a' (v — (Bw +eby) +eg, +20-£))
2 2 p (3.3)

and

C 1 1
L= 7“(” w | +b§)+5 Iy =(Bw +eby) | +—Co838, + Covaty — B'(Buwy +eby) - y +egy +28¢,)
P 34

In addition, by using the K.K.T. requirements from equation (3.3), we get

9 — Cywy — BY(y — (bw, + eb,)) + Bla = 0, (3.5)

6W1
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24 = C3by — ' (y — (Bwy + eby)) + efa =0, (3.6)
1

oy _ G, _ _ —

2=20-2(1-9a=0, (3.7)
91 = ¢ v,6, — ela = 0. (3.8)
681

Equations (3.5) and (3.6) are combined to give us

2| = 0iDy + ¢ DL - @) (3.9)

where D1 = [B, e] represents an enhanced matrix.

For primary issue (3.1), the dual QPP may be found by applying equations (3.3), (3.7),
(3.8), and (3.9).

2 t
min %ar[Dl (D]tD] + C_J)AD; + ipd-c) + e ]L’Z -(D, (DllDl + Czl)il Dlry_y)fa'

C] 2C] Vi (3 . 10)
In a similar vein, the dual QPP of the primary issue (3.2) is obtained as
min lﬁ’ [Dl (/D +C, "' D + ﬂ + ﬂjﬁ —(-D(D/D, +C,DH'D'y+y) B
2 C2 2C2V2 (3 . 1 1 )

By solving the QPPs (3.10) and (3.11), we may determine the values of a and 3. By
averaging fi(x) and f>(x) for every given test sample, we may get the final regression

function f, using x e R%:

fi(x) = wi + by = [x*1]((D{D; + C;D)™'Di(y — @) (3.12)
and
fo(x) = w; + by = [x*1]((D{D; + C41) ™' Di (y — B)) (3.13)

Non-linear LAsy-v -TSVR

The functions provided by the kernel f; (x)K (xt, BY)w; + b; and f, (x)K(x%, B)w, +

b, choose the appropriate QPPs for the development of non-linear LAsy- v -TSVR.
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. C 1 : |
mmf(ll w |I° +bf)+§|\ y=(K(B,B")w, +eb,) |’ +;ClCl &+ Cve

Subject to. y — (K(B, BY)w; + eb;) = —eg; — 2(1 — §){4 (3.14)
and
Subject to. (K(B,BY)w, + eb,) —y = —ee, — 2&(, (3.15)

spectively, where C, |a=1,..,4>0a; €1,62>0 and vi ,v2 serve as parameters for
input & serves as the loss function for pinball ; ,&; comprise the factors that allow for

some leeway.

With the use of Lagrangian multipliers a,3 > 0€RP, , we get the Lagrangian functions

of equations (3.14 and 3.15).

C 1 . 1
L =73(" W H2 +b]2)+5" y—(K(B,B")w, +eb1)H2 +;C1§;§1 +C1V1512

—a'(y—(K(B,B'yw, +eb)+ee, +2(1-£)¢,) (3.16)

and

I = %( |w, [|* +b))+ % | y—(K(B,B'Yw, +eb,)|" + l(":g_:-;: +C,v, 65
Z P

- {(K(B.ﬁ*}n-: +eb,)-y+es, + 25;’:] (3.17)

Applying the K.K.T. criterion yields the dual QPPs of main issues (3.16) and (3.17).

.1, ' 1yt 4}7(1—5)2 ee’ t 1yt t
- D (D, D nN—"bD —_ 2 +—|la—-(D, (D, D nNn—"D,y-—
mmza[ L, (D, D, + G D + C, +2C1V1 a—(D,(D, D, +CI)" D, y—-y)a (318)
and
N D t Ayt 4P§2 ee’ ' apt '
mmn — 8 , (D, D, +C I D) +———+—— |- (=D, (D, D, +C Iy " D, y+ ) S
2 C2 2C2V2 (319)

where D, = [K(B,B'¢] is an augmented matrix.

The final estimate function, f (.), is determined by averaging the following non-linear

functions, which yield the non-linear kernel, f1(x) and f>(x), after calculating the values

Page 74



of a and 3 from (3.18) and (3.19).

£, =[K(x.B") l]{:’}ﬂ!ﬂxﬁﬂ'} 1(D,'D, +C.1)" D, (v - a))

! (3.20)
w. t — 1
f2(x) =[K(x",B") I]Iibl} =[K(x,B") 11(D, D, +C,1)" D, (y+A)
2 (3.21)
An alternative way to rephrase issues (3.18) and (3.19) is as follows:
. L, :
min L(a)=—a'Ea-ra
0<aeR” 2 (3.22)
And
min  L,(f)= lﬁ’Elﬁ—i‘;ﬁ
0<fen’ 2 (3.23)

Respectively, where

E, = [D:(D:‘D: +C,I' D, + 4"":::_"5}_ + 2:‘?’ J,r] =D,(D,'D,+C,I)'D,'y—y
1 v

171

2 £
E, = (Dz (D,'D,+C, 0D, + 4‘;‘5 + %] and r, ==D,(D,'D, +C,I)' D, y+y
2 1V

Classical complimentary problems of the following kind are generated, respectively, by

subjecting the QPPs (3.22) and (3.23) to the KKT optimality conditions.

0<(Eia—1)La>0 (3.24)
and
0<(E,Bp—1m) LB>0 (3.25)

In order to verify the 0 < x L y > 0 if and only if x = (x — yy)+ regardless of the
parameters, x, and y vectors y > 0 , The following fixed point theorems rephrase the
corresponding set of questions from (3.24) and (3.25): to address any w1 ,y2 > 0, the

relations
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(Eya—mn) = (E;a—y,a— r1)+ (3.26)
and
(Ep—1m) = (EZB_WZB_r2)+ (3.27)

One can suggest the following straightforward solving the problems with (3.22) and

(3.23), using an iterative approach in the following way.

at*t = ETY(Eydt — 1) + 1y (3.28)
and
B = By (BB — 1)y + 17 (3.29)
ie.

4p(1-¢) N ee'
C 2C v

1 11

4 ,
] - [} 1 - - ] 4 l_f -
a =(D:(D1 D,+CI"'D, + J [ (Dy(D)D, +C,Iy"' D, +%

ee‘ t - — t I - - I
+ )a' _WJQJ _(DZ{D_‘ Dﬁ +(-_J) ID: Y=y, + Dt(D: D: + (-_J] ]D_‘ y _}:]]

20, (3.30)

and

1

g =| DD/, + ' D+ 3PS €€ | (DD D, +C ) D + 3PS € g
SRCE 27T, 20w, ERERE 27T, 26,
—y, B - (_D:(D:'D: + (‘.1”_I D:;J' + ), + (_D:(D:’D: + (‘1”_| D:;."‘ + )] (33 1)

Remark1: Implications of calculating the inverse of the matrices are readily apparent.

) 4 ]_ 2 t
Dy(Dy Dy + GV D, M+L
C, 2Cv,

and

‘ aa e ApET e
DD, Db, +C, VD, e ——
( -{ } . d] ) CZ ZCZVEJ

in the aforementioned iterative techniques (3.30) and (3.31) to obtain the LAsy-TSVR
solution. These matrices can be calculated from the beginning of the process and are

positive definite, in contrast to the Asy- v-TSVR and TSVR.
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Remark 2: A very tiny positive integer must be multiplied by TSVR and Asy-v-TSVR,
0 not to mention the identity matrix For the matrix to be true positive, I need to verify

it. But we don't think a tiny term is necessary for our suggested paradigm.

The LAsy- v-TSVR model consistently offers a distinct worldwide solution because

2 '
D(D,'D, +CIy D  APU=C) | ee
- _ o 2Cv,

and

4pr§1+ e:*e’
c, 20w,

(DI{D;D1+C4I]"D; + ]
Both of these matrices are positive definite.

Remark 3: Regarding any random vectors o’ € RP and B’ € RP, the iterate o' € RPand
B! € RP the unique solution is reached via iterative methods (3.28) and (3.29) a." € RP

and B* € RPin addition to meeting the prerequisites listed below, as
[|Eya™*t — Eya* || <|| 1 - aEfY| || By @' — Eya’|

and

I1E B — B, BEII<Il 1= BE; ||| Ez B — Ez Bl

It is possible to extrapolate the aforementioned convergence proof from.
Discussion: Among the many benefits of the proposed LAsy-v -TSVR:

e The cost function of the provided LAsy-[1-TSVR takes into account the 2-norm of
the vector of slack variables in order to make the problem highly convex and find

the unique global solution.

e For the purpose of using SRM theory, regularization factors are provided to the
optimization problem of LAsy-[]-TSVR. Herein lies the method's well-posedness.

e Using linearly convergent iterative techniques reduces the calculation cost, leading

to the suggested LAsy-[J-TSVR result.

3.1.3 COMPUTER-BASED TRIALS
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We conducted extensive numerical tests on common baseline real-world datasets for
SVR, TSVR, HN-TSVR, Asy-[1-TSVR, and RLTSVR to assess the feasibility of the
proposed LAsy-[1-TSVR. For our numerical studies, we rely on MATLAB software,
version 2008b. Using MOSEK's standalone optimization tools, the four formulations
(SVR, TSVR, HN-TSVR, and Asy-TSVR) manage QPPs. Exciting datasets covered in
these experimental findings include Space Ga Kin900, Pollution, IBM, RedHat,
Google, Intel, Microsoft Concrete CS, Boston, Auto-MPG, Parkinson, Gas furnace, and
Winequality utilizing Mgl7, among many more. This study examines non-linear cases

that employ the Gaussian kernel function as well as linear ones.
2 . .
K(xi,xj) = exp(—¢ ||xl - XJ|| JFori,j=1,..,p

where kernel parameter p > 0. In this case, we've taken all of our parameters from Table

3.1.

TABLE 3. 1 Overview of Parameters in the LAsy-v-TSVR Analysis

Parameters Parameters Approaches
£ {01 001} SWVE. RLTSVE
£01,03, 05, 07,09} TSVE. HN-TSVR
E=5", E=8" 0.1, 03,05 07,09} HN-TSVER
C f£105 .10 % SVE
C1=C7,C3=Cy £1075 10 (1071 (101 109 107 } TSVE. HN-TSVR, Asy-v-
TSVE, RLTSVE. LAsy-v-
TSVER
v =2 0.1, 03,05 07,09} Asy-v-TEVER
£ 0.01% LAsy-v-TSWVER
E {02, 04, 045, 0.5, 0.55, 0.0, Asy- v-TSVE, LAsy- v-TSVR
0.8 3
[ {25 ,...29} SVE, TSVE, HN-TSVE, Asv-
v-TSWVE, ELTSVE, LAsy-v-
TSWVE

Artificial datasets
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Eight intentionally created datasets, whose function descriptions are presented in Table
3.2, were subjected to numerical testing in this subsection. To verify the viability of the
suggested LAsy-v-TSVR in order to account for noise and outliers, we included two
forms of noise pollution—symmetric noise and asymmetric noise structure—into
synthetic datasets. Functions Synthetic datasets with noise variability caused by

symmetric distribution are generated using symmetric noise in equations 1-8.

TABLE 3. 2 Synthetic Dataset Generation Methods for LAsy-v-TSVR

Function Function Definition Domain of MNoize Type
Name definition
Function 1 fim, ®a m3 Wy mz) =079 +| ;[0 1.1 ={1. Z, Twpa A: L2
1.27 = ma+ 1.56 m, my 3.4,5% (—0.2.02)
+3 42 ;o m: +2.06 xaxmaxs +
Function 2 0 Twpe B: L= N{
0,0.27 3
Function 3 FALED) — ZET Cch that xesU{—dr4d4n)i= Twvpes A: Q2es1T
=)
1.2, ... .200 (—1.1)
Function 4 ¥y = filxd + (0.5 Type B: 2= N
(B - =2
— 10 (0,0.57 )
2.
Function 5 Flx) =|x—:|.| =T (—10,10) Twpes A: D20
* (—0.2.0.2)
+ |sin{®m(1l
Function & x—1 Twpe B: Q2= N
+=0l o=
0,0.2° )
+1 40
Function 7 FilEE] =y, ma =TT {0,1) Tevpa A: Q2es1T
= 1.9[1.35 (—0.2,0.2)
+ e lgin (13(x, = 0.6)%D
. = - r
Function 8 + egz"‘i—:‘t;-‘f'si.nl:é-rl:xz Twvps BE: ;:J‘E j iy
0,0.2°
— 0.3+ 0 : )

In order to generate the asymmetrical synthetic dataset, functions 3—4 use the
heteroscedastic noise pattern, where the noise is significantly dependent on the value
of training instances. They also use a uniform probability distribution. QeU (a,b)
Assuming a homogeneous noise interval and a normal distribution (a,b). Qe N (u,c)>
given a normal distribution, where and denote the average p and variance o° ,
respectively. In this case, we combine 500 testing data points devoid of noise with 200
training data points that include additive noise to produce a synthetic dataset. Table 3.4

shows the average ranks of all reported models for simulated datasets using Gaussian

Page 79



kernels, and Table 3.3 shows that our suggested LAsy-v-TSVR offers comparable or
higher generalization capability compared to earlier approaches, according to RMSE
values. The proposed LAsy-v-TSVR proves to be the most important and reliable
among SVR, TSVR, and Asy-v-TSVR in both linear and nonlinear scenarios, proving
its application and dependability. In order to assess the efficacy of the suggested LAsy-
v-TSVR on datasets exhibiting heteroscedastic noise, the prediction graphs for
Function 3 using uniform noise are shown in Figure 3.1. We also include Gaussian
noise in the Function 4 prediction graphs in Figure 3.2. Using Function 5's Gaussian
kernel, Figure 3.3 displays the prediction outcomes for all models and LAsy-v-TSVR.
We use uniform noise to test how well symmetrical noise patterns work. When the noise

is Gaussian, Figure 3.4 also shows the prediction graphs for Function 6.

TABLE 3. 3 Average RMSE Rankings of LAsy-v-TSVR and Reported
Approaches on Synthetic Data with Linear Kernel.

Dataset SVR | TSVR HN- Asy-- RLTSVR LAsy-v-
TSVR TSVR TSVR

Functionl 3 4 3 4] 1.5 1.5
Function2 & 3 4 B 1.5 1.5
Function3 3 1 6 2 35 35
Functiond & 1 2 3 3 4
Functions & 4 3 5 2 1
Functioné 6 4.5 4.5 1 2 3
Function? 6 4 3 1 3 2
Function8 3 4] 4 3 2 1

Average 5.375 | 3.4375 | 3.9375 3.75 2.3125 2.1875

rank

TABLE 3. 4 RMSE Rankings: LAsy-v-TSVR vs. Reported Models for Gaussian

Kernel on Artificial Data.
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Dataset S5VR | TSVR HN- Asy-1- RLTSVR LAsy-1r-
TSVR TSVR TSVR
Function 1 4 3 3 6 2 1
Function 2 ] 3 4 3 1 2
Function 3 ] 1 4 3 2.5 2.5
Function 4 ] 3 2 4 3 1
Function 5 ] 2 3 4 3 1
Function 6 ] 2 1 4 3 3
Function 7 6 ] 4 3 2 1
Function 8 2 ] 4 6 3 1
Average 525 | 3.25 3.375 4,375 2.0375 1.8125
rank
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FIGURE 3. 1 Test Set Accuracy Plot for Function 3 with Gaussian Kernel and

Uniform Noise.
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When dealing with symmetric noise patterns that include LAsy-[1- TSVR clearly beats
the stated models when it comes to agreeing with the final projected values, regardless
of whether the noise is uniform or Gaussian. Regardless of whether the noise is uniform
or Gaussian, the findings demonstrate that LAsy-[] -TSVR performs better when

dealing with asymmetric noise topologies.

Real-world Datasets

Using a linear kernel improved the prediction accuracy of LAsy-TSVR in 8§ out of 18
real-world datasets, while a Gaussian kernel improved it in 11 of the datasets,

demonstrating the model's usefulness and application to noisy datasets.

For the sake of visual representation, Figure 3.5 displays the expected results for Auto-
MPG, Gas furnace in Figure 3.7, and Intel in Figure 3.9. Figures 3.6, 3.8, and 3.10 show
the similarity and Intel, Gas Furnace, and Auto-MPG's Prediction Error respectively.
Based on these findings, it can be inferred that our suggested LAsy-v-TSVR technique
is both practical and useful, since its prediction values are near to goal values when
compared to SVR, TSVR, HN-TSVR, Asy-v -TSVR, and RLTSVR. In order to provide
statistical evidence for the effectiveness of our suggested LAsy-v -TSVR, we have
included the average rankings for all the approaches that were compared using linear
and nonlinear kernels in Tables 3.5 and 3.6, respectively, based on RMSE values. Both
Table 3.5 and Table 3.6 make it quite evident that the suggested LAsy-v -TSVR ranks

worst out of all the options.
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FIGURE 3. 5 Prediction on the Testing Dataset of Auto-MPG Using Gaussian

Kernel
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TABLE 3. 5§ RMSE Rankings of LAsy-v-TSVR and Reported Models on Real-
World Datasets with Linear Kernel

DDataset SN TSWER HMN- e RLTSVER LAsy—w—
TS5WER TSEWVER TSEWVER

ConcretelCS & Zx 4 3 s 1
Boston 1 4 & > 3 2
Anto RIPC T & T = = 3
Parkinsons 5 3 = e = T
WWinequoa by 3 1 El & 2 5
EinS 00 5 Zx 4 & 3 1
Demo & = 3 E} 1 2
=17 5 3 3 = T 3
Goosle & 1 5 =3 3 4

IBMT & 4 = 3 1.5 1.5
Intel 5 = Z 1 4 3

N r———Y g 1 ;3 p s T=

FedHat & 3 4 = 1.5 1.5
Pollution 3 & 5 El 2 1
Gas Furnace & = 4 3 2 1
Flexible robot & = 3 El 2 1

arm
S=Ps00 g p 3 T T s
Space Ga ] 1 z 3 4 5
Averagerank | 505556 | 327778 | 3.B3333 366667 1.63B889 152778

TABLE 3. 6 RMSE Rankings of LAsy-v-TSVR and Reported Models on Real-

World Datasets with Gaussian Kernel

Dataset SVER TEvE | HN TSVER | A+ ITSTER | RLISVER Tasy
TSVER

ConcreteCS & E) £l =z = T
Boston 1 & a 5 3 =
Aute AMPGC 3 5 a = 3 1
Parlinsons 5 E3 5 = T =
Winequality 1 E] 5 s ES =2
Tino 00 5 5 == ENE) 2 T
Demo 3 5 & = =z T
NI=1T 5 5 E 3 =z T
CGoogle 3 3 E] 5 = T
iz 3 E3 £l = = 1
Tntel & E] ] ES = T

Rhicrosoft & 5 E] ES T= T
Rediat F3 5 5 = T 2
Pollution T z 5 3 3 =

Cas Furnace 3 E3 E] 5 15 15
Flexible robot 3 ] E3 = T 3

arm

SZPE00 5 3 E 5 =z T
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Space Ga & 3 4 3 1 2

Average rank | 4.BBBED [ 416667 | 4.19444 3.86111 1.33333 1.85586

Statistical Friedman test

Currently, in order to identify variations in the ranking of RMSE among various
algorithms, a non-parametric Friedman test is performed with the matching post hoc
test on six algorithms and eighteen datasets. The primary use of this test is in rank-
based one-way repeated-measures analyses of variance. Under the null hypothesis, all

of these approaches are equally valid.
a) Linear Case

The following is how the Friedman statistic is calculated for the linear example using

Table 3.5:

2
1= 1§x 178 (5.0555562 +3.277787 +3.833337 + 3.66667* + 2.63889° +2.527782)[6X47H

X

% ~22.0873 and

17 = 22,0873

=———=5.5289
18x5-22.0873

There is a degree of flexibility in the distribution of FF, as stated by Friedman(6 -1, (6
-1) *(18 -1)) = (5, 85). For F(5,85), the critical value is 2.321. a = 0.05 . Since Fr >
2.321, All algorithms are not comparable, hence we reject the null hypothesis. After
that, we compare one procedure to the other using the Nemenyi post hoc test. Following
a rejection of the null hypothesis using the Friedman test, this test is used to compare

pairwise performances. Thus, we determine the significant difference (CD) by using

ga = 2.589 as CD = 2.589 /6” = 1.6145
6%X18

For 6 =0.10 given that the worth of qa the number of algorithms that were reported and
the value of 0 from the difference of the average ranks of SVR and LAsy-v -TSVR
(5.055556 - 2.527778 = 2.527778), which is higher than CD (1.6145), are used to
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determine this. The outcome guarantees that LAsy-v -TSVR outperforms SVR in terms

of prediction performance.

b) Non-linear Case

Secondly, SVR, TSVR, HN-TSVR, Asy-v-TSVR, RLTSVR, and LAsy-v-TSVR

average ranks in a nonlinear situation using real-world datasets.

2
F

Xr ~41.8016 and F, =

_12x18

2
(4.88889% +4.16667” +4.19444 + 3861117 +2.33333° +1.555562){6X47]],

X

17 < 41.8016 —14.7438
18x5—-41.8016

For F(5,85), the critical value is 2.321 a = 0.05 . Since, Fr > 2.321, under these

circumstances, the null hypothesis is rejected. Do a pairwise comparison of the

approaches using the Nemenyi test. The difference that matters most here is 1.6145.

Since the average rank difference between SVR and LAsy-v-TSVR is more than
1.6145, (4.888889 -1.555556 = 3.333333) therefore LAsy-v-TSVR is better than
SVR.

The prediction performance of LAsy-v-TSVR is much better than that of TSVR, as
shown by the higher difference between the average rankings (4.166667 -1.555556
=2.611111) compared to (1.6145).

In comparing HN-TSVR and LAsy-vv-TSVR, the average rank difference is
2.638889, which is higher than 1.6145, suggesting that LAsy-v- TSVR is superior
to HN-TSVR.

The fact that the difference in average rank between Asy-v-TSVR and LAsy-v-
TSVR is more than 1.6145 indicates that LAsy-v-TSVR is more prevalent and
useful than Asy-v-TSVR.

In this section, we propose a more effective method known as LAsy-v-TSVR, which

stands for enhanced regularization-based Lagrangian asymmetric v-twin support vector

regression. This method uses a pinball loss function and effectively incorporates the

Page 88



core principle of statistical learning, namely the SRM notion. Unlike SVR, TSVR, HN-
TSVR, and Asy-v-TSVR, which use quadratic programming problems (QPPs), LAsy-
v-TSVR uses the linearly convergent iterative approach to achieve its solution. Thus,
in our scenario, an additional optimization toolset is not necessary. Proposed LAsy-v-
TSVR outperforms previously described approaches in terms of efficiency and
applicability, and it can handle symmetric and asymmetric patterns with two types of
uniform and Gaussian noise for statistical support. Through experiments on several
real-world datasets, it has been determined that the proposed LAsy-v-TSVR
outperforms SVR, TSVR, HNTSVR, Asy-v-TSVR, and RLTSVR with respect to
learning speed and prediction accuracy, demonstrating its practicality and adaptability.
One of the best ways to approximate regression problems is using unconstrained convex
minimization; in the future, we may think about using more efficient convergent

iterative methods like the Newton iterative method.

3.2 ROBUST ASYMMETRIC-v-TWIN SVR UTILIZING PINBALL
LOSS FUNCTION

The effectiveness of LAsy-v-TSVR, an enhanced regularization-based Lagrangian
asymmetric v-twin support vector regression with pinball loss function was shown by
the experimental findings in the preceding section, where the topic of regression
problem solution was covered. Through transforming the 1-norm of the slack variables'
vector 1 and (p, in our proposed regularized LAsy- v-TSVR formulation, the issue is
created strongly convex and ensures the availability of a globally unique solution by
using the square of the vector of slack variables in 2-norm. The dual space is where
LAsy-v-TSVR finds its answers using an easy iterative convergent technique. Before
applying the newton iterative approach and expanding the study to a more efficient rate
of convergence of TSVR, we present an alternate way to obtain the solutions using
three implementations, including a generalized derivatives approach and two
smoothing approaches-based methods. An example of this is controlling the fitting error
within an asymmetric tube using the pinball loss function. Leading to a steady and well-
posed dual issue is another advantage. Of the three methods, the smooth approximation
function outperforms the others on both real-world and simulated datasets,
accommodating symmetric and asymmetric patterns with two types of uniform and

Gaussian noise, so supporting statistically.
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3.2.1 ROBUST ASYMMETRIC LAGRANGIAN V-TWIN SUPPORT VECTOR
REGRESSION WITH PINBALL LOSS AND UNCONSTRAINED
MINIMIZATION (URALTSVR)

An effective idea as resilient asymmetric For major and essential real-world
applications, we provide Lagrangian-twin support vector regression with pinball loss
as an unconstrained minimization problem to handle asymmetric noise and re-sampling
instability, thus improving prediction performance. The suggested URALTSVR
formulation is described by taking into account the square of the vector of slack
variables 1, by adopting the two-norm instead of the one-norm, we can make the
model more strong and convex, which in turn proves that there is a globally unique

solution and allows us to eliminate the non-negativity criteria for the slack variables as

. . . c
they are met at optimum. Furthermore, regularization words are included 73 (| Wy |I1% +

b?) and % (|| Wy ||? + b3) reduce the overfitting problem and improve the stability in

the dual formulations, respectively, by making the problem a positive definite and well-
posed model in the objective functions of (3.32 and 3.33). When developing non-linear
URALTSVR, the functions that are produced by the kernel are used f;(x) =
K(xt, BOYW, + byand f,(x) = K(x',BY)W, + b, are decided by the subsequent
QPPs as.

-

. | . N R .
min ?(” w, |7 +b1_)+5 | y—(K(B,B")w, +eb)) | +;(-1":1 ¢, +Cvg

subject to. Y — (K(B, BYYW; + eby) = —ee; — 2(1 - &)E, (3.32)

and

mjn%(H w, ||° +b§}+%|| y—(K(B.B")w, +eb,)| +l(ﬁ2§;§2 e
P

subject to. Y — (K (B, BY)W, + eb,) = —ee, — 2(1 — &)E, (3.33)

respectively, were Ci, Ca, C3, C4>0: &1, &, = 0 and v4, v, act as parameters for input.

& functions as a pinball loss. €1, > comprise the factors that allow for some leeway.
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The dual QPPs of primary issues (3.32) and (3.33) are provided as a result of applying
the KKT criteria.

1 . G 4p(1=8) e ‘ A :
—a'| D,(D,'D, +C.1)' D, + + a-(D,(D, D, +C,I)"D,y-y)a
mmz[‘(__ )" D, C v (D,(D, D, +C,I)" D, y-y)

"1

(3.34)

And

min %B{DE(D_,FDE +C, Iy, 2P,

C v Jﬂ_('Dz(Dszz +C4I)_]D1FJ"+)”){3

(3.35)
where D2 = [K (B, B e] is an augmented matrix.

After determining the worth of o and B using equations (3.34), (3.35), and (3.35), the
non-linear kernel's final estimate function f (.) is calculated by averaging the following

non-linear functions fix and f>x as

£ix) =[K(x'.B") I]BJ]}[K{JH,B‘) (D, D, +C,1)"' Dy’ (v - )

(3.36)
and
() =[K(x'.B) 1][“’1} =[K(x',B) 1(D,'D, +C,0) ' D, (v + B)
b,
2 (3.37)
Here is another way to rephrase problems (3.34) and (3.35):
min L (a)= %e:r"Ele:r— ra
O<aeR’ (3.38)
And
. |
nun L:{ﬁ}z_ﬁJE:ﬁ_rzjﬁ
0<feR’ 2 (3.39)

respectively, where

E =|Dyp,D, +Cnyipy + 22U e ) — D (D, D, +C,1) D, y—y
2 ) C, 2C,v

171
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E =Dy, D, .1y D, + 2P |,
' o G, 20w,

Andr, = —D,(DiD, + C,1)"'Diy + y

The following two typical complementary issues arise as a result of applying the K.K.T.

optimality requirements to QPPs (3.38) and (3.39):

0<(Eja—nr)la>) (3.40)
And
0<(E;f—1m)1B =0, (3.41)

that is, in turn. Through the use of the 0 <x L y > 0 if and only if x= (x- yy)+ regardless
of the parameters, x, and y vectors y > 0, The following fixed point theorems rephrase

the related issues from (3.40) and (3.41): for any vy ,y2 > 0, the relations

(Era—1) = (Eia—yYa—1), (3.42)
And
(B2 — 1) = (B2 — Y8 — 1, (3.43)

By satisfying the requirements (3.42) and (3.43), the dual issues of restricted
minimization (3.38) and (3.39) may be recast as a set of unconstrained minimization

problems:

. 1, . 1 , ,
min L(a) = S Ea-ria+—(|(Ea-ya-n). |~ (Ea-n)|")
= 2 2y, (3.44)

And

fen?

= l f f 1 2 2
mmn L,(a) = E)B Ezﬁ_rzﬂ"'z_(” (E:ﬂ—fﬂzﬁ—f”:h I~ - ” {E:ﬁ_rz)” )
Vs (3.45)
Using the Newton iterative method, one can discover the unknowns in the
unconstrained minimization problems with strongly convex, continuous, and piecewise

quadratic functions, as seen above o and B . Here, we use the most up-to-date i iterate
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ol and B, the value of o'"! and B™' are determined at the (i +1)™ repeat using the

following method:

VLi(a') + V2L, (a')(a"** —a) = O wherei = 0,1,2 ... (3.46)
And
VL,(BY) + V2L, (BY) (Bt — B) = O where i = 0,1,2 ... (3.47)

in that order. The minimization problems' gradients, therefore, are (3.44) and (3.45),

which are given by VL; (o)) and VL (B) as

VL, (a) - [g) (Ea-r)-(Ea-va-n),l
‘ (3.48)
And
VL.(f) = [M] [Eafi—r)—(Bof—yaf— 7). ],
v (3.39)

And in order to get the corresponding Hessian matrix for L1 (o) and L> (p),as a result,
the gradient of L; () and Lo (B)may be differentiable twice in the conventional sense,
but their 'plus' function is continuous. We have proposed methods for determining the
Hessian matrix, such as the generalized derivative technique or a smooth approximation

function in lieu of the 'plus' function.

Remark 1: Reason being that SVM with Hinge loss is quite vulnerable to noise in the

features as well as the labels.

The robustness property is examined and studied by taking the pinball loss into account
and using the quantile value, which is more resistant to re-sampling and noise than the

hinge loss.

Generalized derivative approach for URALTSVR

Using the generalized derivative method, the Hessian matrix is calculated, and the

generalized Hessian of the problems (3.44) and (3.45) is provided as
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vz"{‘l{a} = [M] [E] 'le'w‘yl‘jr _E] )a’jag ((Elg —ya-n ) }]‘
1 (3.50)
And
5 w.l—E, ,
v Ll(,ﬁ) = [;J [E_ + (y;:j’ - Eljd"'("g ((Ezﬁ _y’(:)ﬁ_ g ).)] .
2 (3.51)

To choose the parameter, we use the fact that E; and E» are positive definite matrices

v, > |IEkll for k=1,2,then V? Ly (a) and V? L,(a) turns becomes a positive definite.

So, we can find out how much the unknowns are worth a and in a manner that makes

use of the following basic iterative techniques from equations (3.46 and 3.47).

£+l -Ediag (Ea' -pa' =n) @™ ~a) =H{(Ea’ -r)~(Ea’ -0’ =1). ], 5 55

And

[E, +(y,] - E,)diag (E,p' _V"'zﬂi =1 )-)](ﬂi_l _ﬂJ):_[(E:ﬁf _rz)_(Ezﬂi _V"zﬂi _'"z)_]-(3_53)

Moreover, by averaging the values of o and [ in equations (3.36) and (3.37), we may
get the final regressor f (xs) for every test sample x, fi (Xs) and f> (Xs). The GRALTSVR
method is based on the generalized derivative method, and it is called after that. Here
is GRALTSVR's time complexity 2(m3) + 2*0(i*m3)m in where i is the iteration

counter.

Smooth Approach 1 for URALTSVR (SRALTSVRI1)

To facilitate the computation of the problem's

Hessian matrix, Lee and Mangasarian offered a common smoothing technique that may
be used to transform the non-smooth function into a smooth function. It is clear that
issues (3.44) and (3.45) are serving 'plus' missions (x, ) in their goal functions, hence a
smooth approximation function should be used to replace these 'plus' functions

v, (%, 7) it is expressed as:

yi(xrt)=x+ ! log(1l +exp(—zx)) -
¢ (3.54)
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where xeR and smooth parameter t > 0.

Indeed, for any t up to p, x is equal to (x1, x2,...,x) €R”, The premise is that v, (1) =
(A C R Teey Y, () 1))¢. Consequently, the two unconstrained minimization

problems (3.44) and (3.45) will be transformed into

= l T i l 2 2
mim L(a)=-a Ea-ria+—(| n((Ea-ya—n)7)| —|(Ea-n)|)
wei 2 2, (3.55)

pei?

min L, (B) =~ BE.f—r: f+ ——(1 7.(Eu B~ -0 I = (Esp=1) IP)
2 &y, (3.56)

that is, in turn. Already provided by (3.48) and (3.49), respectively, are the gradient

vectors of (3.44) and (3.45). Their resulting Hessian matrices are then calculated as:

V1L1(Q):{W11_El]{£‘l+(W1‘!_El]dfag[l El ) ]:|'
v, rep(-rba—ya-n)) (3.57)
And
, (I -E, ~ _ 1
ViL(P) _( i ][Eﬁ +wol Ez)dmg(l+exp(—r(Ezﬁ—wqﬁ—n ))ﬂl
2 o (3.58)

and so on. To discover the Lagrangian multipliers, one may use a technique similar to

GRALTSVR to solve the following simple iterative schemes o and 3 as:

1

1+exp(—r(E|af —:ylai -n

{El +(fj/11’—E1 )(ﬁﬂg[ ]}]] (afﬂl _ai ) — _[(Elﬁ'i -n )—(Ela!' _wlgf- -1 )1 ]

(3.59)

And

1
L+exp(~1(Ex ' —p2 ' —1y)

{Ez +(*V21—Ez)ﬂ'iﬂ§[ ﬂ (B =B =A(Ey ' -1y ~(Eo B ~y2 ' 12, ]

(3.60)
In addition, using the means of fi(Xs) and f>(Xz2) in equations (3.36) and (3.37), we may
get the final regressor f(Xs) for every test sample s x. The SRALTSVRI1 method uses

a smooth approximation function. The vectors o. "' and B !, SRALTSVRI may be
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calculated for every integer i from 0 to n using 2(m*)+2"0(@i"m?) complexity such that

iterations i are fewer than or equal to i plus one.

Smooth Approach 2 for URALTSVR (SRALTSVR2)

To make the function easily twice differentiable, we use another smoothing method to

replace the non-smooth plus function with a smooth one. This method is defined as

1 72

1
J— +_.
4|z, 2

1
}’2(?.',1'0)= T+eru[;

(3.61)

where V2 (t,70) serves as the function that estimates 1+ ;1o + has a real value that does

not equal zero.

Obviously, when the worth of |to| is nearer to |t|, then 2 (1,70) becomes closer to t+. In

fact,y2(t,10) =t+ whenever |to|=|t|£0.

Then, the two unconstrained minimization problems (3.44) and (3.45) will be
transformed into for
. | p 1
min [ (a) =~ a Ela-na’+$(|\ r(Ea-ya-n)a)l’ -l (Ea-n)|")
1

aehf

(3.62)

Ben?

. 1 : 1 2 :
mlnLg(ﬁ)zaﬁ Ezﬂ_rzﬁ']'i(” V(B B—w,B—1). B 1 (BB -1) ) (363)

in such cases, where the element of a3, eRP more than zero. Equations (3.48) and

(3.49) determine the gradient vectors of equations (3.62) and (3.63), respectively. We

can now calculate their Hessian matrices as:

VELI(O.’) —(M} I:l (I_Q] )El +(I+Ql)l/‘f]1} ,
no (3.64)
and
where
0= dfag[WJ and Q5 = diag(%]
0 ‘ (3.65)
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that is, in turn. The following basic iterative approaches for finding the Lagrangian

multipliers may be solved by using a similar process to GRALTSVR o and j as:

[l(I_Ql)E1 +(I+Q1)V/1]:|(a£+l _ai) :_[(Elai _rl)_(Elaj _V"lai -r).]
2 (3.66)

and

[l(I_Qz)Dz +(I+Qz)772]}(ﬁj+l -B9 =_[(D2IB£ -r)=(D,p' -m,B -n),]
2 (3.67)

where

0, = a’fag(w] and O, = dfag[MJ

e | | By |
Lastly, we determine the final regressor f (x) for every test sample, much as
SRALTSVRI1 x, eR" by taking an average of f; (xs)and f;(x,) In honor of the smooth
approximation function, we have dubbed this method SRALTSVR2. Time complexity-
wise, SRALTSVR2 is not dissimilar to SRALTSVRI, 2(m3) + 2*0(i*m?).

Remark 2: The empirical version of TSVR outperforms SVR, but it has a few
drawbacks, like being noise-sensitive, difficult to implement when dealing with big
data, and losing control over the complexity of the model, which causes overfitting and
less-than-ideal solutions. To explain why URALTSVR learns more quickly than TSVR
and SVR, our suggested method solves two systems of linear equations rather than

quadratic programming issues.

This improved approach is more resilient while controlling the fitting error within the
asymmetric tube with the pinball loss function, and it also produces better or equivalent

generalization performance.
Remark 3: Discussion based on SVR vs TSVR vs Asy-v -TSVR vs URALTSVR

> There is a globally unique solution and the non-negativity constraints for slack
variables can be discarded because they are inevitably satisfied at optimum, thanks to
the model's stronger convexity and the significance of the L2-norm of the square of the

vector of slack variables, which is different from other state-of-the-art approaches.
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> In comparison to TSVR and Asy-k -TSVR, the dual formulations benefit from

regularization's substantial influence, which makes the issue positive definite and

produces a well-posed model that mitigates overfitting and enhances stability.

> Unlike SVR, TSVR, and Asy-TSVR, the proposed URALTSVR uses gradient-based

iterative techniques to solve an unconstrained issue, eliminating the need to tackle huge

quadratic programming problems (QPPs).

> Their non-differentiable goal function takes into account a non-smooth '+' function

in URALTSVR. A generalized derivative technique, a smooth approximation method,

or the Newton method is all possibilities for handling this non-smooth function '+'.

> In contrast to SVR and TSVR, an external toolbox is not required when using a

function iterative technique to handle the unconstrained minimization issue, Asy-v -

TSVR.
3.2.2 NUMERICAL EXPERIMENTS

A desktop computer equipped with a 3.20 GHz 64-bit CPU is taken into account for the
numerical experiment Intel® Core™ 15-3470, MATLAB 2008b software compatibility
requires a minimum of 4 GB of RAM on a physical device and Windows 10. Also used

in the solution of the QPP 1s an external optimization toolkit called MOSEK.

We have conducted numerical tests with different algorithms, such as SVR and TSVR,
to evaluate GRALTSVR, SRALTSVRI, and SRALTSVR2 for their efficiency and
Asy-v -TSVR using sixteen synthetic datasets and seventeen real-world standard

benchmark datasets.

We tried the experiment with six methods for the linear and nonlinear cases using ten-
fold cross-validation to assess the sufficient performance for each dataset. Essentially,
this implies that the training dataset is partitioned into two halves: one half is reserved
for training, while the other half is used for testing to determine the best values for the

parameters.

We have computed RMSE, SSE/SST, SSR/SST, and SMAPE to compare the prediction
performance of our proposed algorithms GRALTSVR, SRALTSVRI, and
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SRALTSVR2 with other methods that have been reported. As mentioned in Table 3.7,
parameter selection is a critical step in these experiments because it directly impacts the

algorithms' performance.

TABLE 3. 7 List of applicable all parameters and their range in URALTSVR.

Parameters Models Range

= SVE [01.001,00017

TSVE [01.03.05,07.00}

v and vy Ay JTSVE, 0103030700}
GEATLTEVE,
SEALTSVE], and
SEATTSVE2

P Azyow TEVE, 0204045,
GEALTEVE,
SEAILTSVE], and
SEATTEVEZ

LA
(=]
;..JI
=
i.,.ll
=
=-
=
=
]
gt

K SVE, TSVE, Asy-w - {22 .27}
TSVE, GRATLTSVE,
SEAITSVE], and
SEATTSVEZ

C SWVE., TSVE and Asv-v - 110 107 }
TEVE

C1=0Crand C;=Cx GERAT TSVE, {10 107 101 10T 105 107
SEATTSVE], and ¥
SEATTEVEZ2

The non-linear version of the Gaussian kernel function looks like this:
K(x,.x,)=exp(-u| x, —x, ), for q,r=12,.,p
in this case the kernel parameter p > 0 .

Artificial Datasets
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We examine sixteen synthetic datasets that are created intentionally and whose
definitions are provided in, meaning that the noise is reliant on the value of the input
data, in order to assess the robustness of the proposed URALTSVR. In this case, we
create the noise by treating the interval (a,b) as a uniform probability distribution and

treating it as noise Q2eU(a,b) together with the use of standard deviation N (p, 6%) .

To demonstrate the efficacy of the presented approaches in a noise-free environment,
the first twelve synthetic datasets include 500 testing samples randomly created and
200 training samples randomly generated with the inclusion of symmetric noise of both

kinds.

To illustrate heteroscedasticity, the last four datasets use two hundred randomly
generated samples for training, with the addition of a non-uniform level of noise using

both types. To test and validate the reported methods, 500 samples are generated.

Looking at these tables, we can see that out of sixteen synthetic datasets, our suggested
methods performed better in ten cases using a linear kernel and nine cases using a

Gaussian kernel, leading to better generalization performance.

This allows us to numerically evaluate the efficacy of GRALTSVR, SRALTSVRI, and
SRALTSVR2. Additionally, GRALTSVR and SRALTSVR2 need less time to train
than SVR, TSVR, and Asy-[] -TSVR. This is because, unlike SVR, TSVR, and Asy-[]
-TSVR, these techniques instead discover the solution via solving gradient-based

iterative schemes, rather than the QPP.

More specifically, we have used the linear kernel in Table 3.8 and the Gaussian kernel
in Table 3.9 to calculate the average rank of the described techniques for all synthetic

datasets based on RMSE.

TABLE 3. 8 RMSE Rankings of URALTSVR and Reported Models on Synthetic

Datasets with Linear Kernel.
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Trataset SVE | TEVE Ay CEATTSVE SEATTSVEI SEATTEVER
TEVE
Fumctiom & E] 3 1.5 ] I.5
1
Function 1 & 5 3.3 e 3.3
2
Fumctiom 1 E] & pr 5 pr A
3
Function & 3 2 45 T o
4
Fumctiom & ] 5 5 1 pr A
Functiomn 1 ] 5 A E} 25
&
Fumctiom & ] 5 I.5 E] 1.5
Fumctiom & P 1 45 E] E N
2
Fumctiom & 3 ES 1.5 1 1.5
o
Function e I El 5.5 El 5.5
10
Fumctiom 4 5 & 1.5 E] 1.5
11
Function 1 b ] 15 ) L3
12
Function | & 3 El T3 T 13
13
Function 1 el ] 15 5 13
14
Function ] 5 p 35 I 3.5
15
Function 5 3 b L5 4 1.3
16
Arvarama 4 ERE 4,503 L6EYS 33125 L6ES
=k

TABLE 3. 9 RMSE Rankings of URALTSVR and Reported Models on Synthetic

Datasets with Gaussian Kernel.
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Drataset SVE | TSVR Agy-v- GRALTSVE | SRALTSVEI | SRALTSVER2
TSVR
Function 1 6 4 3 1.5 3 1.5
Function 2 1 8 5 35 2 3.5
Function 3 1 4 6 2.5 3 15
Function 4 ] 3 2 4.5 1 4.5
Function 3 6 4 3 2.5 1 15
Function 6 1 [ 3 15 4 13
Function 7 ] 4 5 1.5 3 1.5
Function 8 6 2 1 4.3 3 4.3
Function 9 ] 3 4 1.5 5 1.5
Function 10 2 1 3 3.5 4 5.5
Function 11 4 5 ] 1.5 3 1.5
Function 12 1 6 3 2.5 4 15
Function 13 ] 3 4 1.5 5 1.5
Function 14 1 4 6 25 3 15
Function 13 6 ] 2 35 1 33
Function 16 5 3 8 15 4 15
Averags rank 4 393754373 16875 33125 26875

Figure 3.11 shows the suggested techniques in the non-linear situation, and Figure 3.12
shows the average rankings in terms of RMSE of all the baseline approaches. We have
also included additional information by plotting a boxplot for the linear case. Our
suggested methods outperform previously published algorithms for binary
classification, as shown in Figures 3.11-3.12. Table 3.8 shows that SRALTSVRI1 has
the lowest average rank among all reported approaches, while Table 3.9 shows that
GRALTSVR and SRALTSVR2 have the lowest average rank. This supports the idea
that GRALTSVR, SRALTSVRI1, and SRALTSVR2 are more applicable and robust
than SVR, TSVR, and Asy-v-TSVR. We have shown the prediction accuracy graphs
for Function 4 with Gaussian noise in Figure 3.14 and for Function 3 with uniform

noise in Figure 3.13.

Page 102



MSE Ranking

AverageR

FIGURE 3. 11 Boxplot of Average RMSE Ranks on Synthetic Datasets Using
Linear Kernel for URALTSVR and Reported Models

i
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SVR TSVR Asy-wTSVR GRALTSVR SRALTSVRI SRALTSVRZ
Models

FIGURE 3. 12 Boxplot of Average RMSE Ranks for Synthetic Datasets with

Gaussian Kernel

Figures 3.15 and 3.16 show the prediction performance for Function 9 and Function 10,
respectively. Our suggested algorithms GRALTSVR, SRALTSVRI, and
SRALTSVR2 work well with datasets that have a symmetric noise structure, as shown
by the graphs, which demonstrate superior or equivalent regression functions for these
approaches. So, for datasets with heteroscedastic error (noise), the input samples have
a significant impact on the performance of our suggested approaches GRALTSVR,
SRALTSVRI1, and SRALTSVR2. Similar to the case of uniform noise, Figures 3.17—
3.20 show the accuracy plot for Function 13, 14, 15, and 16, respectively, in synthetic
datasets. Our approaches are more beneficial for handling the influence of the

heteroscedastic error structure, as can be seen from these figures.
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Implementing Function 3 using Uniform Noise and a Gaussian Kernel.
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FIGURE 3. 14 Accuracy Visualization for Reported Models on Test Set

Combining Gaussian Noise with a Gaussian Kernel to Evaluate Function 4
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a) Linear case

In this case, we can say that, when comparing the six algorithms, SRALTSVRI1 often

has the lowest error outcomes.

Among seventeen real-world datasets, SVR, TSVR, Asy-v-TSVR, GRALTSVR,
SRALTSVRI, and SRALTSVR2 achieved the best results in two, zero, four, seven,
and four instances, respectively. The calculation times of GRALTSVR, SRALTSVRI,
and SRALTSVR2 are comparable to TSVR and Asy-v-TSVR, and they are always
much faster than SVR. Our suggested techniques GRALTSVR, SRALTSVRI, and
SRALTSVR?2 all use the linear kernel; Table 3.10 demonstrates that SRALTSVRI1 has
the lowest average RMSE rank of all the approaches that were reported. Table 3.11
shows the projected average ranks of other performance metrics, including SSE/SST,
SSR/SST, and SMAPE, which we used to verify the efficacy of our suggested methods.
According to Table 3.11, SRALTSVRI ranks first for SSE/SST, SSR/SST, and
SMAPE, suggesting that the same result is achieved. Figure 3.21 is a bar graph that
illustrates the average rank values according to SSE/SST, SSR/SST, and SMAPE. The
prediction graphs for the linear kernel for the Hydraulic actuator, Gas furnace, Machine
CPU, Pollution, and RedHat datasets are shown in Figures 3.22, 3.24, 3.26, 3.28, and
3.30, respectively. The regression functions of URALTSVR models are greater than
those of SVR, TSVR, and Asy-v-TSVR, as shown in Figures 3.23, 3.25, 3.27, 3.29, and
3.31, respectively.

TABLE 3. 10 RMSE Rankings of URALTSVR and Reported Models on Real-

World Datasets with Linear Kernel.

Dataset SVR | TSVR | Asy-v- | GRALTSV | SRALTSV | SRALTSV
TSVR R R1 R2
Hydrauli 6 1 5 3.5 2 3.5
c
Actuator
Auto- 5 6 4 2.5 1 2.5
MPG
Citigroup 6 1 5 2.5 4 2.5
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Concrete 6 1 2 4.5 3 4.5
CS
Demo 6 5 4 1.5 3 1.5
Flexible 2 6 5 3.5 1 3.5
robot
arm
Gas 4 6 5 2.5 1 2.5
furnace
IBM 6 5 4 2.5 1 2.5
Kin900 3 2 4 5.5 1 5.5
Machine 5 1 2 3.5 6 3.5
CPU
Mgl17 6 2.5 5 2.5 2.5 2.5
Pollution 4 6 5 1.5 3 1.5
Parkinso 1 3 4 5.5 2 5.5
n
RedHat 5 4 6 2.5 1 2.5
SantaFeA 6 4 3 1.5 5 1.5
Sunspots 1 2 5 3.5 6 3.5
94
Wine- 2 1 6 4.5 3 4.5
quality
white
Average | 43529 | 3.3235 | 4.3529 3.14706 2.67647 3.14706
rank 4 3 4

TABLE 3. 11 Comparing URALTSVR with Preexisting Models on Real-World
Datasets Using SSE/SST, SSR/SST, and SMAPE as Linear Kernel Metrics

Measures

SVR

TSV
R

Asy-
V-
TSV
R

GRALTSV
R

SRALTSV
R1

SRALTSV
R2
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RatioSSE_S | 3.882 | 3.382 | 4.294 3.3235 2.7941 3.3235
ST 4 4 1
RatioSSR_S | 3.705 | 3.882 | 3.117 3.6176 3.0588 3.6176
ST 9 4 6
SMAPE 3.941 | 3.117 | 3.823 3.5 3.1176 3.5
2 7 5
5
45

Lukd

(g

25
1.5
1
0.5
0

TSVR  Asy-v-TSVR GRALTSVR SRALTSVRI SRALTSVR2

mSSE/SST WSSR/SST W SMAPE

FIGURE 3. 21 Plot of Evaluation Parameter-Based Average Ranks for The Use

of Linear Kernels in Various Methods on Real-World Benchmark Datasets.
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Testing Dataset.
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Testing Dataset.
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Test for Friedman's hypothesis:

All methods utilized in this numerical experiment were shown to be statistically valid
by using the non-parametric Friedman test [142]. Based on the average rankings in
Table 3.10 of the following groups: SVR, TSVR, Asy-[J-TSVR, GRALTSVR,
SRALTSVRI, and SRALTSVR?2, the Friedman expression is produced. According to
Table 3.10, the formula for the Friedman statistic is as follows, assuming the null

hypothesis is constant:

2
2= 12:1;7 (435294 +3.32353 + 4352942 +3.14706’ +2.67647 +3‘147062)—[6XT7J] —11.7227
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and

16x11.7227

=———— =25596
17x5-11.7227

.
If one believes the Fisher-Snedecor, what Friedman calls There's a little something that
FF can do. The F distribution (6 — 1, (6 — 1)x(17 — 1)) = (5, 80) incorporates seventeen
common benchmark datasets sourced from real life and six fascinating methods. At a
= 0.05, the critical value (CV) of F(5,80) is 2.32872. In this case, the value of
Friedman's expression FF is higher than that of the CV, namely, FF > 2.32872. This
method-to-method variation is the Achilles' heel of the null hypothesis at the acceptance
level. The purpose of using the Nemenyi test was to directly compare two intriguing

algorithms. We agree with [142] that this is the most important difference.

L ) 6x7
Critical difference = 2.589 <17 = 1.6613atp = 0.10.

In this case, statistical analysis allows us to draw the following conclusions:

1. The numbers that distinguish SVR and Asy-[1-TSVR, which are 4.35294 - 2.67647
= 1.67647, may be compared to the average rank of SRALTSVRI. Given that
(4.35294— 2.67647 = 1.67647) is more than 1.6613, it is evident that SRALTSVRI1

outperforms SVR and Asy-[] -TSVR in terms of generalization performance.

Part two. For the suggested techniques SRALTSVRI and GRALTSVR or
SRALTSVR?2, the test does not find a significant difference as the difference between

their best and lowest average ranks is less than the critical difference of 1.6613.

iii. Figure 3.32 displays the outcomes of the Friedman statistical tests performed on
each of the presented techniques using real-world linear kernel datasets. The findings

demonstrate that SRALTSVR1 outperforms the other approaches.
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FIGURE 3. 32 A Linear Kernel Boxplot Showing the Average RMSE Ranks of
All Presented Models on Real-World Datasets.

b) Non-linear case:

Just as in the linear example, SRALTSVRI consistently achieves the best results for
generalization. Our proposed methods are computationally equal to TSVR and Asy-[]-
TSVR and perform better than SVR since they do not rely on an external optimization

toolbox.

It is evident that the proposed methods also provide the same decision picture, since
Table 3.12 displays the average rank of all the evaluated techniques employing a
Gaussian kernel, including URALTSVR models. In Figure 3.33, we can see the ranking
graphs of SSE/SST, SSR/SST, and SMAPE values derived from real-world datasets.

Refer to Figures 3.34-3.42 for the Hydraulic actuator dataset, Figures 3.36-3.38 for the
Gas furnace dataset, Figures 3.40-3.42 for the Machine CPU dataset, and Figures 3.42-
3.42 for the Pollution dataset. The RedHat dataset also includes prediction graphs and

prediction error graphs.
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TABLE 3. 12 RMSE-Based Average Rankings of URALTSVR and Reported

Models for Real-World Datasets with Gaussian Kernel.

Dataset SVR | TSVR | Asy-r- | GRALTSV | SRALTSV | SRALTSV
TSVR R R1 R2
Hydrauli 2 5 6 3.5 1 3.5
c
Actuator
Auto- 6 2 1 4.5 3 4.5
MPG
Citigroup 1 3 4 5.5 2 5.5
Concrete 6 3 2 4.5 1 4.5
CS
Demo 4 6 5 1.5 3 1.5
Flexible 1 6 5 35 2 3.5
robot
arm
Gas 1 5 6 3.5 2 3.5
furnace
IBM 4 2 3 5.5 1 5.5
Kin900 6 5 4 2.5 1 2.5
Machine 4 6 5 2.5 1 2.5
CPU
Mgl17 2 6 5 3.5 1 35
Pollution 6 1 3 4.5 2 4.5
Parkinso 6 5 4 2.5 1 2.5
n
RedHat 2 6 5 4 1 3
SantaFeA 1 4 6 2.5 5 2.5
Sunspots 6 2 1 4.5 3 4.5
94
Wine- 2 5 6 3.5 1 3.5
quality
white
Average | 3.5294 | 4.2352 | 4.1764 3.64706 1.82353 3.58824
rank 1 9 7

TABLE 3. 13 Using Gaussian Kernel, Average Rankings of URALTSVR and
Reported Models Based on SSE/SST, SSR/SST, and SMAPE Metrics for Real-

World Dataset
Measure | SVR | TSV | Asy- | GRALTSV | SRALTSVR | SRALTSVR
S R y- R 1 2
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TSV
R

SSE/SST | 3.529 | 4.235 | 4.176 3.6176 1.8235 3.6176
4 3 5

SSR/SST | 3.764 | 3.352 | 3.764 3.3529 3.4706 3.2941
7 9 7

SMAPE | 3.058 | 4.029 | 4.147 3.7647 2.2941 3.7059
8 4 1

3
2
1 I
0

TSVR Asy-v-TSVR  GRALTSVR SRALTSVR1 SRALTSVR2

mSSE/SST mSSR/SST mSMAPE

FIGURE 3. 33 Visualization of the Mean Quality Metric Rankings of Different

Algorithms on Gaussian Kernel Benchmark Real-World Datasets.
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FIGURE 3. 34 Findings from All Presented Models on the Hydraulic Actuator

Dataset Employing the Gaussian Kernel for Prediction on the Testing Dataset.
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FIGURE 3. 35 The Testing Dataset Prediction Error for All Presented Models on

the Hydraulic Actuator Dataset using a Gaussian Kernel.
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FIGURE 3. 36 Analysis of all published models' predictions using a Gaussian

kernel on the Gas Furnace dataset and their validation on the testing dataset.
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FIGURE 3. 37 The difference between the predicted and actual results on the
Gas Furnace dataset using all of the presented models trained using a Gaussian

kernel.
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FIGURE 3. 38 Forecasts made by all declared models on the Machine CPU

dataset with a Gaussian kernel applied to the testing dataset.
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FIGURE 3. 39 Machine CPU dataset prediction error on the testing dataset for

all models reported using a Gaussian kernel.
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FIGURE 3. 40 Forecasts made by all the models that were reported on the

Pollution dataset using a Gaussian kernel on the testing dataset.
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FIGURE 3. 42 All stated models' RedHat dataset predictions using a Gaussian

Prediction error

kernel on the testing dataset.
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FIGURE 3. 43 Prediction error over the testing dataset by all reported models on

the RedHat dataset using Gaussian kernel.
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Evaluation of sensitivity

The parameter-insensitive URALTSVR models' generalizability performance was also
of interest to us. Data from hydraulic actuators within a preset range for parameters C3
and are used to generate the sensitivity effectiveness plots of the URALTSVR model,
as illustrated in Figure 3.44. v. This allows the obtained numerical test results to be
more prominently shown. Figures may be used to investigate less sensitive factors Cs

and v.

W 01 5 g, C e
03 v 01 5
i'ogmf.“,?

{a) GRALTSVR ib) SRALTSVRI

() SRALTSVR 2

FIGURE 3. 44 Models suggested using a Gaussian kernel and tested on real-

world datasets, including Hydraulic Actuator

Friedman statistical test

Additional statistical evaluation of the techniques' prediction accuracy is conducted

using the Friedman post hoc test statistic. The Friedman expression may be found using
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the following method, which assumes that all processes are identical FF and involves

looking at Table 3.12:

12x17
6x7

xf [(3.529412 +4.23529% + 4.17647% + 3.64706” + 1.82353% +

6x72

3.588242) — (T)] — 18.647

16 x18.647

and Fp = ———"°%"_ _ 4 4964
17x 5— 18.647

Because FF is more valuable than CV, with a value of (4.4964) [1 (2.32872), the
Nemenyi test is used to compare interesting approaches with the null hypothesis. The
constant of variation (CD) is 1.6613 in both the linear and non-linear cases. Next, some

statistical inferences will be drawn from their comparative examination.

i. First, we may look examine how SRALTSVRI ranks on average compared to SVR,
TSVR, and Asy-v -TSVR by using the variation between these three variables. In this
case, the results are (3.52941-1.82353= 1.70588), (4.23529—-1.82353= 2.41176), and
(4.17647—1.82353= 2.35294), respectively. All three of these values are greater than
the threshold of 1.6613, proving that SRALTSVRI comes out on top.

i1. In addition, it is necessary to confirm that the competing techniques vary from each
other; for example, when comparing SRALTSVRI with GRALTSVR and
SRALTSVR2, the maximum average rank is 1.82353, and when comparing
3.58824—-1.82353=1.76471, the difference is more than 1.6613. Consequently,
SRALTSVRI1's prediction performance is sufficient, as opposed to STRATVSVR and
SRALTSVR2.

ii1) As a last step, consider the low-ranking advised approach (GRALTSVR) and choose
one of the high-ranking contrasting ways (SVR) so that the gap between their average
rankings exceeds the CD. This proves that the GRALTSVR and SVR algorithms are

identical in operation.

iv. A boxplot is shown in Figure 3.45, and Table 3.14 presents the statistical
significance of SRALTSVRI1 with the crucial difference for all baseline techniques in
the Gaussian kernel based on RMSE. These distinguish SRALTSVRI from similar

approaches (like the linear example) that accomplish the same objectives.
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TABLE 3. 14 Comparison of Models and URALTSVR with Average RMSE
Ranks and Statistically Significant Differences at CD for Real-World Datasets.

Average Rank differs with Significant different

Models rank SRAILTSVRI at CD (1.6613)

SVER 3.52041 1.70588 “

TSVER 4.23529 241176 +
Asy-1-TEVR 4.17647 2.35204 4
GRALTSVR 3.64706 1.82353 -
SRAITSVRI 1.82353 0 -
SRAITSVE2 3.58824 1.76471 4

Averape RIMSE Ranking

SVH TSVH AsveTSVRE GRALTSVR SRALTSVRT  SRALTSVRYZ
Madels

FIGURE 3. 45 Boxplot shows Gaussian kernel-based average rank of models'
RMSE on real-world datasets.

Looking at URALTSVR, A robust asymmetric Lagrangian-twin support vector
regression issue is solved using gradient-based iterative approaches developed from
extended derivative and smoothing procedures and the pinball function. We then solved

the problem using Newton iteration. If the settings are right, the asymmetric pinball loss
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function in our technique can handle noise-disrupted datasets. Regularization is
introduced to the optimization function to guarantee SRM and a stable, well-posed
model. Tests on synthetic and real-world datasets show that URALTSVR is acceptable
and effective. Comparison of linear and Gaussian kernels in SVR, TSVR, and Asy-[]-
TSVR reveals that the suggested SRALTSVRI approach outperforms others. The

supplied models have lower or equivalent computing costs as the above techniques.
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CHAPTER 4
REGULARIZATION-BASED TWIN SUPPORT VECTOR
REGRESSION USING HUBER LOSS AND LEAST
SQUARES LARGE MARGIN DISTRIBUTION
MACHINE-BASED REGRESSION

4.1 REGULARIZATION-DRIVEN TWIN SUPPORT VECTOR
REGRESSION WITH HUBER LOSS FUNCTION

One of the most important and difficult machine learning research problems is building
reliable regression learning models that can fit training data that is contaminated by
noise. To make matters worse, the loss function is crucial in mitigating the impact of
noise in the training set. For very little mistakes, the Huber loss function acts as a
quadratic, whereas for larger ones, it acts as a linear. In this part, we will go over a new

huber loss function based regularized twin support vector regression technique.

This function is a hybrid of the Gaussian and Laplace loss functions; it effectively
presses the noise of the Gaussian characteristic and suppresses some high noise and
outliers. By using the notion of structured risk reduction, our suggested TSVR model

is able to overcome the singularity problem and is therefore convex and well-posed.

Several experiments are conducted on various synthetic datasets with uniform,
Gaussian, and Laplacian noise, as well as on benchmark datasets from the real world
that have varying levels of significant Gaussian noise (0%, 5%, and 10%, respectively),
in order to demonstrate the validity and usefulness of the proposed model compared to

other models that have been reported.

4.1.1 THE HUBER LOSS FUNCTION

}\‘2
=, ifi,<¢
c(?»g) = 2 5 ¢ where € = &
£|7»g| -5 otherwise

where £*1, €*; are input parameters.
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if¢, <

2

2
2 _ o
where € = ¢,

£2
g«

—, Otherwise
2

4.1.2 PROPOSED TWIN SUPPORT VECTOR REGRESSION USING

REGULARIZATION AND THE HUBER LOSS FUNCTION (RHN-TSVR)

In response, the TSVR provides ¢ -insensitive omits data with Gaussian noise but
preserves loss. In response to this, the author introduced the HN-TSVR method, which
deviates from the SRM theory but is compatible with the Huber loss function.

We include a single regularization component to the HN-TSVR to reduce its singularity
issue —(||W1||2 + b?) and —(||W1||2 + b?) and & (||W1||2 + b2?) by resolving the
two main difficulties (4.1) and (4.2), we achieve a stable and well-posed model called
regularization-based Huber loss-twin support vector regression, which fulfills the core
principle of statistical learning theory. The RHN-TSVR formula may be expressed
mathematically as: Two kernel generating functions are necessary for RHNTSVR to
operate as fi(x)=K (x!, B') wi+b; and £r(x)=K (x', B!) watb,. The following

optimization issues are involved with the suggested method as.

—||y ce—(K(B,BYw +be)|" +Ce( 22/1 —H"Z/I——r +—|| w [ +57)

W.h,4 2 ZEM TEM
Subject to, y-(K (B, B") wi+bie) >, — 2>0, 4.1)
And

mm—||y+re (K(B,B"Yw, +b,e)||* + C,e (Z_(, +rZ(£ ——r))+—(||u I* +b,%)

Subject to, y-(K (B, BY) watbae)-y >, — £, £>0, 4.2)

where,

=lg|024 <e}y p=

dozeh p=lg|0eg, 2, p,= 2|¢, 2 e}
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loose variables include of A,C ; the parameters that are entered, Ci, C2 > 0;e1,62 > 0.
When the Lagrangian multipliers are included ou,o0, ,B2 while fixing enough

parameters in the KKT equations in (4.1) and (4.2)

l - I 2 1 l 2 l
Lwba. ) =5 | (= sie~(K(B.B W, +be) | +Cie (Y227 +6 3 (4, ~6)

e fEM

F (w1 45— (=10~ (K(BB' Y, +be)+ 1)~ 2
2 (4.3)

I IR . U [ o
L:(“'z~b:ﬂ2*ﬂ:)=5|| (v+&,e—(K(B,BYw, +b,e))||* +C,e {259;: +EZ(@F: _EE))

gep, Bep;

(‘ ] b
+=b (| wy | +by") =ty (v + &9 = (K(B,B Yy +bye) + {) = Bo'¢
2 (4.4)

Next, we determine the gradient of equation (4.3) with respect to wl, bl, and A :

% = —K(B,Bt)t (y — I('(B,Bt)w1 — b1€ — 818) + K(B,Bt)tal + C3W1t =0,
1
% = —el(y, e — K(B,BY)w; — bye) + eta; + c3b; =0,

1
aL
3_171 :Clvg_alg_ﬁlg =0
Where

d(c(Ag)) Ay (=
L’g={_'§i: g t’{g P% R —
a{"&g) & {f gen

Presented below are, 4,4 < & g thus v, < . Also, ﬂlg >0, in order to get 0<a;, < C;V;.

Hence, it is safe to say that 0<a;, < C;¢.

Applying the same logic as in (4.3), determine the value of w2, b2, and C the gradient
of equation (4.4):
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oLy

~= = —K(B,B*)'(y — K(B,B")W, — Bye + &2¢) + K(B, B') ez + C,wi=0
2

L,

= —el(y + e,e — K(B,BHw, — bye + eta, + C,w} =0
2

Where

Vg — L forie py.
£ Ay

' =6(C{§g])= élg UprPz
e Ifiep

Here, we have, , < ¢ thus Vg < g . Also, B2, > 0 g, then we can get 0<ong <C2V,.

Therefore, we can conclude that 0 < og < Coe .

The two-part version of equation (4.1) follows the same procedure, and it reads as

. l f t - i t t -] i f l t
min ¢, D/(D/D+C1)" D/ a,-(y-¢,) D,(D'D,+C,I)' D'er, + (v-¢,¢) +Ea] /3
4] |

Subject to. 0<a; < Cy&qe 4.5)
where, D1=[K(B, B")e]is the augmented matrix.

Similar to above, we get the dual formulation of (4.2) as

min %a; DD, D, +C,1)"D}a,~(y+£6) D,(D;D,+C,1)" D'e, + (y+£,6) a, +%a2'a2

2
Subject to. 0<a, < C,¢5e (4.6)

The values of W1 W3 by, ba can be obtained as

M B M2t + n-lnt
-91—( —‘—(DID]+(--3” Dy (uy~a), and -%—LJ—(D]DHCH) Dy (uy +a3).

b (4.7)

where ui =y =—¢ie, u =y +eze.
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In order to get the final regressor value, a fresh test sample might be used to average

functions fi(x) and f>(x)

_ i)+ frlx)
. :

f(x)

4.1.3 NUMERICAL EXPERIMENTS

(4.8)

Here we provide the results of a series of tests that compared RHN-TSVR to more

conventional methods like SVR and TSVR, € -AHSVR, & -SVQR, and HN-TSVR on

distinct artificial datasets with different kinds of noise, and on actual datasets with

distinct degrees of significant noise (0.0, 0.05, and 0.10, respectively). A Windows 10
PC with 4 GB of RAM and a single CPU will do the trick, a high-speed 64-bit processor
(such as an Intel Core i5 3.20 GHz), and the MATLAB program to conduct this

experiment. This research takes a nonlinear approach by looking at the Gaussian kernel

function as K(xz1, Xz2) = exp(—ullxz1, —xz211%), for Z,Z, = 1,....,p,in this case

the kernel parameter p > 0. All of the parameters and their limitations for the algorithms

in the problem are summarized in Table 4.1. All noteworthy algorithms undergo 10-

fold cross-validation on both real-world and artificially produced datasets.

TABLE 4. 1 Parameter Ranges and Associated Algorithms in RHN-TSVR.

Mlodel

SWER. TSWVER. = —AFISVER. =
- SWVQR., FIN-TSWVER,
RHMN-TSWVER

013

SR

fO0001 001, 01, 03 05

TSWVER

0.7, 0.9}
(So —Ep) {0 001,001, D1} s _ATSWVR
= {0.1, 0.3, 0.5, O.7. 0.97 = —SWQR
(=1—=2). (=1 —=% 2 {0.1, 0.3, 0.5, O.7. 0.97 FIN- 1S WwR, RIDT- TSV

{0.1. 1.0, 1 345%

2 —ATISVER.

{01, 0.2 03 04 05 006
O.7.0.8%

= —SWOR

Artificial Dataset

a) Gaussian and homogeneous noise

The first fourteen functions employ symmetrical, evenly distributed noise, whereas

functions fifteen through eighteen use a heteroscedastic noise structure, where the
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initial sample value determines the noise. Table 4.2 displays the average results on
synthetic samples for all applicable approaches for the Gaussian kernel. The
recommended methodology RHNTSVR has the poorest model, whereas our method
performs better than the competitors (Table 4.2). Out of the eighteen artificial functions,
RHN-TSVR performed the best while dealing with both uniform and Gaussian noise.
It also significantly affects the heteroscedastic and homogeneous noise patterns'
variability. The results of the synthetic Functions 13 and 14 are in agreement with the
symmetrical, uniformly dispersed noise shown in Figures 4.1 and 4.2. Figure 4.3
displays the predictions made using a normal distribution kernel for Fake Function 15,
whereas Figure 4.4 displays the predictions made using a distribution with
heteroscedastic noise. Figures 4.1-4.4 demonstrate that RHN-TSVR closely resembles

the previous technique, in contrast to the other methodologies that were presented.

TABLE 4. 2 Evaluate RHN-TSVR and Other Gaussian Kernel Models on
Artificial Datasets with Uniform and Gaussian Noise Using Root Mean Squared

Error (RMSE): An Analysis of Average Rank

Datasets SWVER TSEVE = - £ - ENDERE HIN- RHIN-
AHSVER TSVE TSVER
FunctionT I ] > E} k] &
Function® & E) Z = k] I
Function® ES > ] 3 & I
Functionf ] S ] > k] I
FunctionX ] I35 I > = S
Function® ] 3 ] > ES I
Function™ =] 3 S ] e I
Function® ] I35 ] > 35 I
Function® =] I S ] = =
FunctionTd ] S ] > k] I
FunctionTT =] I S ] k] ]
FunctionTX ] S I > k] ]
FunctionT? ] > I 3 ES ]
FunctionTd ] ] > E} k] I
FunctiomI™ ] 3 F > .5 I.5
FunctionTd ] ] > 3 ES I
FunctiomI’ k] E =3 ] ] 4.3 I
Functionls ] 3 z I I= = =
Arrerags S IT0TE | I IZEEEED | T T 0TI TTE | F 3555556 | 3 33FI3ET| I D166,
rank
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Figure 4. 2 Prediction Results on RHN-TSVR and Other Previously Announced
Models for the Function 14 Gaussian Kernel Artificially Generated Dataset have

been reviewed.
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Figure 4. 3 Prediction Results on The Gaussian Kernel-Generated Function 15

Testing Dataset using RHN-TSVR and Other Reported Models.
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Figure 4. 4 Prediction Results on the Gaussian Kernel-Generated Function 16

Testing Dataset by RHN-TSVR and Other Reported Models.
b) Laplacian noise

In order to evaluate our RHNTSVR method in comparison to SVR and TSVR, Table
4.3 provides a description of the features of HN-TSVR and many similar algorithms.
Additionally, we generate synthetic datasets that include a certain kind of noise, namely
Laplacian noise, € -AHSVR, and € -SVQR. The interval [0,1] ¥ € L (u,b) is used to

investigate a Laplacian noise.
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TABLE 4. 3 Various man-made functions with Laplacian noise and associated

RHN-TSVR definitions

Function Function definition Domain of
name definition
Function19 f00) = [ —2— |+ cos@x, ) + sin(3x,) + ¥ X, e[-10.10]

| x, | +2
Function20 () =((1+sin(2x, + 3x, ))/(3.5 +sin(x, —x,)))+ ¥ x; e[-2.2]
i={1,21
Func‘[ionZl (2, . %, ) =exp(x,sin{m, )+ ¥ X,.X, e[-1.1]
Function22 f{x) = 0.02[(12 +3x - 3.5x7 + 7.2x " (1 + cosdmx)(1 + x €[-0.25,0.25]

0. 8sm3mx)] + ‘¥

Function23 | fix,.x,.x,.%,.x,) = 10sinmx x, +20(x, - 0.5)" +10x, + x, €[0,1]
X +¥ i=1,23.4,5
Function24 fix) = 0.2sin(272x) +0.2x* + 0.3 x, =0.01(-1)-1,
such that y, = f{(x,) +(0.1x +0.05)¥, i=1,2,...,200

The proposed RHN-TSVR beats the alternatives in four of the six cases. The average
ranks of all the models are also calculated in Table 4.4. The RHN-TSVR has the most
features, but we do a lot more. The great level of agreement between the actual and
projected values is seen in Figure 4.5, which is related to Function 19. In this case,

RHN-TSVR meets or exceeds HN-TSVR in terms of performance.

Figure 4. 5 Prediction Results on Function 19 Artificial Dataset Using Gaussian

Kernel Testing Dataset using RHN-TSVR and Other Reported Models.
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TABLE 4. 4 Average RMSE Ranks of Gaussian Kernel Models for Synthetic
Datasets with Laplacian Noise: RHN-TSVR and Others

Datasets SVR TSVR E- £- HN- EHN-
SVQ TSVR TSVR
AHSVERE
R
Functionl 3 3 4 g 1.5 1.5
g
Function2 2 4 & 3 5 1
0
Function2 2 3 3 g 4 1
1
Function2 3 4 1 5 & 2
2
Function? 2 3 5 g 4 1
3
Function2 3 4 & 1 3 2
4
Average | 3.160666 | 3.833333 | 4166666 4.5 3.016666 | 1.416666
rank 7 3 7 7 7

Real-world Datasets

We tested RHN-TSVR on 42 real-world datasets with varying levels of statistical
significance (0.0, 0.05, and 0.10) to see how well it performed.

At significant noise level 0%

It includes the prediction power, ideal parameter values, time needed to learn each of
the techniques offered. When comparing TSVR against SVR, ¢ -AHSVR, ¢ -SVQR,
RHN-TSVR achieves better results than both HN-TSVR and on 22 real-world datasets.
Table 4.5 also shows the results of the statistical test, which is based on averaging the

rankings with the RMSE values for the Gaussian kernel. Overall, RHN-TSVR rates the
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lowest when compared to the other approaches that have been mentioned. As shown by
real-world datasets with a considerable noise level of 0%, RHN-TSVR performs better.
Figures 4.6 and 4.7 demonstrate the predicted accuracy for the Machine CPU dataset
and the Gas furnace dataset, respectively. In terms of prediction abilities, both plots

show that RHN-TSVR is superior than its rivals.

TABLE 4. 5 Evaluation of RHN-TSVR in relation to competing models using
root-mean-squared error metrics on a real-world dataset free of noise, trained

with a Gaussian kernel.

Datasets SVR TSVR &- £ - HN- RHN-
AHSVR | SVQ TSVR TSVR

=

Forestfires 5.5 2.5
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W
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)
n

W |-
—
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NNGCI1 _dataset 6 3 5 4 1.5 1.5
F1 V1 009
NNGCI1 _dataset 6 1 5 4 2.5 2.5
F1 V1 010
NNGCI1 _dataset 5 3 6 4 1.5 1.5
F1 V1 006
NNS5_Complete 5 4 6 2 3 1
109
NNS5_Complete 6 3 4 5 2 1
104
NNS5_Complete 6 4 2 5 3 1
106
NN5_Complete 2 5 6 1 4 3
103
NNS5_Complete 3 5 4 2 6 1
101
NNS5_Complete 2 5 4 3 6 1
105
NNS5_Complete 3 4 2 6 5 1
111
Dldat 1 2000 1 5 2 3 6 4
Vineyard 1 6 3 2 5 4
COVID- 5.5 1 5.5 4 3 2
19 spain
Averagerank | 4.5952381 | 3.1309 | 4.666666 | 3.16666 | 3.428 | 2.0119048
524 7 67 5714

Table 4.5 shows the average algorithm ranks; the next statistical step is to apply the

Friedman test to these rankings.

This includes all of the given algorithms, such as SVR and TSVR, ¢ -AHSVR, ¢ -
SVQR, RHN-TSVR and HN-TSVR, which may be used interchangeably. Here, we

must now calculate both 2 F ¢ and Fr according to Table 4.5, as seen below:

(4595238 +3.130952% +4.666667 > +3.166667 > +3.428571% +2.0119057

12x42

Xr =g 7 _[ﬁx?-J

4

¥2 =60.3299

And FF =

(42-1)x60.3299

(42x6-1))—60.3299

= 16.5265
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Figure 4. 6 A noise-free machine CPU dataset that has been tested with the
RHN-TSVR and other published models.

Predicted/Observed Value
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No of Data Samples

Figure 4. 7 Results from the testing dataset using a Gaussian kernel and the Gas
Furnace dataset with zero noise, as predicted by RHN-TSVR and other
published models.

Page 136



The probability level degree of freedom, which is (5, 205), is the most crucial number

here. ® = (.05 is less in size than Fr (16.5265 > 2.2581).

Thus, the paired Nemenyi test is continued after rejecting the null hypothesis HO. The

next step is to determine the statistically significant critical difference (p = 0.10) by

Critical difference = g, /""6(’;;1) = 2.589 /% = 1.057,

where k is the count of published algorithms and N is the count of datasets, and qo =

2.589. The results of this Nemenyi test are as follows:

Compare the rank of RHN-TSVR with that of SVR, TSVR, € -AHSVR, and ¢ -SVQR,

while considering the proposed method.

Since the differences above the 1.057 threshold, RHN-TSVR, e-AHSVR, and € -SVQR
are better than SVR TSVR. For that reason, it is reasonable to expect our suggested

RHNTSVR to work.

i1) Compare the average ranks of RHN-TSVR with HN-TSVR. RHN-TSVR is better
than HN-TSVR since there is a larger gap than that (1.416667 € 1.057).

At significant noise level 5%

The RHN-TSVR model was the most prominent in 18 out of all the situations. In Table
4.6, you can see the current rankings of all the models based on the RMSE values that

were used in the statistical analysis.

Table 4.6 shows that RHN-TSVR is at the bottom of the list. And yet, for noisy datasets,
RHN-TSVR seems to be a good bet.

The prediction value plot for the Gas Furnace dataset is shown in Figure 4.9 at a
significance level of 0.05, whereas the plot for the Machine CPU dataset is shown in
Figure 4.8. According to this condensed study, RHN-TSVR is more strongly associated
with the target result.
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TABLE 4. 6 Rankings of competing RHN-TSVR models based on Results of

running the RMSE test on a real-world dataset using a 5% noise Gaussian

kernel
IMatasets ST TSN = - = -SWT0OER HI- FREHEIT-
AHS TSV TSR
TR
Forsstfiras S = = | = pr-J
Fdachin=s TEFLT = - = = =2 p i
Anto-orisimal Il = = = 5 =
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oas___fturmacs = = =5 = = !
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Fl=x robotarim = I = = = !
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e T— E = = T = =
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BESESTET = = = =2 =z p i
37T = k] ES & I5 I.5
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Figure 4. 8 RHN-TSVR and other models employed a Gaussian kernel for testing
set prediction on the Machine CPU dataset with 5% noise.
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Figure 4. 9 SVR, TSVR, € -AHSVR, £ -SVQR, HN-TSVR, and RHN-TSVR use a
Gaussian kernel for Gas Furnace dataset prediction with 5% noise on the testing

dataset.
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The suggested method also Table 4.6 shows the results of a Friedman test comparing
RHNTSVR's performance on noisy data using SVR and TSVR, with a significance
threshold of 5%., € -AHSVR, and € -SVQR with HN-TSVR.

)’,L = I? x"f (5.047619: +3.2619048° +3.2142857°% + 3.833333% + 3.547619% + 2.0952381 )—[%”
)X
= 55.442.
And
: (42-1)x522653  _ 42 g33¢

- (42x(6—1))—52.2653

With fewer degrees of freedom (5, 205) and a lower critical value, FF, this situation is

ideal (13.9336> 2.2581). Consequently, we test the null hypothesis and do a paired test.

Find the essential difference with a significance level of p = 0.10 in order to run the
Nemenyi test. Just as in the previous case, the crucial difference is 1.057. Here are a

few things to think about:

1. When comparing RHN-TSVR to SVR, TSVR, ¢ -AHSVR, and ¢ -, the value of SVQR
is always greater than 1.057. Consequently, RHN-TSVR stands out as the superior

option.

i1. There is a larger discrepancy than the essential difference in 3.380952-1.889052=1.5
is the average rank of RHN-TSVR and HN-TSVR., (1.5 > 1.057). It asserts that
compared to HN-TSVR, RHN-TSVR is the better method.

Under very loud conditions, 10%

Using real-world datasets, we put the new RHN-TSVR through its paces in a loud
environment with a major noise level of 5% and raised the significant noise level to
10%. All of the presented methods are anticipated to rank lower than RHN-TSVR, as
shown in Table 4.7.

Page 141



Prediction graphs for the Machine CPU and Gas furnace datasets with a significant 10%
noise level are shown in Figures 4.10 and 4.11, respectively, as in previous cases. Both

graphs might lead to the same conclusion.

TABLE 4. 7 Based on RMSE values, the average ranked models and RHN-

TSVR utilizing a Gaussian kernel with 10% noise for a real-world dataset.

Datasets SVR TSVR € - € - HN- RHN-
AHS SVQR | TSV TSVR
VR R
Forest fires 4 5 2 1 6 3
Machine 8 5 1 4 6 2.5 2.5
Auto-original 6 2 4 5 3 1
Win equality 4 1 5 6 2 3
SantafeA 6 3 4 1 5 2
Gas_furnace 6 4 2 5 3 1
Quake 3 1 5 4 2 6
Flex_robotarm 6 5 1 3 4 2
S&P500 5 3 2 6 4 1
Space-Ga 6 4 3 1 5 2
Gaussl 5 3 1 6 4 2
Chwirut2 3 5 2 4 6 1
Roszmanl 6 3 4 5 2 1
INFY 6 3 5 1 2 4
ONGC NS 6 3 1 5 4 2
XOM 6 4 2 5 3 1
ATX 2 1 5 6 4 3
BSESN 5 6 3 2 4 1
DIJI 6 2 5 3 1 4
GDAXI 6 3 2 5 4 1
MXX 3 2 5 1 4 6
N225 6 4 3 5 1.5 1.5
Wankara 6 1 4 5 2 3
Laser 6 3 2 5 4
Dee 6 3 1 5 4 2
Friedman 6 2 5 1 3.5 3.5
Mortgage 6 1 4 5 2 3
NNGCI1_dataset E1 6 4 2 3 5
V1 001
NNGCI dataset F1 6 4 3 5 1.5 1.5
V1 008
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NNGCI1_dataset F1 6 3 2 5 4 1
V1 009
NNGCI1 _dataset F1 6 3 2 5 4 1
V1 010
NNGCI1 _dataset F1 6 3 2 5 4 1
V1 006
NN5_Complete 109 3 5 4 1 6 2
NN5_Complete 104 3 5 2 6 4 1
NN5_Complete 106 3 5 4 1 6 2
NN5_Complete 103 2 4 6 1 5 3
NN5 Complete 101 1 4 3 6 5 2
NN5 Complete 105 5 3 4 6 1 2
NNS5_Complete 111 6 5 2 1 4 3
Dldat 1 2000 6 2 5 4 3 1
Vineyard 6 5 3 4 2 1
COVID-19 spain 6 4 5 1 3 2
Average rank 5.047 | 32619 | 3.2142 3.8333 3.547 | 2.0952
619 048 857 333 619 381
T I | I Origial f
=
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Figure 4. 10 Prediction over the testing dataset by RHN-TSVR and other
reported models on the Machine CPU dataset with 10% noise using Gaussian

kernel.
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Figure 4. 11 Prediction over the testing dataset by RHN-TSVR and other
reported models on the Gas furnace dataset with 10% noise using Gaussian

kernel.
Same as to previous cases, compute the values of 2 F y and FF using Table 4.7 as

12x42

o7 (5.047619% + 3.2619048% + 3.2142857% + 3.8333332

XF =

6x72
+ 3.547619% + 2.09523812% — < 2 >l

= 55.442.

_ (42-1)x55.442
F ™ (a2x(6-1))-55.442

In this case, FF is likewise larger than the crucial number (14.707 > 2.2581) for the
degree of freedom (5, 205).

This scenario likewise rejects the null hypothesis, HO, suggesting that there may be
substantial disparities across all of the models. In order to derive various conclusions,

let's run the Nemenyi test on these techniques.

Like in the other examples, RHN-TSVR always has an average rank disparity with
others that is more than the crucial difference, and it has the lowest average rank when

the noise level is 10%. so, 1.057.

The RHN-TSVR has a higher overall effectiveness rating than competing models.
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Effect of increasing noise percentage

Here, we showed how a real-world dataset was affected by increasing the noise level
by 0.0, 0.50, and 0.10. The next paragraph details our evaluation of the new RHN-
TSVR's performance on real-world datasets subjected to varying degrees of substantial

noise. At different noise levels, Figure 4.12 shows that the Gas Furnace dataset is quite

efficient.
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Figure 4. 12 Prediction/Observed Value over the testing dataset by RHN-TSVR

on the Gas furnace dataset with 0%, 5% and 10% noise using Gaussian kernel.

A black line represents the instances of testing data, while brown, blue, and pink dotted
lines illustrate the RHN-TSVR prediction performance for varying noise levels of 0.0,
0.50, and 0.10, respectively. Figure 4.12 shows the effect of increasing the noise
percentage on the proposed RHN-TSVR model. The fact that noisy findings are more
closely linked to the intended outcome demonstrates the applicability and dependability
of the recommended RHN-TSVR model for noisy contexts.

We suggest a regularized version of TSVR with Huber loss (RHN-TSVR) to address
the singularity problem in HNTSVR. This version incorporates the SRM principle and
is a regularization-based twin support vector regression with Huber loss. We test the
RHN-TSVR's noise insensitivity with different variations of the substantial noise level
(0.0, 0.05, and 0.010). The TSVR loss function is [J-insensitive, meaning it cannot
handle different types of noise or outliers, which is something we can all understand.
The basic Huber loss function has a quadratic form for small mistakes and a linear one
for bigger ones. The Laplacian loss fusion with the Gaussian loss function provides
better prediction performance for data containing Gaussian noise and outliers. We test

the proposed method on produced datasets with different kinds of noises for the non-
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linear kernel and on real-world datasets with different degrees of importance to see how
well it performs. In terms of prediction accuracy and computing time, the proposed
RHN-TSVR often surpasses prior methods. A numerical trial-based comparison
justifies the RHN-TSVR model's relevance compared to published alternatives,
particularly when handling data with noise and outliers. Financial time series
forecasting is one area that might benefit from this method. In the future, suggesting an

iterative approach might reduce the processing cost.

4.2 LEAST SQUARES LARGE MARGIN DISTRIBUTION
MACHINE BASED REGRESSION

Here, we zeroed in on LDM-based regression, a potent subset of regression methods
that, unlike SVR, optimizes the distribution of margins rather than minimizing a single
point margin. When solving its optimization issue, LDM-based regression takes the
margin mean and variation into account. At the same time as minimizing the quadratic
loss function, the optimization issue of our suggested model minimizes ¢ - loss function

that is not sensitive.

Therefore, rather than using computationally difficult QPP, the answer is derived from

a linear K.K.T. system.

Here we detail the least squares LDM-based regression technique, which reduces data
point dispersion while simultaneously increasing robustness against noise and outlier

sensitivity. Furthermore, it € - tube that produces less computational load.

Concurrently avoiding overfitting and making maximum use of the training set are both
made possible by our proposed methodology. Through the use of the linear and
Gaussian kernels, numerical experiments have been conducted on both synthetically

produced datasets and benchmark real-world datasets.

Standard SVR, Twin SVR, and primal least squares are used to analyze all of the
experiments of the LS-LDMR that is provided. Dual SVR (PLSTSVR), ¢ -Huber SVR
(e -HSVR), ¢ -support vector quantile regression ( ¢ -SVQR), LDMR and minimal
deviation regression (MDR), demonstrating the efficacy and practicality of LS-LDMR.
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This method has also been confirmed and validated statistically using a number of other

criteria.

4.2.1 PROPOSED APPROACH LEAST SQUARES LARGE MARGIN
DISTRIBUTION MACHINE-BASED REGRESSION (LS-LDMR)

Keeping with the LDMR concept, we provide a new version of LDMR that uses least
squares to reduce computing cost. It is designed for regression-based problems and is

called the least squares big margin distribution machine.

Here we develop the LS-LDMR problem formulations using the 2-norm of the slack
variable instead of the 1-norm and with equality constraints in the LDMR formulation

instead of inequality constraints.

When all that's required to get the answers is to calculate the inverse of the matrix,
systems of linear equations are used. Therefore, in contrast to SVR and TSVR, there is
no need to resolve the massive size of the QPP, ¢ - SVQR and LDMR. The issue
statement for LS-LDMR is provided as:

Linear LS-LDMR

Linear LS-LDMR model, f(x)=w' x+b becomes available when the following

optimization issue is solved as

_d, s o d :
n_r]#n_?'H yv—(Bw+eb)|" +(.g’2 +EJ” w|”

subject to: y= (B w+ e b) +ee+({ (4.9)

where €,d1, d2 > 0 are the input parameters that the user defines; the variables slack and

penalty are C and C > 0 respectively.

I 0
Let us consider, 8[‘;;]; Iw||? = 91,9 where I, = - | and p p I x is an identity
0 ...0

matrix.
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Next, get the Lagrangian functions of equation (4.9) by using the Lagrangian multiplier

.

d , d
L(9.¢,a) = 72 | y—(Bw+eb)|* +C¢* +5' | w(* —a'((Bw+eb)+es+¢ —y).
It is also possible to rephrase the above equation as

P 2 2 d) 2
L(3.C,a)y=—|y—-D&|- +C{* +—|w|* —a'(D)F+ec+{ —y),
2 ! 2 (B ) (4.10)

where D1 = [B ¢].

By taking into account 3, {, and a and setting them equal to zero, we may get the

gradient of (4.10).

5L d a
M=d|1r[{]lg—_2‘91:_}"__z‘Dlty+d2D11D19_D1!a=01
29 2 2 (4.11)
Mzzcg—a’:{)a
o (4.12)
And
LEL@ 1 g, esvg—y=0.
Py (4.13)

To get the value of 9, solve the following equations: (4.11), (4.12), and (4.13).
w ( t t )‘1 t ,
9= L 1= di1 +(dy +2C)Dy' Dy ) Dy'((d4 +2C)y —2Ces).
(4.14)

The best linear LS-LDMR regressor for the new sample q x v is expressed in the

following way:

f(x)=wx+b. “15)

Page 148



Non-linear LS-LDMR

We estimate the function K (xt,B*tw-+b) + in the non-linear LS-LDMR model to solve

the optimization issue given by

d d
1mn7%“y—ﬁﬂ&3ﬂw+dmﬁ+C§2+§mum2

11‘.:‘),._.

subject to
Y=(K (B, BY) w+eb) + es + ¢, (4.16)

The definite kernel matrix is denoted as K (K > 0), the slack variable is denoted as C,
and the penalty parameter is defined as C > 0.

I 0
Let us consider,9 = [‘g], IWII? = 9',9 and I, = :
0 ...0

Next, determine the Lagrangian functions of (4.16), using the Lagrangian multiplier Z.

d d
L&, B) = 7’ |y —(K(B,B" Yw+eb)||* +C¢? + 71 | w]? -5 ((K{B, B )w+eb)+ec+ (¢ — y)

It is also possible to rephrase the above equation as

d d
L(%.C.B) =2y = D3> +C&* + =L | w* =B (Dy9 +ec + ¢ —y),
2 2 (4.17)

where D>= [K(B, Bt)]is the augmented matrix.

Find the gradient of (4.17), taking into account 9, {, and 3, and set them equal to zero

in the following way:

Mzdu{].@—%DQJ"%”EJ’”zUEDES‘DEﬂ:O

X (4.18)
6P _yep—p-o,
= (4.19)
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And

M:Dz.§!+eg+;’—y=0-
Y (4.20)

To get the value of , solve the following equations: (4.18), (4.19), and (4.20).

9="|= [dlf;, +(d, +2C)Dy' D, Tl D, ((dy +2C)y —2Ce¢).
b| (4.21)

The end regressor of non-linear LS-LDMR may be calculated for any test sample by
F(x)=K(x*,B")w + b (4.22)

Remarks1: With the use of the LDM model's features and the least squares loss
function, the LS-LDMR method is suggested. In this case, the answer comes from a
linear KKT system, even though the QPP is computationally intensive and requires us

to calculate the matrix's inverse as (d,I§ + (d, + 2C)DiD,) ™!

Remarks2: The suggested LS-LDMR method uses a system of linear equations, which
makes optimization simpler and reduces computing cost. Simultaneously, it maximizes
the margin mean and its variation, enables the proposed LS-LDMR to use all training

example information, and prevents overfitting.

Discussion: Here, we've gone over why our recommended strategy is better than

previous methods that have been described.

1. Based on the features of the LDM model, the suggested least-squares version of

LDMR.

2. Working with a system of linear equations that requires us to calculate the inverse of

the matrix alone yields the answer.

3. Unlike SVR, TSVR, € -SVQR, and LDMR, there is no need to resolve the enormous
size of the QPP. This means that LS-LDMR requires less processing power.

4. Allow the suggested LS-LDMR to make use of all training example data while also

preventing overfitting.
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5. By doing numerical tests on both real-world and synthetic datasets, the usefulness

and effectiveness of the LS-LDMR model are shown.
4.2.2 NUMERICAL EXPERIMENTS

We compare our proposed method, LS-LDMR, with the traditional SVR, TSVR,
PLSTSVR, ¢ -HSVR, ¢ -SVQR, MDR, and LDMR on thirty real-world datasets and
twenty-eight artificial datasets for both linear and non-linear cases, and we conduct a
number of experiments to confirm its efficiency and practicality based on different
evaluation parameters and computational cost. To find the best settings, this experiment

uses ten-fold cross-validation.

A Windows 10 computer with 4 GB of RAM and the MATLAB 12.0 environment were
used to carry out the experiment. For solving the 'quadprog' function in SVR, TSVR, ¢
-SVQR, and LDMR, an optimization toolbox called MOSEK is also used. All of the
data sample input characteristics are scaled to a normal distribution between 0 and 1.

The non-linear Gaussian kernel function is defined as
K(X:,Xs) = exp(-c|| X — Xs||?), forr, s=1,....,p.

The input data samples are represented by r x and s x, and the kernel parameter ¢ > 0

is selected from the range {2-5,2-4,..., 25} in our studies.

Optional regularization parameters include C, C1, and C2, as well as d1, A1 and A2.
values for SVR, TSVR, PLSTSVR, € -HSVR, € -SVQR, MDR, LDMR, and LS-LDMR

range from 10 to 105 on the scale.

The values of € for SVR, TSVR, PLSTSVR, -HSVR, and LS-LDMR are selected from
the following ranges: 0.1, 0.3,..., 0.9 for SVR; 0.001, 0.01, 0.1 for ¢ -HSVR and LS-
LDMR; and { 0.001, 0.05, 0.01, 0.1, 0.5, 1,1.5, 2} for LDMR and ¢ -SVQR.

For € -HSVR, the value of p is chosen from the interval {0.1,1,1.375}, and for ¢ -SVQR,

y 1s chosen from the interval {0.1, 0.2,...,0.9}. A value of 1 is assigned to d2.

Artificial Datasets
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The sounds are created by using a normal distribution N (t 62) and The mean and
variance are represented by t and 382, respectively, in the uniform probability
distribution U (61 62). When it comes to generalization performance, LS-LDMR
clearly does better than SVR, TSVR, PLSTSVR, ¢ -HSVR, ¢ -SVQR, MDR, and
LDMR.. In addition, when compared to all other methods, LS-LDMR is the fastest.
Figures 4.13—4.4 and 4.15-4.16 show the prediction performance for Functions 15-16
and 27-28, respectively, which prove that LS-LDMR is capable of making accurate

predictions. Our proposed strategy outperforms the alternatives in 12 out of 28 cases.

TABLE 4. 8 Comparison of LS-LDMR to other published models on the

synthetic dataset's average RMSE values obtained from a Gaussian kernel

Dataset | SVR TSV | LSTSV € - € - MDR | LDM LS-
S R R HSV | SVQ R LDM
R R R

Functio 1 8 6 7 4 5 3 2
nl

Functio 2 8 6 7 4 5 3 1
n?2

Functio 5 2 8 1 7 3 4 6
n3

Functio 8 3 5 4 7 6 2 1
n4

Functio 8 1 6 5 7 4 2 3
ns

Functio 8 7 4 5 1 6 3 2
noé6

Functio 8 7 2 6 1 5 3 4
n’7

Functio 8 7 3 5 1 6 4 2
ng&

Functio 8 4 6 3 5 2 7 1
no

Functio 8 7 5 6 1 2 4 3
nl0
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Functio 8 7 4 6 5 2 3 1
n28

Average | 5.892 | 5.607 5.1786 5.178 | 4.214 | 4.142 35 2.2857
ranks 9 1 6 3 9

n ~
e =Y e

-
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FIGURE 3. 46 Predictions made by several models on the Function 15 synthetic

dataset using a Gaussian kernel, including LS-LDMR, over the testing dataset.

For the RMSE evaluating parameter, all models are included in Table 4.8; See Table
4.9 for the ordering of the evaluation parameters: RMSE, MAE, SSE/SST, SMAPE,
and MASE. As seen in Tables 4.8 and 4.9, our proposed approach, LS-LDMR, ranks
last when contrasted with SVR, TSVR, PLSTSVR, ¢ -HSVR, ¢ -SVQR, MDR, and

LDMR.
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Figure 4. 13 Predictions made by several models on the Function 16 synthetic

dataset using a Gaussian kernel, including LS-LDMR, over the testing dataset.

TABLE 4. 9 Comparison of LS-LDMR's MAE, SSE/SST, SMAPE, and MASE to
other models that have been reported using a Gaussian kernel on simulated

datasets using

Paramete | SVR | TSVR | PLSTSV E- £ - MDRE | LDM LS-
Is R HSV | 5VQ R LDM
R R R

REMSE 580201 56071 351786 |3.1786 | 42143 | 4.1420 35 2 2857

MAE 57857 525 503571 | 4.9285 | 4.1071 | 4.1785 | 3.6785 | 3.0357
1 7 4 7 7 1

SSE/SST | 58028 [ 57142 | 521420 | 51428 4 41071 | 3.5357 | 2.3028
] Q 6 4 1 ]

SMAPE | 5.8571 | 53214 | 5.10714 ([4.6071 | 4.5357 | 3.8928 | 3.7857 | 2.8028

4 3 4 1 6 1 6
MASE 57837 525 503571 | 49285 4.1071 | 4.1785 | 3.6785 | 3.0357
1 7 4 7 7 1
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Figure 4. 14 Predictions made by several models on the Function 27 synthetic

dataset using a Gaussian kernel, including LS-LDMR, over the testing dataset
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Figure 4. 15 Forecasting on the LS-LDMR test dataset and alternative models on

the Function 28 synthetic dataset with a Gaussian kernel.
a) Friedman and Nemenyi test on synthetic datasets

Using the Friedman test and the synthetic datasets listed in Table 4.8, we statistically
test our proposed LS-LDMR. The null hypothesis is taken into account. We can tell that
these algorithms are comparable by comparing their results on important evaluation
metrics like root-mean-square error (RMSE) and average rank (Rj). If you believe

Demsar,
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,  12x28
FT8x(8+1)

{(5.89293 +5.6071% +5.1786° +4.2143 + 4.1429° +3.5° +2.28572)—(@H

X% ~ 47.5952,

And

- (28-1)x47.5952 ¢ oy
(28(8—1))—47.5952

A Friedman statistic FF with 7 degrees of freedom and an F-distribution with 189
degrees of freedom, with a standard deviation of (A —1) and (A —1)x(A —1). Considering
the significance thresholds of 0.05 and 0.10, as well as F(7, 189), the critical value (CV)
is 2.05829 and 1.74883, respectively. In this situation, the null hypothesis cannot be
accepted since the Friedman statistic FF (8.6592 > 2.05829) is bigger than the CV
(8.6592 > 1.74883).

Use the Nemenyi test to find the key difference now by

8x(8+1)

Critical difference (CD) =2.78
6x28

= 1.8199,

The following are some conclusions reached from the statistical analysis:

1. On average, our proposed LS-LDMR ranks higher than SVR and TSVR. Since the
difference between LS-LDMR and SVR and TSVR is more than the CD, the LS-LDMR
approach outperforms the other two (3.6071>1.8199; 3.3214 >1.8199)..

it. Verify the mean rank of LS-LDMR relative to PLSTSVR, [J -HSVR, and [J -SVQR,
which are (5.1786 - 2.2857 =2.8929) and (4.2143 - 2.2857 = 1.9286) respectively. The
efficacy of LS-LDMR is justified since the CD is less than the difference (2.8929
>1.8199) and (1.9286 >1.8199).

iii. For example, (4.1429 - 2.2857=1.8571; 3.5- 2.2857=1.2143) is the average rank of
LS-LDMR relative to MDR and LDMR. While the discrepancy with MDR (1.8571
>1.8199) is larger, the CD is less when dealing with LDMR, LS-LDMR s better than
MDR and equivalent to LDMR because to its higher CD (1.2143 <1.8199).
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Real-world Datasets

The following financial time series datasets are used in this analysis, together with thirty
real-world benchmark datasets, such as Kin900 and Demo from DELVE: S&P500,
INFY, MSFT, IXIC, AT&T, BVSP, and TCS are all included.to assess the effectiveness
of the suggested LS-LDMR with SVR, TSVR, PLSTSVR, ¢ -HSVR, € -SVQR, MDR,
and LDMR; KEEL time-series datasets: KEEL dataset; UCI datasets repositories:
Gas_furnace, Flex robotarm, Motorcycle, Triazines, and Abalone; NLREG
repositories: Chwirut2; and OSTI datasets: Mgl7.

TABLE 4. 10 Compared to other linear kernel models published on real-world
datasets, the average rankings of RMSE, MAE, SSE/SST, SMAPE, and MASE
for LS-LDMR

Parameter | SVR | TSV | PLSISV | £- £- | MDR | LDM | LS-
§ R R HSV | 5VQ R | LDM

RMSE 6.55 | 43 30167 | 4660 | 3.3 5.3 | 345 | 25167

MAE 6.766 | 3.75 4.1 49 | 5.006 | 5.033 | 3.6167 | 2.7667

SSE/SST | 6.566 | 4.333 3.0 4.6 | 5433 | 4.860 | 3.8667 | 2.4333

SMAPE | 6.633 | 375 | 3.8333 | 4560

L
—
L
Ly
s |

3.3333 | 3.1333

MASE 6.8 | 375 | 40667 | 4.733 | 5.033 | 5.166 | 3.6167 | 2.8333
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TABLE 4. 11 Evaluation of LS-LDMR in comparison to other models utilizing a

Gaussian kernel and provided RMSE values for a real-world dataset

Diatasers SVE | TSV | LSTSV | =- £ - MIDx | LDMAI LS-
R R HEWV | 5VQ R R LDMI
R R R
EinS0d & 5 2 T 4 3 2 1
Diamo 5 & 4 T g 3 2 1
MEelT g & 3 4 T 5 2 1
Ga=_fismacs 1 & 4 5 T 2 3 1
Flex_robotarm g T 5 & 2 3 4 1
hlotorcycla 2 3 T & 2 1 5 4
Trigzine:z 2 3 T 2 & 1 5 4
SE&ERSDD g T 4 & 1 3 5 2
Abslons 2 5 1 2 & 7 4 3
Chwinetl 2 5 3 4 1 7 '] 2
ATET 2 & 3 4 T 5 2 1
INFY 2 1 5 3 T 2 ] 4
MEFT g & 5 3 1 7 4 2
TCE.BO 3 2 & 4 T 1 5 2
EVEP 2 T 4 5 & 1 3 2
HIC 2 T 4 2 5 & 3 1
WWanlara 2 & 4 3 T 1 5 2
Wimmir 4 & 3 5 T 1 4 2
Frisdman ] T 5 3 1 4 & 2
Tr=asiay B & 4 1 T 3 5 Z
KI5 _Complata_105 3 T 4 5 4 & 2 1
I35 _Compl=ts_ 108 5 & ra : 4 3 2 1
TIes_Complsta_111 5 E) (] T & 3 2 1
TICGC 1_datas=t_D1_W1_ E 7 El & 1 5 2 3
o1
TGO 1_datas=t_E1_%W1_ 1 E E & 7 5 3 2
o001
TGO 1_datas=t_E1_%W1_ E) & E 7 3 = 1.5 1.5
o0E
TGO 1_datas=t_F1_W1_ E 1 3 s 7 & [} 2
003
TGO 1_datas=t_F1_W1_ E 1 s E 7 3 & 2
O
TINGC]_datas=t F1_“1_ B E & 5 T 2 3 1
o1
TINGC]_datas=t F1_“1_ B 2 E 5 & 7 3 1
011
Acvverama rank &.733 5.166 5 4. 866 | 5.033 3.7 3.865 1.85
3 T 3
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TABLE 4. 12 Rankings comparing LS-LDMR with other published models
utilizing a Gaussian kernel on real-world datasets for RMSE, MAE, SSE/SST,

SMAPE, and MASE
Paramete | SVR | TSV | PLSTSV | &- € - MDR | LDM | LS-
rs R R HSV | SVQ R LDM
R R R
RMSE 6.733 | 5.166 |5 4.866 | 5.033 | 3.7 3.65 1.85
3 7 7 3
MAE 6.866 | 5.6 4.6 4.633 | 4.933 | 3.833 | 3.45 2.0833
7 3 3 3

SSE/SST | 6.633 | 5.033 | 4.9333 4.9 4.966 | 3.866 | 3.6167 | 2.05

3 3 7 7
SMAPE 7.166 | 5.6 4.6 4.8 4.6 3.633 | 3.4167 | 2.1833
7 3

MASE 6.866 | 5.6 4.5667 4.666 | 4.933 | 3.833 | 3.45 2.0833

If you look at Table 4.11 for the Gaussian kernel, you can see the average rankings
tabulated according to RMSE. Table 4.10 displays the results for the linear kernel and
Table 4.12 displays the results for the Gaussian kernel, while the average rankings of
all stated techniques are computed for MAE, SSE/SST, SMAPE, and MASE,
respectively. The success of LS-LDMR is supported by the fact that it has the lowest
average rank compared to other techniques using RMSE, MAE, SSE/SST, SMAPE,
and MASE for both linear and Gaussian kernels.

Figures 4.17-4.20 show the related prediction performance graphs for the Gaussian
kernel and benchmark real-world datasets Flex robotarm, Gas furnace, Mgl7, and
AT&T, respectively. From the graphs showing the prediction performance, it is clear
that our suggested LS-LDMR outperforms SVR, TSVR, PLSTSVR, and others, ¢ -
HSVR, € -SVQR, MDR and LDMR.
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Figure 4. 16 Prediction over the testing dataset by LS-LDMR and other models

on the Flex_robotarm dataset using Gaussian kernel.
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Figure 4. 17 Prediction over the testing dataset by LS-LDMR and other models

on the Gas furnace dataset using Gaussian kernel.
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Figure 4. 18 Prediction over the testing dataset by LS-LDMR and other models

on Mgl7 dataset using Gaussian kernel.

==+ Qriginal

S
=

=
L2

o
S

Predicted/Observed Value
o
o

e
w

o
~

o
A

| | |
100 150 200 230
No of Data samples

o
o
S.—

Figure 4. 19 Prediction over the testing dataset by LS-LDMR and other models
on the AT&T dataset using Gaussian kernel.
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A. Friedman and Nemenyi test on real-world datasets

Our proposed LS-LDMR is further statistically tested for linear and Gaussian kernels
using the well-known Friedman and Nemenyi test, which measures RMSE and

SSE/SST.

a) For linear kernel based on RMSE from Table 4.10

2
2 12x30 (6552+43*+3M72+466ﬁ+532+532+345?+zﬂ7ﬂ-[&810 H

A 8k 8+1)

72~ 546703

(30—-1)X54.6703

(30(8—1))—54.6703 ~ 10.2069.

And Fr =

Fr is distributed according to the F-distribution with a probability of 7,203 degrees of
freedom level 6= 0.05 and 6= 0.10. the CV is 2.054907 and 1.746585. Here Friedman
statistic Fr is greater than the CV (10.2069 > 2.054907 ;10.2069 >1.746585).
Consequently, we do not accept the null hypothesis. Based on Demsar's (2006)

Nemenyi test, CD is calculated as

CD=2.78 /M =1.76
6x30

Here are a few key takeaways from the statistical analysis:

i. When comparing the proposed LS-LDMR with SVR and TSVR, the average rank
shows that LS-LDMR is better. The discrepancies between the three methods are larger
than the CD, which is (4.033 >1.76) for SVR and (1.783 >1.76) for TSVR.

ii. Verify that 3.917 -2.517 is 1.4,4.667 - 2.517 is 2.15, and 5.3 - 2.517 is 2.783, which
is the difference between the average ranks of LS-LDMR and PLSTSVR, ¢ -HSVR,
and € -SVQR.

In this context, the CD represents the LSLDMR method in relation to PLSTSVR, ¢ -
HSVR, and ¢ -SVQR, where LS-LDMR is similarly effective to PLSTSVR and ¢ -
HSVR.
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iii. In comparing the suggested LS-LDMR to MDR and LDMR, the average rank comes
out to 2.783 and 0.933, respectively. In this case, the CD is compared to the average
rank's difference (1.76 > 2.783; 1.76 > 0.933), indicating that the LS-LDMR method is
better than MDR and on par with LDMR.

b) For Linear kernel based on SSE/SST from Table 4.10

. 12x30
P 8x(8+1)

[( 6.5677 +4.3337 +3.9> + 4.6 +5.4337 +4.867” +3.867° +2.4333)—[@ﬂ

And

o BO-DxSLTAT g e,
(30 x (8 — 1)) — 51.7437

o

At=10.05and 6 =0.10, the CV will be 2.054907 and 1.746585, respectively, according
to the F-test (7, 203).

On this occasion, the Friedman statistic (FF) exceeds the CV (9.4819 > 2.054907 ;
9.4819 >1.746585 ) . So, the null hypothesis rejects.

Following are a few key takeaways from the Friedman and Nemenyi statistical test:

1. The results obtained by comparing the prediction performance of our suggested
method, LS-LDMR, with that of SVR, TSVR, and PLSTSVR are as follows: (4.567 -
2.433=4.133),(4.333-2.433=1.9), and (3.9 - 2.433 = 1.467).

Compared to SVR, TSVR, and PLSTSVR, the LS-LDMR method outperforms them
all in terms of SSE/SST, as is seen from the discrepancy with the CD.

il. In comparison to the CD, the average rank difference of the suggested LS-LDMR
with ¢ -HSVR, ¢ -SVQR, MDR, and LDMR is higher, with values of (4.6 - 2.433 =
2.167), (5.433 - 2.433 =3), (4.867 - 2.433 =2.433), and (3.867 - 2.433 =1.433).

Accordingly, LS-LDMR outperforms € -HSVR, &€ -SVQR, MDR, and is on par with
LDMR in terms of SSE/SST.
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¢) For Gaussian kernel based on RMSE from Table 4.12

2
22 =230 (69332 15,1672 +5° +4.867% +5.033% +3.7% +3.65% +1.852 )| SEED” ||,
8x (8+1) 4

72~ T0AM8.

(30 — 1) x 72.4248

R ~15.2667
(30x(8—1))—72.4248

And

At 6 =0.05 and 6 =0.10, the CV will be 2.054907 and 1.746585, respectively, for the
data set F(7, 203). The results show that FF is higher than CV (15.2667 > 2.05497; 15.
2667 >1.746585), thereby rejecting the null hypothesis. In addition, we may draw the

following conclusions:

1. The average rank of LS-LDMR is more different to SVR, TSVR, and PLSTSVR than
the CD (1.76 =4.883, 1.76 = 3.317, 1.76 = 3.15). The values of (4.733 -1.85 = 4.883),
(5.167 -1.85 =3.317), and (5 -1.85 = 3.15) are higher, respectively. Accordingly, LS-
LDMR outperforms SVR, TSVR, and PLSTSVR by a wide margin.

11. The LS-LDMR method is deemed better than € -HSVR, € -SVQR, MDR, and LDMR
based on the root-mean-squared error (RMSE) than the CD (1.76 = 3.017,1.76 =
3.183,1.76 = 1.85,1.76 = 1.80). This is supported by the fact that the average rank
difference between LS-LDMR and ¢ -HSVR, # -SVQR, MDR, and LDMR is 3.017,
(5.033 -1.85=3.183), (3.7 -1.85 =1.85), and (3.65 -1.85 =1.80).

d) For Gaussian kernel based on SSE/SST from Table 4.12

. 12x30
FT8x(8+1)

[( 6.633% +5.033% +4.933% +4.9° +4.967% +3.867> +3.617° +2.052)[8(811)_ ﬂ

Foo B0-Dx629112 ) 4hac.
And (30x(8—-1)) —62.9112
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i. The CV (12.4036 > 1.746585) is less than the Friedman statistic FF (12.4036 >
2.05497). The outcome allows us to reject the null hypothesis. The information allows
us to draw the following important conclusions: a. The CD values (1.76 = 4.583,1.76 =
2.983,1.76 = 2.883) are not as close to the average rank of the proposed method LS-
LDMR as they are to 4.583, (5.033 - 2.05 = 2.983), and (4.933 - 2.05 = 2.883),
respectively. This suggests that LS-LDMR is superior than SVR, TSVR, and
PLSTSVR.

ii. The rank difference between LS-LDMR and € -HSVR, € -SVQR, MDR, and LDMR
is bigger than that of the CD, with values of (4.9 - 2.05 = 2.85), (4.967 - 2.05 = 2.917),
(3.867 - 2.05 = 1.817), and (3.617 - 2.05 = 1.567), respectively.Because of this, LS-
LDMR is thought of as a better approach than € -HSVR, ¢ -SVQR, MDR, and LDMR

alone.

An effective computer technique for addressing regression issues using a least squares
huge Using mathematical formulas from LDMR and PLSTSVR, this study proposes a
margin distribution machine. A system of linear equations may be solved using the
proposed LS-LDMR. Therefore, instead of calculating the massive size QPP, which is
necessary when working with LDMR, € -SVQR, TSVR, and SVR, we need to calculate
the inverse of the matrix. Thus, LS-LDMR does not need the use of an extra
optimization toolbox. Both computationally and in terms of prediction ability, our
suggested LS-LDMR outperforms the state-of-the-art techniques, as shown by
experiments on both real-world and synthetic datasets. Statistics also show that LS-
LDMR is more effective and valuable than competing models. Possible future work on
class imbalance learning strategies includes exploring the sparse model for LS-LDMR

or proposing the Universum approach in conjunction with LS-LDMR.
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CHAPTER 5
FUNCTIONAL ITERATIVE APPROACHES FOR TWIN
BOUNDED SUPPORT VECTOR MACHINES WITH
SQUARED PINBALL LOSS AND INTUITIONISTIC
FUZZY-BASED LEAST SQUARES TWIN BOUNDED
SUPPORT VECTOR MACHINES

5.1 AN OPTIMAL FUNCTIONAL APPROACH TO A TWIN-
BOUND SUPPORT VECTOR MACHINE AFFECTED BY
SQUARED PINBALL LOSS

Classification accuracy is improved when the loss function is applied to TWSVM-
based models, much as it is to regression models. A learning model's ability to
generalize depends on its loss function, therefore it's important to choose one that
captures the characteristics of the noise in the training data. As an added downside,

although being smooth, quadratic loss is more prone to errors and has lower robustness.

This is something that we are aware of. While 1-norm might lessen the impact of noise,
it is not a panacea for smoothness. The common reduction techniques for numerical
data won't apply since it's not smooth. min-max approaches require longer than smooth

loss function minimization because to the non-smooth nature of pinball loss.

The squared pinball loss function, which is sometimes called the asymmetric squared
loss function, is supplied by Newey and Powell. This function may be used to quickly
estimate the quintile value. In comparison to the pinball ball loss function, the squared
pinball loss function is more efficient with respect to time. Our novel model, based on
a regularized TWSVM and using elementary's squared pinball loss function, is

presented in this chapter.

Following the regularized TWSVM model that is based on the squared pinball loss
function, we want to achieve a tiny misclassification error and a minor interior scatter.
Instead of employing TWSVM to solve two quadratic programming problems, a basic
functional iterative strategy is used to find the answer. Therefore, it does what it set out
to do without relying much on any external optimization toolkit. Reason being, in the

main space, fundamental knowledge is always preferable to a rough answer.
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Among the several advantages of the proposed approach are better resampling stability,
less noise sensitivity, greater convexity, and increased resilience. In order to verify the
efficacy and excellence of the suggested model, numerical experiments have been
conducted utilizing datasets that are publically available as well as datasets that were
developed for the University of California, Irvine (UCI). The proposed model's ability
to manage corrupted and noisy datasets is shown by comparing its results to those of
current and baseline methods such as generalized Huber twin support vector machines
(GHTSVM), sparse pinball twin support vector machines (SPTWSVM), and support
vector machines (SVM).

5.1.1 THE SQUARED PINBALL LOSS FUNCTION
In Table 5.1, we can see the squared pinball loss function defined as:

Table 5. 1 The squared pinball loss function used in Spin-FITBSVM

Squared pinball loss function

(1-pw® ., u<0

L7 (u)=1 0L p<l
. u=0
ol
=10 (5 1)
P is the parameter for pinball loss.
The squared pinball function may be rewritten as follows:
Pw) = (1-p)(-wi + pui. (5:2)

Where,u? = max{0,u?} for any u € R.

The asymmetric function is shown graphically in Figure 5.1, which also gives a visual
depiction of the squared loss function. This tool may be used to view a variety of pinball
loss p values. P = 1/i is the source of both the squared hinge loss and the symmetric

quadratic loss and it is also feasible to find that p = 1 causes these losses.
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Figure 5. 1 Piston loss function squared for a range of p-values, graphically

shown.

5.1.2 A NEW FUNCTIONAL THE SPIN-FITBSVM ITERATIVE METHOD
FOR TWIN-BOUNDED SUPPORT VECTOR MACHINES WITH SQUARED
PINBALL LOSSES

Iterative techniques for twin bounded support vector machines with squared pinball
losses are introduced, and we term it Spin-FITBSVM. Our goal in going this way is to
provide a reliable technique for resampling and make the system less susceptible to
noise. Using an iterative approach to functions, we have solved two convex
minimization problems within the topic of this paper that include squared pinball loss.
Up to this point, we have discussed Spin-FITBSVM, a functional iterative approach, is
designed for twin bounded support vector machines with squared pinball loss. This
method  incorporates an  extra  regularization  component.C,(|lw,||? +
b?),and C,(|lw,]|? + b3)in TSVM's fundamental issue. By including the
regularization element into the equation, we may resolve the overfitting issue. Two non-
parallel hyperplanes using nonlinear data points are necessary for our Spin-FITBSVM
model to solve the classification problem. The following is an example of a model that

is comparable to the TSVM model:

- 3 3 1 t I : E £ ' '
min G, (1w 117 +b|')+;||[K(Bl,B) eliwy b1 1P +¢ Y E([K(x,.B") elw, b1)s
5 .
(5.3)
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And,

min Cy(1wy 2 +63)+ S 1 [K(By.B') erliwy byT I +C Y (- (1K x.B) elwy £,17).
wa.by 2 = (5.4)
The regularization parameters are denoted as C (k =1, 2, 3, 4, k), the pinball function
parameter is represented by &, the ones vector is 1 2 e, and the squared pinball loss

function is given by L (x) &.

The regularization term in the first-term demonstrates how to construct the more convex
objective functions (5.3) and (5.4), which offers the only solution, within the primary
constraints of Spin-FITBSVM, as shown in calculations. Last but not least, a squared
pinball loss function is used to provide a dependable resampling solution and reduce
noise sensitivity. The first term maintains the hyper plane in the first class; the second
term adds up the squared distances from the desired hyper plane to data points in two

different classes.

This is the way to rewrite (5.3) and (5.4):

. ( 1
min Cy [l | +hf)+5||[f<(61~3’> alm b1 12+ Q&N (K(B.B) exlm BT, |2

wi,by

+(1=&) [ (H[K(B,,B") edlw, b1, ) (5.5)

And

. |
min Cyf[lwa 12 +83 J+ S 1K (BB exllwy oY 1P+ @I (HUKGBLE) elbwy byT) P

wa,b)

+ (1= (K(B,.B") e]lw, bl]')'||1)_ (5 6)

Using the functional iterative technique, we are able to solve (5.5) and (5.6).

1 2
L) =Cod{ & + = D18 |F + CLE [ (D2« P +1= )| (=D28h). |P), 5

And,

1 ) )
L(%)=Cs%5% +S1D2% 17 + G| (=D132)4 7 +A= ) [ (D1 %)+ I1%). 5.9
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Where, 9, =[¥¢|,k =1,2;D, = [K(By, B)esland D, = [K(By, B)e;] are an

augmented matrix; the plus function is a+ = max{ 0, a} .
Calculate the gradient of (5.7) and (5.8) and equate to zero.

VL (8)=2C,8 +D,'D:9 + C,(2ED, (D,9),. —2(1-&)D," (—-D,.9),),

(5.9
And,
VL,($,)=2C,9, + D,'D,2, + C,(—2&D,'(—D,9,) . +2(1-&)D,"(D,%,) ). (5.10)
From (5.9) and (5.10), one can find
W t t .
9 :{bl]:—ZClDI (2C,1+D,'D,))"(&(D,8). —(1-&E)-D,3).),
1
(5.11)
And,
w, ' ‘ _
9, :[bl =2C,D,(2C,I1+D,'D,)" (&(-D,%,), —(1-&)D,$,).).
. (5.12)

For any value of k from 0 to n, use the function iterative technique on equations (5.11

and 5.12, respectively).

3:'._] _ _2C.1D2.r (2C:f+ DI'D])_l(é:(D:Qf )‘+ _(1 _5)(_D:'91£ )1—)’ (5 13)
And,
95 =2C,D,' (2C, I + D,'D,) ' (E(~D95), —(1—-EXD,95),). (5.14)

By assuming Ry = (2C,1 + DfD;)™! and S, = (2C,I + DED,)™* one can write the
(5.13) and (5.14) in such a way:

S = —2C,D,' R, (E(D>3 ), —(1— EX—D,9).), (5.15)

And,
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kel _ ' i kv 1 k
'-92 _2C_1DI Srr(‘g( Dl"gl }- (l ‘f](DI'-gl ]I) (5.16)

For any new data point q xR , the class label can be obtained as:

K .'I B'r ) 1; K ~'r.B|l ) Jq
c’Fass(k):sig;{ (x', B )w, +b, P (x',B")w, +b, ],

” W, “ |', W, ||

(5.17)
where k ={+1, —1}.
Discussion:

1. We provide a robust, noise-resistant, and highly convex model to address

classification issues.

2. Within the context of the idea of structural risk reduction, our proposed Spin-

FITBSVM model offers a novel approach.

3. Using a function iterative strategy will help you solve the suggested Spin-
FITBSVM model. Because of this, you won't need any third-party optimization
toolkit.

4. To demonstrate the method's practicality and feasibility, run extensive numerical
tests utilizing real-world benchmark datasets from UCI and synthetic datasets that

have been processed using Spin-FITBSVM.
5.1.3. NUMERICAL EXPERIMENTS

Here, we demonstrate that Spin-FITBSVM, the approach we proposed, is applicable to
both real-world and synthetic datasets, ranging from publicly available UCI benchmark
datasets that are noisy to those that are not. We do this by comparing it against both
older and newer techniques, such as baseline support vector machines (SVMs), the
well-known twin support vector machines (TSVMs), pin-TSVMs with pinball loss
(pin-GTSVMs), GHTSVMs, SPTWSVMs, and general twin support vector machines
(GTSVMs). We ran the algorithms on a desktop PC with 32 GB of RAM, an Intel Core
17-4790 CPU, Windows 10, and the MATLAB R2018a environment. Each of the above
stated approaches employs a Gaussian kernel with the parameter u, which is defined

as: for x2,x2 € RP.
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K(xp — x9) = exp(=llxp — xJ11?/2u*)
where p > 0 is the kernel parameter which is selected from 27> to 2°.

Here, we have taken C1 = (>, C3 = C4 and A4, 4,, A3 for the sake of expediency. Through
the use of ten-fold cross-validation, the ideal parameter value C and Cy, C,, C5,C, is
obtained from 1075 to 10° as well as varying pinball loss parameters &x (k =1,2) from
the set of {0.5,0.8} and the Huber loss t. For pin-TSVM, we have additionally
computed A using the set {(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)*C1}. For
SPTWSVM, the value of € is taken into account from the interval {0, 0.05, 0.1, 0.2, 0.3,
0.5}. Additionally, the data is often standardized to the interval [0,1]. To determine
which of the above methods provide the best results, we use the relevant assessment

criteria.
5.1.3.1. ARTIFICIAL DATASET

We begin by running our proposed approach, On a hypothetical dataset we refer to as
the "synthetic" dataset, Spin-FITBSVM works with SVM, TSVM, pin-TSVM, pin
GTSVM, GHTSVM, and SPTWSVM. With 1,000 data samples altogether, this dataset

includes a binary class that corresponds to the following definition: for "+" class x; €

[—2,% )= G) +sinx; <x, < G) + sinx,, for -class x; € [— %] ,—1.35 +

3 . . : :
(E) X sin (1x_015 + 0.4) < x, < —0.85+(3/5) x sin (:—;5 + 0.4) respectively with

added noise w = N(0,0.12).

Table 5. 2 Features of the synthetic dataset in Spin-FITBSVM

Synthetic data Mean value Covariance matrix Total no. of
samples
Positive data IEELYER ro.Iodbd —0EVER 300
|— 0.1262] —0.3724  0.5139 |
Negaﬂ‘le data [ i.-ﬁ:l‘l"}' ] [ :l.z[.”j]. _U.jfﬁj- i|:||:|
| —1.1513] —0.3763  0.1977 |

Table 5.2 provides a wealth of statistical information. These characteristics include the

total number of samples for each class, the mean value, and the covariance matrix, in
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that order. The following methods' generalization performance on synthetic datasets
employing the Gaussian kernel is described by the numerical experiment results: With
SVM, TSVM, GHTSVM, SPTWSVM, pin-TSVM, pin-GTSVM, and spin-FITBSVM.
Because it employs an iterative way to derive the answer, Spin-FITBSVM has a quicker

learning speed compared to other approaches.
5.1.3.2 REAL-WORLD DATASETS

Using twenty-four real-world benchmark datasets, we ran many tests to verify the
efficacy of the suggested approach. Cleveland, WPBC, Asian Credit, and Australian
Credit are some of the databases that are available. Among the many areas that have
been investigated are bands, cryotherapy, dermatology, the Indian Liver Patient Dataset
(ILPD), and breast tissue. Yeast-2 vs. 4, Ecoli2, Glass4, Yeast2 vs. 8, and Autism
Adolescent Data are all variables that may be compared with Glass-0-1-4-6_vs 2. The
files Glass-0-1-6_vs 2, Ecoli-0-2-6-7 vs 3-5, and ecoli0137vs26 were retrieved from
the UCI repository. As part of the non-linear case, you may find 04clover5z-600-5-50-
BI, 04clover5z-600-5-70-BI, 04paw02a-800-7-30-BI, 04clover5z-800-7-50-BI,
03subcl5-600-5-50-BI, and 0O4clover5z-600-5-0-Bl. Additionally, we tallied a few
statistics using datasets derived from real-world sources. This definition is applied to

all real-world datasets in order to normalize them:
;(',f = (x; — (miﬂfvzl{-\’{';)}}f((lnﬂxil(-\’g ) — {miﬂ,’il(-\’jj D),

For each input sample element xij, where i1 is an integer between 1 and j,
B, minle(xi j) is the smallest value in the jth column of the sample input i£1 (xl- j) 1s

the maximum value of the j'™ column of the input sample B.

We provide the results for the non-linear case with 10% noise and with no noise at all.
The generalization of the Spin-FITBSVM is on par with or better than that of SVM,
TSVM, pin-TSVM, GHTSVM, and SPTWSVM on ten datasets, including Cleveland,
WPBC, Glass-0-1-5 vs 2, Glass2, Yeast2vs8, Breast Tissue, Indian Liver Patient
Dataset (ILPD), Bands, ecoli0137vs26, and 04paw02a-800-7-50-BI. When looking at
computation time across all datasets, Spin-FITBSVM stood up as the quickest

approach. Figure 5.2 is a bar graph rendering the average training speed rankings that
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we created. All of the datasets for additional pertinent methods are included in this

graph.

#SVM ®TSVM #Pin-TSVM ®Pin-GTSVM ®GHTSVM ®SPTWSVM = Spin-FITBSVM

AVERAGE TIME RANKS

Figure S. 2 Time series plot of Spin-FITBSVM and other models using noise-free

Gaussian kernels applied to UCI benchmark real-world datasets

As shown in Figure 5.2, SpinFITBSVM outperforms competing virtual machines in
terms of computation speed. The suggested approach Spin-FITBSVM has a wider gap
between it and SVM, TSVM, pin-TSVM, pin-GTSVM, GHTSVM, and SPTWSVM
when comparing the average ranks of several techniques. With data that contains 10%
corrupted noise, we also tested our suggested method, SpinFITBSVM, with SVM,
TSVM, pin-TSVM, pin-GTSVM, GHTSVM, and SPTWSVM. The presentation covers
training time, optimal parameters, and classification accuracy for data with 10% noise
concentration. The ranks were determined by averaging all datasets. On sixteen
datasets, including Australian Credit and WPBC, the SpinFITBSVM outperforms or is
on par with SVM, TSVM, pin-TSVM, pin-GTSVM, GHTSVM, and SPTWSVM,
according to experimental results, including 5.8. The following groups were
considered: Bands, Dermatology, Indian Liver Patient Dataset (ILPD), Spectrum
Disorders in Children and Adolescents, and Glass-0-1-4-6 vs_2 are all part of it. The
04clover5z-600-5-50-BI, 03subcl5-600-5-50-BI, and 04paw02a-800-7-30-BI data sets
include 10% corrupted noise. The proposed Spin-FITBSVM exhibits substantially
improved performance on all datasets exhibiting 10% corrupted noise in comparison to
earlier approaches. To display the average ranks of computing speed, we have

generated a single bar graph, which can be seen in Figure 5.3. In this network, you may
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see every dataset for every interesting approach. The training speed of Spin-FITBSVM
is much faster than that of earlier reported methods (Figure 5.3).

=SVM = TSVM Pin-TSVM ®Pin-GTSVM = GHTSVM = SPTWSVM = Spin-FITBSVM

AVERAGE TIME RANKS

Figure S. 3 Datasets used as benchmarks by UCI, containing a Gaussian kernel

and 10% noise, and time graphs for several models, including Spin-FITBSVM

Furthermore, Figure 5.4 showcases a boxplot that rates the accuracy of all the

approaches tested on datasets that were 10% noisy.

w
T

Accuracy ranks
.
T

L=
T

1L L 1 - - N

1 1 I 1 1 | |
SVM TSVM pin-TSVM pin-GTSVM GHTSVM SPTWSVM Spin-FITBSVM
Models

Figure S. 4 Comparison between Spin-FITBSVM and competing models'
accuracy ranks on UCI benchmark real-world datasets trained with a Gaussian

kernel and 10% noise

See Figure 5.5 for the suggested approach Spin-FITBSVM's convergence graph.
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Figure 5. 5 Testing the proposed Spin-FITBSVM method on three real-world
datasets: (a) Autism-Adolescent-Data, (b) BreastTissue, and (c) Cryotherapy to

determine its noise-free convergence.

This graph is created using data that is free of noise, namely from the Autism-

Adolescent-Data, Breast Tissue, and Cryotherapy datasets. Figure 5.6 concludes with a

convergence graph displaying a number of real-world datasets, such as Breast Tissue,
Cryotherapy, and others, and Yeast-2 vs 4.
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Figure 5. 6 On real-world datasets (a) breast tissue, (b) cryotherapy, and (¢)
yeast-2 vs. 4, the suggested Spin-FITBSVM method converges with 10% noise

using the Gaussian kernel function.

The data in this graph is assumed to have corrupted noise to the tune of 10%. Figures
5.5 and 5.6 show the solution acquired quickly, allowing one to analyze and watch how
the convergence is carried out in the least feasible number of iterations. Shown in Figure

5.7-5.9 are the insensitivity graphs for the proposed Spin-FITBSVM and datasets with

0% and 10% noise, respectively.
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Figure 5. 7 Sensitivity plot of the suggested Spin-FITBSVM model for real-world
datasets (a-b) with and without noise using the Gaussian kernel function
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Figure 5. 8 Sensitivity analysis of the suggested Spin-FITBSVM with 10% noise
and the Gaussian kernel function applied to real-world datasets (a-b) Cleveland
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Figure 5. 9 Sensitivity analysis of the suggested Spin-FITBSVM with 10% noise
and the Gaussian kernel function applied to real-world datasets (a-b) Radiation

treatment (c-d) Breast Cancer Patients
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Figure 5.7 displays the sensitivity graph with zero noise for the Cleveland dataset (C 1
V s C 2) and the WPBC dataset (C_1 V_s v). The sensitivity graph for datasets such
as Cleveland, WPBC, Cryotherapy, and Breast Tissue is shown in Figure 5.8 for a 10%
noise dataset, and for C 1 V_s C 2 and C 1 V_s v, respectively, in Figure 5.9. Both
the baseline and its noise-free versions are surpassed by our proposed method, as seen
by the sensitivity graph. When compared to other objects, it is less affected by noise.
While QPPs in SVM, TSVM, pin-TSVM, pin-GTSVM, GHTSVM, and SPTWSVM
obtain faster and more generalized algorithms, we accomplish a simple and efficient
approach by solving the optimization problem using a function iterative technique that

employs squared pinball loss. The primary reason for this occurrence is this.
Statistical analysis

The non-parametric Friedman test will be applied to all seven algorithms and run on
twenty-four real-world benchmark datasets. By comparing the results of seven separate
algorithms, this test verifies the statistical significance. It is a trustworthy, practical, and
easy-to-understand exam. Here we talk about the average rankings of all techniques

that are significantly different from Spin-FITBSVM's average ranks.

Think about how the suggested method's mean rank differs greatly from the average
rank of the interested methods and Rg = 1.916667 eanticipated the non-linear case's
null hypothesis to be: Its distribution is based on x2 with (£ — 1) with (£ — 1)degree

of freedom. N is equal to the sum of all intriguing datasets.

; 2% 24 ; ; . . ; ; ,  Tx8xB]
2= 2528 13952 L 38058 +5.1458% +4.375 +4.4583° + 43125 + 20625 — L °x8 |
T=x(T+1) 4 |
¥ =28.7411.
b (28-Dx287411 .
And | @ax(-1n)-287411

Taking into account the twenty-four real-world datasets and seven algorithms, the
Friedman expression Fp is distributed with (({’ -1), ((NO - x- 1))) =
((7 —1),((24-1) x (7 - 1))) = (6,138) amount of leeway as determined by the F-

distribution. The pivotal point at which F(6,138) = 2.1648 and F(6,138) =
1.8172 for ay = 0.05and ay = 0.10 respectively. No, we will not accept the null
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hypothesis since the crucial values are 2.1648<F F and 1.8172<F F. To further

compare all algorithms, we run them via the Nemenyi pairwise comparison test. The

key difference is defined for this test: = gg, ’[:(X;;l) =2.693 |27 < 1.6794 for
0

6X24
Bo = 0.10 where qg, is considered based on ¢ and B, from Demsar. We arrive at

several intriguing decision points by running the Friedman and Nemenyi pairwise test,

which are as follows:

» This is because the method found a critical difference, and as compared to the
average rank of SVM, the suggested Spin-FITBSVM is 1.6875 places higher. The
suggested Spin-FITBSVM may be able to outperform the SVM in terms of

generalizability.

» We found that the projected critical difference was 1.83333 above 1.6794, which is
bigger than the dissimilarity of 1.83333 with relation to the mean TSVM rank and
the proposed Spin-FITBSVM. The results show that Spin-FITBSVM outperforms
TSVM when dealing with noisy datasets.

» At 3.08333 and 2.3125, respectively, Comparing pin-TSVM and pin-GTSVM with
SpinFITBSVM, the average rank difference exceeds the crucial difference of
1.6794. A significant departure from the crucial difference is shown by this. When
it comes to noise-impacted datasets, the results show that Spin-FITBSVM is much

more efficient than pin-TSVM and pin GTSVM.

» The Spin-FITBSVM is used by both GHTSVM and SPTWSVM, with an
average rank dissimilarity of 2.3958 and 2.25. At 1.6794, this discrepancy is far
less than the essential one. Dealing with noisy datasets leads to the same
conclusion: It's clear that Spin-FITBSVM outshines GHTSVM and SPTWSVM

and the important difference is smaller.

We present a new technique for sample classification in noisy environments, Spin-
FITBSVM, an iterative functional approach to twin bounded support vector machines,
reimagines the classic twin model of SVM by using the squared pinball loss function.
In the first case, we account for the regularization parameter in order to apply the SRM
principle using our suggested approach, Spin-FITBSVM. The cherry on top is that it

ensures Spin-FITBSVM achieves its theoretical robustness objectives. On several
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datasets, including real-world benchmark and fake ones, as well as SVM, TSVM, pin-
TSVM, pin-GTSVM, GHTSVM, and SPTWSVM, our proposed approach, Spin-
FITBSVM, has been computationally compared to other methods that have been
published. When compared to the other methods, Spin-FITBSVM uses less
computational resources while yet producing better outcomes. The topic of parameter
selection requires further research, but it will be addressed eventually. Adding support

for scenarios involving many classes would be a nice bonus.

5.2 MACHINE FOR THE INTUITIVE FUZZY SET OF LAST
SQUARES WITH TWO BOUNDARIES FOR SUPPORT

VECTORS

Outliers and noise are more likely to affect the LS-SVM than the standard SVM. The
reasoning for this is because LS-SVM uses hyper planes that are geographically close
to the classes and integrates the least squares loss functions. LS-SVM, on the other
hand, uses linear equation solutions rather than QPPs to lower the overall number of
solutions. A training time that is as complicated as is practically possible. A further
limitation of fuzzy-based support vector machines (SVM) in data classification is how
well they can make up for the negative impacts of outliers and noise. Since the degree
of membership function treats the support vectors of outliers as random noise, it
specifies the distance from the input data to the class center in the sample space. The
position of the input data in the feature space is irrelevant; this is accomplished. With
the right membership function, fuzzy membership may make support vector machine
(SVM) based techniques less noise sensitive by assigning membership values
depending on the relevance or belongingness of samples to a given class. The best
course of action is to choose a membership function. In this case, we circumvent the
limitations by creating two acceptable alternatives: intuitionistic fuzzy least squares
twin bounded support vector machines and intuitionistic fuzzy least squares support
vector machines. Each of these variations derives its fuzzy value from intuitionistic
fuzzy numbers using membership and non-membership functions. Finding simple
solutions to systems of linear equations may be made easier, which can simplify
training. This contradicts the method by which TWSVM acquires the answer by
analyzing two instances of quadratic programming. The best techniques have been

computationally tested under the non-linear condition on a wide range of publicly
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accessible real-world benchmark datasets and artificially generated datasets. The
research took into account a broad range of noise levels, from completely silent (0%

noise) to severely disturbed (5% noise).

We present a twin model that, with careful noise mitigation, achieves better
generalization performance than competing models while requiring much less training

time.

The results of the models that are given are further validated by using quality indicators

like AUC, F1-score, G-mean, and Precision Predictive Value (PPV).
5.2.1 CONCEPT OF INTUITIVE FUZZY NUMBERS (IFNS)

Functions related to membership and non-membership, along with an explanation of

IFN, are laid down below:

1) Membership role: A definition of it is:

1-Zy, if y,isnegative
w(x;)= o P L

1-Z>, if y; is positive

(5.18)

Where

X)) -Z¢ (x;j)—Z¢
Z|=||'§9(";) C||arlcl 222”@ i C”;H

Z;+6 Z i +0

represent positive variables; Z},Z; as well as the negative and positive class radii,

respectively, where

Z7 =max || @(x;) = Z¢ ||, yi =+1

And

Z; =max||p(x;) = Z¢ | y; =—1:Z&,Z¢

where the positive and negative classes' cores are located, respectively

1 -1
Zc :—Z@{.\',- ), y;=+landZ,- :—Z(p(x,-}, yvi==l:pi.p>
I3 P2
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represent the sum of all training data points, including positive and negative; ||. || shows

how far away the input data sample is from the center of the relevant class, i.e.

Zp =|le(x;)— qo(x_;- )= Jf((x,‘,x_,,- )+ f\'(x_;-,x_;- ) — 25’(&';,:{_;- ).
2) Outside of membership: You may think of it as:

‘ {“"_f |ZD <4, Vi i}"j H

7(x;) = (1 -y (x;))

[1x;12p <6 ||
(5.19)
where |. |[represents the cardinality; 0 < W(x;) + t(x;) < 1;
As a concept, an intuitive fuzzy number (IFN) is:
[Wﬁ t T = 0
IFN (A;))=(y(x;),7(x;))=7 0 , Vi <T;
\_ZO 2 li"/f‘ > Tr' ? T‘.‘ % 0 (520)
where
l—1:
Zo = d
2- Wi—T1;

According to the integrated function, it is capable of handling noise and outliers and

eliminating them from the support vectors.
Three distinct options are unlocked by this IFN.

It is easy to give the membership value to the data samples in Case 1 when the value of

non-membership of one class is zero, since there is no neighborhood of another class.

In the second scenario, we see that noise exists whenever the value of not belonging to

a class is greater than or equal to the value of being a member of that class.

Consequently, the IFN will be initialized to zero.
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Case3: Support vectors, which are data samples located close to the non-membership
value, are few in number if the value of non-membership is more than membership but

less than zero.
5.2.2 IMPLICIT FUZZY MODELS THAT ARE SUGGESTED

5.2.2.1 THE IFLSSVM IS AN INTUITIVE FUZZY LEAST SQUARES
SUPPORT VECTOR MACHINE.

Rezvani and colleagues have postulated a novel method for training the TWSVM model
that makes use of the IFN of the data samples used for training. Exciting features of this
information sharing network (IFN) boost the data samples' membership and value to
those who do not join. Because of this, it is more resilient to the impacts of outliers and
does better with noisy datasets. By using understandable fuzzy values, training data
samples may be converted into weighted parameters. To determine how far away the
class center is from the supplied data samples, one uses the degree of membership
function. The function that specifies the degree of non-membership evaluates the
connection between the total number of in harmonic samples and the available
neighboring samples. It does a fantastic job at lowering noise and separating it from
support vectors. Choosing a membership function that accounts for noise, however, is
crucial. Training data located on the border between binary classes may include about
the same amount of people from both the positive and negative categories, which is
why misclassification happens. In order to address this, we compute and tag each data
sample with an IFN; this signifies the degree of non-membership linked to the negative

class and the degree of membership function linked to the positive class.

Using fuzzy weighted values and least squares, this work presents a support vector
machine (SVM) model. Our model, which we refer to as [IFLSSVM, is based on
intuitionistic fuzzy numbers, which are useful for evaluating fuzzy membership. It is
built from LS-SVM and IFTWSVM. Statistical learning theory's cornerstones must be
upheld by the ideal IFLSSVM hyper plane. In this part, intuitionistic fuzzy numbers
and slack variables are both considered. Finally, we convert the SVM's inequality
criteria into equality constraints during this step. In the context of the non-linear

situation, the proposed IFLSSVM is stated as:

Subject to.
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- C
min I wi? +5( X0 262

whb -

= Val@(x, )'r w+b)= {qa—1, Va=1,.,p. (5 21)

. t . L
where C>0 is the penalty parameter; are {, = ({11, ...,{lp) non-linear mapping is
represented by ¢xq, and Aq stands for intuitionistic fuzzy values; slack variables are

characterized by this.

Following the implementation of Lagrange's multiplier @, > 0 in (5.21), written as

(5.22)

ww C
Lg(”'j'-é‘(.* )= 7 == _(Zp:]’{ng(? ] = f::]aa ("’a (p(xq ) w+b)—1+ Sa )

- (5.22)

The next step is to find the unknowns' gradient of (5.22), which should equal zero.

oL, (w,b,{, .
g \Wlthbg.tig P i
=w-— Za:la“-v“@("f’ )=0,

ow (5.23)
(P)Ig(“’ebegmaa) __ZP ;=0

ob B u:]af Ya=0>

(5.24)
oL, (w,b.C .a)
g : Car%s =CA ¢, —a, =0,

3 (5.25)
And,
oL L b, a-Ua
: g(nﬁ;g < =¥a ((O(XG ){ H'+b}+§” —1=0 for a=l,., E-

a, (5.26)

The dual of the equation (5.21) may be expressed in this way by using the formula
(5.23) -(5.26).

o el
e 2 Jled U] (5.27)

Where,
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Yo =nssypls Zs = (Z_;Z_i + A“tC_'[): Z3 =[p(x))" Y53 P(x, )"_1’;_,];

I is the identity matrix with the right dimensions, and A is the column vector with the

majority  class's fuzzy membership values. Py =[1;..;1] and a=

t . . . .
(al, s ap) Following is the sole way to invert the p x p matrix, as can be shown.

Zy= (z3z§ 1 ;ricj“;)

(5.28)
and from (5.27) one can get the
i g
R —b}’g)where E?:);"Z—‘l};L :
g=4 g (5.29)

Using the answer from (5.28), the hyperplane representing the ultimate conclusion for

every particular set of test data may be obtained.
The suggested IFLSSVM algorithm uses Sherman-Morrison-Woodbury (SMW)

By examining the SMW formula to reduce the training cost (Golub and loan) in (5.29),
it is possible to efficiently evaluate the matrix inverse operation. Formula (5.28), which
may be solved using the SMW formula, is described here. As shown in (8.14 5.31), this
formula may be used to resolve the problem within the reduced dimensions. We have

established the formula for SMW,

I . I .
[—+AA’] ZCJ—A(—MfA} A
C C

(5.30)
Where C is any positive number; 4 is an arbitrary matrix.
The following expression, for example, may simplify (8.11)
I - I -
(E + 2325J = &C(I—Z_{E + z§z3) 25,],
(5.31)

5.2.2.2 THE TWIN-BOUNDED SUPPORT VECTOR MACHINE WITH
INTUITIONISTIC FUZZY LEAST-SQUARES (IFLSTBSVM)
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We provide a powerful approach that is built on TWSVM and follows a pattern seen in
IFLSSVM. To control the impact of sounds while keeping processing costs low, this
technique employs intuitionistic fuzzy membership values in conjunction with the

principle of least squares.

Our suggested machine learning model is the IFLSTBSVM, which stands for
intuitionistic fuzzy last squares twin bounded support vector machine., to get at the
heart of the matter. Here is how the IFLSTBSVM's objective function is expressed:

= 1 = = = 2
. min E(Cl"b &1 112 H(K(By. B Ywy + eyby) (K(By, B Yw, + eby) + Cy(wiw+bf) )
subject 10: wy.by.¢, ‘

—(K(By, B YWy +e3by) + &) = ey, (5.32)
And,

5 1 o) =
. min E(Cyh €2 1P +(K(By.B' Yws +e3by) (K(Ba. B Yws +eaby) + Cy(whwy +b3) ]
subject to: vy by £y

(K(BI,B")H"Z +C|b2)+§2=(’|. (5.33)
The column vectors A_i (i=1,2) obtained using the formula (5.18) -(5.20), denote the
fuzzy membership values for positive and negative data points, respectively. In this
case, ¢_1 represents the ones-vectors, and {;, {, > 0; C;, C;, C3, C, > 0. the user entered

the settings.

The following form, representing the (5.32) and (5.33) as Lagrangian functions, allows

us to reformulate them:

Lgl = %(K(BI.B’ )\1'| + (’]bl )1 (K(B].,B, )Wl + (’][)I )+ %Cl H }”Z(K(BZ‘B[ )H'l + (’2[7] ) o € “2 +%C3(W{\\'l E [)]2)
2 2 2 (5.34)
And
Ly, = %(K(BE’B{ Wy +exby) (K(By,B' ), +3h) + %Cz | -2 (K(B,B"ywy +eby) + e | +éC4(“'5“'2 +b7)
2 (5.35)

In order to get to zero, we must first calculate the gradient of 5.34 and 5.35 with regard

to the unknowns, which is (5.36), (5.37), and (5.38), (5.39):
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oL
1§I ZK(Bl,B{)!(K(BlsBI)W] +g]bl].+C]K(Bz,B‘)rﬂéiz((K(Bz,Br)l‘.‘l +€zb])+€2)+C3w| =0,
oWy

(5.36)

-~
1

oL
EL — ol (K(By,B" )W, +eby) + C1eb 252, (K(By B YW, +exby) +ey) + C3by =0,

oDy

(5.37)

And,

-

oL
22— K(B,,B") (K(By,B" )W, +e3b5) — CK(By, B')' Ay (<(K(By. B' )wy + €1 ) + ¢) + Cywy =0,
GH’Z

(5.38)

oL
ng = (K(By. B YWy +e3by) — Coel Ay (—(K(By, B')w, + e1hy) + €)) + Caby =0,
b

(5.39)

To get the best value for, now combine (5.36 and 5.37) into (5.40), and (5.38 and 5.39)

w,,b,w, and b,,

into (5.41)

" K(B,.B") K(B,.B") B K(B,.B")

M:_q PR IKBLBY) @]+ G T L [K(ByBY) o]+ Gl 277 e,
e e &

(5.40)

And

-1
! " t tt
Fz}:CQHK(BE;B)}[K(BLBW CZ]+C2{K(BIZB)]’ISAI[K(BITBF) 01]+C41] [K(BL}B)}W,
1

bz € e

(5.41)

Assume D; = [K(By,B") e;] and D, = [K(B,, BY) e,] are the augmented matrix and

9, = [‘2’11] and 9, = [‘ZZZ] We can rewrite the equations (5.40) and (5.41) as

S =—C(D{ Dy + C\D4 454, D5 + C;1) ' Dy A e, (5.42)
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And,

% =Co(DAD, + CLD{ B ADy + Cal) ' D A dyey (5.43)

Applying this method to any set of test data will provide better positive and negative
class hyper planes formulas to equations (5.42) and (5.43).

: |n'fK[.r,B'f}+b| | ] n‘fa_K(x,B’}+b2 |
class k =argmin : ;
a=1.2 \/'ﬂ'HK(Bl.,BF)H'I JHEK{BE.B!’ }1,1'2

(5.44)
Sherman-Morrison-Woodbury (SMW) for IFLSTBSVM algorithms

I. In the same way that the TWSVM model is unable to ineluctably perform the matrix
inverse operation, neither is our suggested IFLSTBSVM (5.43). As a result, one order

of standard two-matrix inverse operations entirely solves the linear IFLSTBSVM.

(@ +1) twice, where ¢ is shown as a feature space dimension. The dimensionality of the

training samples is a good proxy for the computational cost of linear IFLSTBSVM.

II. Two matrix inversion operations of order may be seen for non-linear IFLSTBSVM

(P+1) twice is constructed, where 7 is stands for the sum of all training samples.

[II. By taking the SMW formula into account, one may decrease the training cost and
easily assess the matrix inverse operation in (5.42) and (5.43). We go over the SMW
formula in (5), which may be used to solve equation (5.42) in lower dimensions like

(p1 X p1) and (p, X p,) where p; < p and p, K p,respectively as shown in (5.46).

SMW formula is defined as,

(??+ wo' ) =0 -+ p'n o) o'
(5.45)

For instance, (5.42) can be simplified via following formulation

' -1
1
(D{D1 +C,D5252,D, +C31T ={z5 —ZSDQAE{CLMZDEZSD;IE] ,120225],
1

(5.46)
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1 |
where Zs = a[! -Df (C_;f - D,D{T D, J
(5.47)

Similarly, one can find the simplified formula of (5.43) using SMW formula.

-1
1
(Dgz)z +C,D{ 4, Dy + C4]T :[z6 —zbo{,lq(ciulalzﬁof,{{] ,110126],

(5.48)
1
where Z, =L(f _pilcyr+ D0 DIJ
C4-] = e )

(5.49)
Discussion:

1. Considering that it is well-known that SVM and TWSVM models are very vulnerable

to data points with noise. Two methods that mitigate noise are IFLSSVM and
IFLSTBSVM.

2. Our proposed approaches, IFLSSVM and IFLSTBSVM, aim to capture the essence
of statistical learning and are based on the SRM principle, in contrast to IFTWSVM.

3. To reduce training costs as much as possible, we have used the Sherman-Morrison-
Woodbury (SMW) formula to find the matrix's inverse in the proposed IFLSSVM and
IFLSTBSVM. The IFTWSVM, on the other hand, used the SMW formula.

4. Our models, which are similar to IFTWSVM, calculate the gap between the class
center and the training example. Additionally, they determine the association between
in harmonic examples and the examples in their neighborhood. This results in improved

binary classification generalization performance.

5. Intuitionistic fuzzy numbers are central to the suggested noise models and contribute

significantly to their improved theoretical understanding.

6. Finally, the suggested IFLSSVM and IFLSTBSVM are shown to be effective and
practical by conducting extensive numerical experiments on a range of simulated and

real-world datasets with varying degrees of noise, namely 0% (noise-free) and 5%
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(noise-corrupted). Furthermore, it is statistically analyzed using the Friedman and

Wilcoxon signedrank test in combination with other relevant approaches.
5.2.3 NUMERICAL EXPERIMENTS

Here we examine the outcomes on 39 benchmark real-world datasets housed in the UCI
repository as well as 7 synthetic datasets housed in the KEEL repository. We also
consult 2moons, synthetic datasets, and Ripley's. We want to prove that IFLSSVM and
IFLSTBSVM work. A personal PC running Windows 10 Pro and MATLAB R2008b
are used for all of the tests. A 64-bit OS with an x-64 based processor, 32 GB of installed
RAM, and an Intel®CoreTM 17-8700 CPU running at 3.20 GHz make up the system
setup. We compared the proposed IFLSSVM and IFLSTBSVM  techniques'
classification performance to that of existing baseline approaches using the 5-fold
cross-validation method. Using a random number generator, we split the datasets into
five equal parts; we train on four of the parts and test on the fifth. Area under the curve
(AUC), among other crucial performance evaluation measures, is calculated by
averaging the results of all five rounds of this technique. Fl-score, G-mean, and
Positive Predictive Value (PPV). Up to five iterations of this process are possible.
Improvements in recall and specificity are achieved by the use of the following
parameters: AUC, Fl-score, G-mean, and Positive Predictive Value (PPV). This is

achieved by making use of predetermined parameters.

The choice of the Gaussian RBF kernel to handle the non-linear case is expressed as
K(xq,x.) = exp‘(”xd‘xe”z/ 24%) where x4 and x, constitutes samples of any kind of
data. To get the most performance out of any method, parameter selection is key. We
have chosen the best value for the penalty parameters a,01,a3 from a large range in our
testing setup {10%|k = —3, -2, ...,2,3} and Gaussian RBF kernel parameter y from the
set {2%|k = —5,—3,—2 ...,2,3} respectively. For the EFLSSVM model, the kNN is
stable to the value of 5 as well as the value of the adjustable parameter 8 > 0 is selected
from the range {0.01,0.1,0.15,0.2,0.25,0.4}. To minimize the running cost of parameter
selection, we have taken C; = C, and C3 = C, respectively. All the data samples are

normalized between 0 and 1.

The research was carried out using 39 publicly available, real-world datasets housed in

the UCI repository. We did this to show that the proposed models had better
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categorization performance. Check out the KEEL collection for purposefully created
imbalance datasets, as well as Ripley's, synthetic datasets, and 2moons fake datasets,
and see how well the proposed models IFLSSVM and IFLSTBSVM perform. The
rundown of all the real-world benchmark datasets and the purpose-built examples. The
unbalanced ratio is characterized by as IR = (E, + Es) where E, = the total major

class sample and E5 = total minor class sample.

Real-world Datasets

Here, we do tests to prove the validity and logic of our technique, and we put our
approach to benchmarking real-world datasets with different levels of considerable
noise to the test. Using the ideal parameter, such as area under the curve (AUC), F1-
scores, G-mean, and computation time, all of the provided strategies were evaluated on

datasets that were free of noise and datasets that had noise damaged.

Methods are ranked according to their area under the curve (AUC) relative to real-world
benchmark datasets. With an area under the curve (AUC) of 19, an Fl-score of 13, and
a G-mean of 13, the technique IFLSTBSVM clearly obtains the best generalization
performance on 0% (noise-free) datasets. This remains true despite the fact that, on

average, it ranks worse than competing methods.

Among the 39 datasets tested, it is evident that IFLSTBSVM achieves the highest ranks
in terms of AUC, Fl-score, and G-mean on 5% noise corrupted datasets. Datasets
contaminated by noise undergo this process. For different significance levels, such as
0% (noise-free) and 5% (noise-damaged), we have also calculated the average ranking
of Fl-score, G-mean, and Positive Predictive Value (PPV). The outcomes of our
calculations are shown here. The results allow us to conclude that our approach,

IFLSTBSVM, outperforms the previously specified models.

Figure 5.10 and Figure 5.11 illustrate the area under the curve (AUC) for all of the
applied models as a boxplot on benchmark real-world datasets that were noise-free and
datasets that were noise-corrupted, respectively. In order for the data to be visually
comprehended, this was done. Figures 5.10 and 5.11 show that compared to previous

models, our IFLSTBSVM model has a much greater area under the curve (AUC).
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Figure 5. 10 Box plot of the value of AUC of IFLSTBSVM and other models on

benchmark real-world datasets at 0% noise significant level.
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Figure 5. 11 Box plot of the value of AUC of IFLSTBSVM and other models on

benchmark real-world datasets at 5% noise significant level.

In terms of generalizability, this shows that our proposed model is acting in a promising
way. As seen in Figures 5.12 and 5.13 with varying degrees of statistical significance,
the bar chart displaying the F1-score, G-mean, and positive predictive value (PPV)
likewise demonstrates that IFLSTBSVM outperforms other interesting methods. The
purpose of this is to ensure that the data is checked thoroughly. It also suggests
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something similar, namely that the suggested IFLSTBSVM model is the better choice

when it comes to classification.
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Insensitiveness performance graph

Our IFLSSVM and IFLSTBSVM models, which are less parameter sensitive, allow us

to concentrate on their performance in this context.

il

Atk 1 Plotting the
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insensitivity graph of the suggested IFLSSVM with a range of parameters that the user

specifies helps in understanding it better € 214 # and for the suggested IFLSTBSVM

model on Cleveland using parameters, as shown in Figure 5.14 (a)-(c) accordingly, on

Ecoli, Monk2, and Ecoli0-2-6-7 vs_3-5 Cand pt 4 Figure 5.15 (a), based on

Crand G5 o the right

parameters Gy and p 4 Figure 5.15 (b), and based on parameters
side of Figure 5.15 (c), each. Based on what is shown in Figures 5.14 (a)—(c) and 5.15

(a)—(c), it is not necessary to choose the very high or very low value of Ci.and G

€, and C;

order to get a higher AUC. It follows that the parameters 3 impact our

IFLSSVM and IFLSTBSVM models' binary classification performance to a lesser

extent.

IFLSSYM IFLESVM

\-\-""\‘_‘ g £ e 5. 20 e {1 "-'_Fr—-ﬁ-. i
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i el
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(a) Ecoh (b) Monk2
IFLSSYM

(c) Ecoli-0-2-6-7 vs_3-5

Figure 5. 14 The sensitivity plot of the proposed IFLSSVM model based on real-
world datasets such as (a) E-coli (b) Monk2 (c¢) Ecoli-0-2-6-7_vs_3-5 for noise-

free datasets
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Figure S. 15 The insensitiveness performance graph of proposed IFLSTBSVM

model on Cleveland real-world datasets for noise free datasets
Statistical Friedman and Nemenyi test

We used benchmark real-world datasets with 0% (noise-free) and 5% (noise corrupted)
noise to run the Friedman statistics with Nemenyi test on the non-linear kernel and
confirm IFLSTBSVM's performance statistically. The non-linear kernel may then be
used, therefore this was done. What we have here with Friedman's test is a simple rank-
based non-parametric statistical approach. Our ability to show, with the use of this

famous test, that the calculated results are significantly different.
a) Noise-free datasets

The null hypothesis can be described using AUC as follows:
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(3.85897’2 +5.0641% +4.44872% + 4.73077* +3.60256% + 4.32051% + 1.97436°
2 12x39 - 5 '
XF = {?x(?+l)“]

(39-1)x52.2438

= ~10.9227.
(39x(7-1))—52.2438

and Fr

F(6,228) has a critical value of around 2.13849 and 1.800 at the probability level, as
can be shown Ar = 0.05 and A = 0.10 in that order according to the F-distribution
critical value table. The calculated outcomes reveal a notable disparity across the seven
algorithms as a consequence of the actual value of Fp > 2.13849 and Fr > 1.800. To
execute this test, one may find the crucial difference by comparing the mentioned
algorithms with the suggested method IFLSTBSVM in a paired fashion. The results are

considered to be subjected to the Nemenyi test.

2603 |7UT+D _ 3194
V 6x39

when the significance threshold is set at ®=0.1. The following may be emphasized with

great clarity from this Nemenyi test:

a) Results from seven different algorithms when compared to IFLSTBSVM are
significantly different, with values of (1.88461), (3.08974), (2.47436), (2.75641),
(1.6282), and (2.34615) respectively, more than the essential disparity of 1.3174. In
terms of generalization performance, IFLSTBSVM beats SVM, LS-SVM, TWSVM,
EFLSSVM, and IFTWSVM for datasets free of noise in terms of AUC parameter.
b) The non-linear scenario includes SVM, LS-SVM, TWSVM, EFLSSVM,
IFTWSVM, and IFLSSVM; our solution, IFLSTBSVM, ranks lower, indicating that it
is not relevant for parameter AUC at the 0% (noise-free) significant level. A
comparison reveals that IFLSSVM, IFTWSVM, IFLSSVM, and IFLSTBSVM all

perform poorly.

c¢) Looking at Figure 5.16 may give you a good indication of how different the proposed

model is from the ones that have been described before.
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Figure 5. 16 Friedman test for noise-free datasets
b) Noise corrupted datasets

In a similar vein, the following is how the null hypothesis might be represented using

AUC:

2 12x39
F =7+

2
Tx(T+1
(3.3205 1 +4.62821% +4.92308% + 5% +3.62821° +4.52 +23]—[#H

¥F ~59.3085.

And

__B39-Dx393085 56010,
(39%(7—1))—59.3085

Fp

Value F(6,228), the crucial point, is lower than FF. Thus, the claimed algorithms are
really different from one another. As a consequence, at ®=0.10When comparing two
sets of data, the Nemenyi test is used; a critical difference of 1.3174 is considered
significant. To find out how IFLSTBSVM stacks up against other published methods,
Here are the area under the curve (AUC) values for SVM, LS-SVM, TWSVM,
EFLSSVM, and IFTWSVM: (1.32051), (2.62821), (2.92308), (3), (1.62821), and (2.5),
respectively. Our method outperforms the competition in terms of area under the curve

(AUC), and this holds true even on datasets contaminated with 5% noise. We may see
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this in the fact that the rank difference is far more substantial than the crucial difference.
In 39 instances of the non-linear kernel for parameter AUC, the highest scorers were
IFLSTBSVM with SVM, LS-SVM, TWSVM, EFLSSVM IFTWSVM, and IFLSSVM,
in that order. It seems to be the best option if we use a 0.05 significance threshold and
consider datasets that include noise. The proposed IFLSTBSVM stands apart from

other existing systems, as seen in Figure 5.17.
The Wilcoxon signed-rank test is used statistically.

In order to back up the data interpretation using statistics, an additional statistical
approach used is the Wilcoxon signed-rank test. The goal is to find out how

IFLSTBSVM differs significantly from the other methods that have been mentioned.
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Figure 5. 17 Datasets contaminated by noise: the Friedman test

With its accompanying post hoc test, this non-parametric test aims to compare two
classifiers in a paired fashion. The method in issue is used to quantify the extent to
which two distinct classifiers' performances diverge for any given dataset. To break a
tie, we take the absolute differences and order them from least to most significant, and

then we take the average.

Following the z-score distribution, we record the total number of datasets where our
suggested classifier ranked higher than rivals and the total number of datasets where
the inverse was true. According to the Wilcoxon distribution, we can rule out the

possibility that the classifiers are the same (the null hypothesis).
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In addition, it is crucial since it displays the smallest possible p-value that may be used
to reject a hypothesis (the p-value linked to each comparison). Using this strategy, we

may determine the manifestation of a substantial difference between two classifiers..
Artificial Dataset

Here, we run the experiment on two moons, Ripley's, synthetic datasets, together with
seven KEEL-derived synthetic datasets to see whether we can enhance our capacity to

categorize binary data via more study.

Our models are rated based on their average performance as measured by AUC, F1-
score, G-mean, and PPV. Also included in the presentation is a graph showing the
average AUC, Fl-score, G-mean, and PPV rank. Notably, on synthetic datasets, our
model, IFLSTBSVM, is ranked bottom when it comes to average metrics like AUC,
Fl-score, G-mean, and PPV. Across all of the tested simulated datasets, our

IFLSTBSVM model outperformed the competition.

The decision hyperplanes of the aforesaid models (SVM, LS-SVM, TWSVM,
EFLSSVM, and IFTWSVM) as well as the two proposed models (IFLSSVM and
IFLSTBSVM) are shown in Figures 5.18-5.21. A distinct model was assigned to the
Synthetic, 2moons, and Ripley.

There are the final classifier is shown by the black solid line in these photographs, and
there are two markers for positive and negative data points. Here you may see these two

markings.

Figures 5.18-5.21 show the results of the experiments that show our suggested
IFLSTBSVM is superior at detecting real-world positive and negative data points that

clearly proclaim similar assertions.

In addition to reducing computation time, our suggested model, IFLSTBSVM,
outperforms existing models. The information presented in the tables and graphs

suggests the following conclusion..

(1) By evaluating generalization using AUC, Fl-score, G-mean, and PPV, our

IFLSTBSVM methodology outperforms other interesting techniques.
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(2) Furthermore, when contrasted with SVM, LS-SVM, and EFLSSVM models,
IFLSSVM offers better effectiveness as measured by G-mean rank, Fl-score, and

average area under the curve (AUC).

(3) One major advantage of our proposed model is the drastically reduced training time

compared to competing methods, which is the IFLSSVM and the IFLSTBSVM.

SW

1 LS-SWM
»TWSWM
EFLSSVM
*[FTW5VM
+ [FLSSVM

u[FLSTESVM

AVERAGE AUC RANK

Figure 5. 18 Prioritizing IFLSTBSVM and other models based on their average
AUC on synthetic datasets.

: ABT!FICAL DATASETS
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Figure 5. 19 On synthetic datasets, IFLSTBSVM and other models' average F1-

scores, G-means, and Positive Predictive Value rankings
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Figure 5. 21 The hyper planes shown on synthetic artificial datasets for models

like as IFLSTBSVM

We provide two variants of SVM-based models—IFLSSVM and IFLSTBSVM—that
are enhanced and more efficient. Models like this employ intuitionistic fuzzy values to
smooth out the effects of outliers and random oscillations in the real data. In contrast to
the usual support vector machine, which uses QPPs, solving a system of linear

equations is necessary to deal with binary classification issues (SVM). Because of
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intuitionistic fuzzy numbers (IFN) with membership and non-membership functions,
this occurred because the fuzzy weighted value of positive and negative training
samples is computed. Using the IFN function to isolate the support vectors from
background noise is essential for training instance classification. Concerning topics like
as how to deal with noise and outliers, increase learning speed, and enhance
generalization performance, there is zero literature. A number of support vector
machine (SVM) algorithms have been developed; however, the IFLSTBSVM
significantly surpasses all of them. Binary classification in non-linear scenarios with
varying degrees of significant noise has been extensively tested on a number of publicly
accessible synthetic and real-world benchmark datasets. The suggested IFLSSVM and
IFLSTBSVM will be tested in this experiment to see how well they work in practice.
The presented models outperformed the previous published classification models,
leading to more generalizable models with reduced computing time requirements, as
shown in the trials. The next steps for this area of research will include testing the

proposed algorithms on datasets with different classifications to ensure their accuracy.
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CHAPTER 6
REGULARIZED IMPLICIT LAGRANGIAN TWIN
EXTREME LEARNING MACHINE IN PRIMAL FOR
PATTERN CLASSIFICATION

Other popular options include SLFNs, which stand for single hidden layer feed forward
neural networks. and effective method for classification. When solving optimization
problems iteratively, the unconstrained convex minimization approach is superior. This
section explores SLFN-based UMC approaches with the aim of improving
generalization performance. Traditional SLFNs, even though SLFNs are very
generalizable, tend to converge slowly and hit local minima when the neural connection
weights are changed frequently using the gradient method. Using extreme learning
machines (ELMs) is one practical way to fix the issues with SLFNs outlined above.
The input pattern undergoes a nonlinear modification before being accessed by the
input layer via ELM. The enhancement nodes, or those that survived the nonlinear
transformation, are located in the buried layer. Using a random initialization strategy,
ELM eliminates iterative modification by determining the weights and biases of the
enhancement nodes. The next step is to improve the output layer's bias and weights by
solving an optimization problem. There is a lack of direct connection between the
ELM's input and output layers. The method known as least squares is used by error loss
measures (ELMs). Machines like these, which are similar to TSVMs, find two non-
parallel hyperplanes in the ELM feature space, representing each class. In contrast to
TWSVM, TELM uses non-parallel hyperplanes to traverse the origin. However, TELM
does not use ELM, which is the loss function for errors in least squares. Despite its

generalizability, TELM cannot find its solutions until it resolves two smaller QPPs.

A novel approach is introduced here: the extreme learning machine for regularized
based implicit Lagrangian twins. Use it as a set of unbounded convex minimization
problems that, with the aid of a regularization term, follow the SRM theory in Primitive.
Using the 2-norm of the slack vector of variables is a typical way to make the problem
exceedingly convex and to discover an original solution. By substituting a smooth
approximation function for the non-smooth addition function, we strive to provide a
rough solution to their optimization issue. This is done because in primal space, a near
approximation answer is acceptable, unlike in dual space where an exact solution is

desirable. To fix this, one may utilize a generalized derivative approach or a smooth
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approximation method, as the plus function is not smooth. Iteratively using a functional
analysis yields the optimal solution. Consequently, unlike TELM and TWSVM, you
won't need an optimization toolbox. Comparing the proposed model to other, more
traditional models, numerical investigations on both real-world and simulated datasets

show how helpful and flexible it is.

6.1 PROPOSED MODEL
We present RILTELM, an innovative primal-based implicit Lagrangian twin ELN that

makes use of regularization, framed as a collection of unconstrained minimization
issues. Iterative techniques based on gradients are also being considered as potential
solutions to this problem. The optimization problem may be represented by the squared
2-norm vectors of {1 and {2, those are the two-norm TELM expressions in a linear
setting, when the one-norm of the slack variables' vector is known. This technique was
suggested by Musicant and Feinberg. The non-negative limits of the formulation's slack

variables are disregarded since it will quickly approach optimality. On top of that, we
are announcing the components %(||W1 I>)and % (Jlw]|?) as it relates to the goal

functions, the model may be well-posed, and it often yields new solutions according to
the SRM principle. In order to get the kernel-produced surfaces Kgpy (x5, B)w; = 0
and, Kg.y (x4, BY)w, = 0 When dealing with non-linear instances, we use this

approach to produce our suggested RILTELM:

. C 3 ] ! 2 C‘- 1
mm 3] [lw ]” + E | Kene (B BYwi ||” + 3 ¢i1¢

Subject to: =Ky (B2, BOYW; +(, = e, (6.1)
And
min 2 [, P 42 K (BB, I + 526,
2 2 2
subject to:
Kgim (By, BDw, +C, > e (6.2)

Where Bt = [B; B, ]! in addition to the kernel function KELM.
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Moreover, the analogous unconstrained convex minimization issue may be written as
follows, which is relevant to both the restricted primal problems (6.1) and (6.2) that

were already described:

. C .1 I o , .
L) = mi"?' v I1° +5 | £y (B B I |I° +E“ I (e, + & ( By B ), P

L

And

. O 1, .. . P
L,(w,) =mmn T_I [l w "1 +E | K rse (B2 B ms || +?* | (2 — Ko (B, B wn), ”1

To rephrase the unconstrained problems, you may use the following form:

. | Y .
Liw}= mm?' [ w | +E [| Dows I +7" [| (e, + 2owid, |7

(6.3)

And

= ':r_| = ]. a C X
L) =min 2 | ws IF + | Dows I +52 1 (6 = Dows), I
(6.4)

Where, D3 = KELM (Bl Bt) and D4 = KELM (Bz Bt) .

Here we provide RILTELM in its most basic form: a collection of non-linear
minimization problems without constraints. The problems (6.3) and (6.4), which are
piece-wise quadratic and differentiable, and unconstrainedly highly convex, may be
solved in three ways: (1) A generalized Hessian matrix may be obtained by combining
the Newton iterative technique with a generalized derivative method. ii) In the Newton
iterative technique (iii), replace the non-smooth 'plus' function with a smoothing
approximation method. Determine an equation's absolute value by using a basic
functional iterative approach. Equations (6.3) and (6.4) provide the following gradient

vector:

VL (w) = Cw, + D, Dow, +C,D, (e, + Dyw,), (6.5)

And

VL,(w,) = C,w, + D, D,w, - C,D, (¢, - Dw,), (6.6)
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6.1.1 A GENERIC METHOD FOR CALCULATING RILTELM DERIVATIVES

Equations (6.5) and (6.6) may be transformed into generalized Hessian matrices using
the generalized gradient technique when one follows these procedures.: Both gradient

matrices (6.5) and (6.6) have a continuous but non-differentiable 'plus' function:

VL (w) = CI +D,D, +C,D, diag(e, + D,w,).D, 6.7)
And
V2L,(w,) = C,1 +D,' D, + C,D, diag(e, - D,w,). D, 6.8)

Also utilized is the Newton iterative method, where the basic step for finding the (i+1)-

th iterative from the present i-th iterative is given by
\?11[(1’: )(V”] -y ] = —VL[V'-} , where i=0,12... (69)
We get the solutions to (6.3) and (6.4) by solving the following iterative techniques, as

(C,J' +D,'D, +C,D, diag(e, + D;w!), D, kw{” -w)=

—(Clw’; +D3,D3W; +C3D4I(€2 +D4‘Wi‘)+), (610)
And

[[ﬂzf +D,'D, - C,D/diag(e, — D,w, }_D:}u"z" —w,) =
it [(\:114: - L}:' ,D: '|1.'|: + E-I-I-D;I{E| - D..H"; I, ] (61 1)
In that order. The GRILTELM method is our first attempt at using a generalized

derivative.
6.1.2 EASY METHODS FOR RILTELM

The Hessian of equations (6.3) and (6.4) does not exist since they are not twice
differentiable but continuous. By examining two distinct avenues, the issue of twice
non-differentiability is addressed. When it comes to machine learning, the smooth
method is often touted as a solution to mathematical programming issues that aren't

smooth.
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In order to replace the non-smooth function, the smoothing methods developed by Lee
and Mangasarian are used. Problems (6.3) and (6.4) were solved by using the smooth
approximation function proposed by Lee and Mangasarian. y(x, ) in place of the

'plus' function, which is defined as, using the smooth parameter @ > 0:

ylxa)=x+ = log(1+ exp(—yax))
W (6.12)

This allows us to rewrite the minimization problems (6.3) and (6.4) in the revised form.

. C ;1 : G :
Llwlj:mmT'u W+ 1 Do 7+~ nd(e: + Daw )| (6.13)
And

= i v Ly : G :
Ly(p,) = min == [[w, [+ Dyw, | +== 7o (e, = Dywo )y |7, (6.14)

in that order. The Hessian matrix of the vectors (6.13) and (6.14) is derived by taking
the gradient vectors from (6.5) and (6.6), respectively.

P

. . 1 i
ViL(w)=Cl+D'D, +('LUJ'd:'(inl 1+ cxp(—grie. = Duw ]]JL}J
\ e 2 4™y

(6.15)

And

VL (w,)=C1+D/'D, +("_,U;"u’!'ugl L }D,
1+exp(—wie —Dow,)) ) (6 16)

We used the Newton iterative approach to get the answer since we knew that (6.3) and
(6.4) were gradient vectors and Hessian matrices, respectively. Here we provide the

SRILTELMI1 approach, the second of our smooth RILTELM techniques.

When it comes to solving problems (6.3) and (6.4), we keep coming back to the same

methods:
(. . —— 1 VL
|\CA+D D +C.D, dia D, (W =)=
| 5 gtl +exp(—wie, + Dow))) ) J
—[r,n-; +D,Dow +C,D, (e, + D), ) (6 17)

And
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\

¥ l’ 1 X
| C I+ DD, +C D dingl - D, I[ wit —ud )=
| A lrexp(—pi(e, —Oms)) ) " ) 7 "

—(c, % +D,Dyw! +C,D, (e, - D), ). (6.18)

Respectively.

As a second method for smoothing, we've looked at the smooth approximation function

proposed. 7, (, y,) for y + introduced that is, when the value of

“ajy. | 27 TVl
. (6.19)

Where o has a real value that is not zero. As is evident from what is y,(y, y,) is

differentiable and a quadratic function. When the value of |y0| becomes closer, it

becomes evident to ||, then y,(y; ¥,,) becomes closer to y-. In fact, y, (¥, y,) = v+

whenever |1//0| = |y | #0.

This allows us to rewrite the minimization problems (6.3) and (6.4) in the revised form.

L s 1 A "
Lilw)= mmE' w TS Do I+l e + Dowdwa) 1P

(6.20)

And

R y 1 , C y
L.(w,) = min T‘ wy || +E" Dow, | +T* || #:00e, = Dywy b b1

(6.21)

In that order. You can get the gradient vector of (6.20) and (6.21) using (6.5) and (6.6),

and you can derive their Hessian matrix by using
VL (w)=C I+ DD, + ];f';f);riﬁ.:rj{f[ﬁ'_-. s Do) |, | ey 1D, (6.22)

And

. ' 1 '
YV Li{w)=CI+D, Dy + ;(',Da cﬁuj.:{[e, Dywa ) |y : IE‘|].|.|!'J; (6 23)

Since we are already familiar with the equations' gradient vectors and Hessian matrices,

we can apply the Newton iterative technique here. (6.3) and (6.4). Here we provide
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SRILTELM2, our third method for smooth RILTELM. The following iterative

strategies are solved by us as respectively.

{E":}' +0.'D, +%F;Dﬂdm§|:t£3 + DWWy | e D, J l1|‘|'I -w)=

—[c.wi+ D/ Dyw, + €,D, (e, + D)), ) (6.24)
And
|I C.I+D,'D, +2L('4D,'n’a'ag{if, —Dawi)|w, | +e lD] (wy —wy)=

—1{": wl+ D, Dol + D0, (e, — Dowl), ] (6 25)

While completing the aforementioned iterative techniques may provide solutions for
Wi and W in equations (6.3) and (6.4), it is important that these solutions be
completely separate from Wo. Hence, to get around this issue, we use a basic iterative

technique that involves adjusting the vector W till it approaches |e, + D,w;| so that
Y5 ((62 + D4W1)W0) will be very close to (e, + D,w,) and the vector Wy gets adjusted
till it is close to |e; + Dzw,|so that Y;((e; + Dywy)wy) will be very close to

(eq + D3wy) in iterative schemes (6.24) & (6.25) respectively.
6.1.3 FUNCTIONAL ITERATIVE APPROACH FOR RILTELM (FRILTELM)

Based on this person's, we have proposed an additional straightforward functional
: . o 9+]9 . .
iterative method in this paragraph 9, = % for any 9 € RP, to address the issues with

(6.3) and (6.4). An alternative representation of the gradient vectors (6.3) and (6.4) is
which

C C
VL (W) = (C]J+D3,ff_)3 +-3D, D4le +-3 Dy (ea+|(ez + Dyw;) )
2 2 (6.26)

And

[N C
VLy(ua) =[f-'1f + Dy Dy + =20 Dz.]lﬁ ~=1 03/ e+ | (e - Dywa) ).
T 2 -2
(6.27)

The crucial points may now be calculated by equatingVL,(w;) = 0and VL,(w,) =

0.
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C c
(C‘l.’+D3’D3 +?3D4ID4]H1 +?3 Dy (ey+|(ey + Dywy) =0 (628)

And

{('3.' + Dy Dy +('—4.D3’D3 ]11'2 —6—4133’@, +[(e; —Dyws) ) =0.
z 2 (6.29)

In turn, this generates the iterative schemes that make up FRILTELM, the functional

iterative schemes that will constitute our fourth approach proposal.

C : C
{(“]f + D}ID3 +T3D4:D4]“Jl+] :_T3D4f{gz+ (e +D4h'f ] (6 30)

And

C - C :
[('31+D4’D4 +—493‘D3]u-5 =—4 Dy (e +| (e, - Dywh) )
2 )2 (6.31)

We only obtain the inverse of matrices once, as is evident (C11 + DiD; + % D£D4) and
(Czl + DiD, + %D§D3) up front in the aforementioned iterative methods (6.30) and
(6.31), correspondingly.

Discussion

1. The presence of a globally unique solution is implied by the highly convex

objective functions in the proposed RILTELM.

2. The model is rendered well-posed and the stability of the dual formulations is
enhanced by include regularization components in the objective functions.

Additionally, it reduces the issue of over fitting.
3. RILTELM follows the SRM principle, even if TELM and TWSVM exist.

4. Our suggested methods' solutions are readily achieved utilizing gradient-based
iterative techniques, unlike TELM and TWSVM, hence no other optimization
toolbox is expected to handle QPPs.
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5. Computational tests are performed on 36 real-world datasets from UCI and 3

synthetic datasets to demonstrate the applicability of the proposed RILTELM.

6.2 NUMERICAL EXPERIMENTS

On both synthetic and real-world datasets, we tested the suggested FRILTELM,
GRILTELM, SRILTELMI1, and SRILTELM2 models with the traditional nonlinear
binary classifiers TWSVM, ELM, TELM, and LSTELM.

Research platform technical requirements were an Intel(R) Core (TM) 15-3470 CPU
running at 3.20 GHz, 8 GB of RAM, Windows 10 operating system, and MATLAB
software version 2008b. In order to fix the QPP, the TELM and TWSVM framework
is considering using MOSEK, an external optimization toolkit. No more toolbox is

needed, however, for the RILTELM models that we have suggested.

We use 32 moons, 36 real-world datasets, 3 synthetic datasets, and Ripley's dataset
from the UCI datasets repository to numerically analyze the non-linear condition. All
four datasets—TLS, ELM, TELM, and LSTELM—are fitted using the RILTELM

models.

The RBF's hidden nodes are then used to pick the activation function after that. The G-
function of uK, bK, and x Considering Gaussian and multiquadric functions. Random

values between 0 and 1 are used to choose the RBF hidden node's parameters.

One alternative view is that the biases and input weights are randomly selected at the
startup of the RBF hidden node. Nevertheless, these settings will be kept constant in

every experiment. In most cases, the Gaussian non-linear kernel is used as

K[.rr.xj]=exp[—21 F ||x| _IJ ”J}' fur 1-‘-;-:1'-“" P
T’

Where kernel parameter o > 0.

The optimal parameters were found using 10-fold cross-validation, as shown in Table
6.1, and the classification performance of the algorithms proposed by RILTELM was

measured using CPU learning time on a variety of fake and real-world datasets.
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TABLE 6. 1 Varieties of user-defined parameters used in RILTELM numerical

experiments
Parameters Range Models
C f10-5,...,105 } TWSWVM
Cl=C2,C3= f10-3,...,105} TELM, LSTELM, GRILTELM,
C4 SEILTELMI, SRILTELMZ,
FRILTELM
o 12-5,...,25} TWSVM
L {20, 50,100, 200, ELM, TELM, LSTELM, GRILTELM,
500,1000} SRILTELMI, SRILTELMZ2,
FRILTELM

6.2.1 ARTIFICIAL DATASETS

Initially, we create fictional datasets that mimic Ripley's dataset so that we can compare
RILTELM's performance the use of TWSVM, ELM, TELM, and LSTELM. We train
on 250 samples out of 1250 samples, and we test on the rest. while using multiquadric
RBF nodes, Table 6.2 compares the performance of the proposed ways with that of
TWSVM, ELM, TELM, and LSTELM; while using Gaussian RBF nodes, Table 6.3
discusses the performance of the same methods. By examining Tables 6.2 for the
multiquadric RBF node and Table 6.3 for the Gaussian RBF node, it is evident that
SRILTELM1 and FRILTELM achieve the highest classification accuracy in
comparison to the others. Learning periods for TELM were longer than those for all
four of the proposed multiquadric and Gaussian RBF nodes: FRILTELM,
SRILTELMI1, and SRILTELM?2. The multiquadric classifier is shown in Figure 6.1(a)-
(h), whereas the Gaussian radial basis functions classifier is shown in Figure 6.2(a)-(h).
The GRILTELM class has the following methods: FRILTELM, ELM, TELM,
LSTELM, SRILTELMI1, and SRILTELM?2. Each of these graphs uses the symbols 'x'
for positive class data points and '+' for negative class data points. Our second step is
to build a 1000-sample, two-dimensional synthetic dataset using the OF form. Using
500 samples from the positive class produced by x; €[—n/2,2x%], sinx; —

0.25 <x, <sinx; + 0.25 also produce 500 samples from the negative category by
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x, € [-n/2,2n],0.6 sin (x; /1.05 + 0.4) — 1.35 <x, <0.6 sin (x,;/1.05 + 0.4) —
0.85 with the addition of noise v=N(0,0.1%).
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FIGURE 6. 1 Utilizing With Ripley's dataset, this classifier uses the
Multiquadric RBF function, which includes TWSVM, ELM, TELM, LSTELM,
GRILTELM, SRILTELM1, SRILTELM2, and FRILTELM.
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FIGURE 6. 2 Applying the Gaussian RBF function, this classifier handles
Ripley's dataset and is suitable with relation to TWSVM, ELM, TELM,
LSTELM, GRILTELM, SRILTELM1, SRILTELM?2, and FRILTELM.

We then compare the proposed techniques to other published methods using the
remaining samples, and we train the model using 300 randomly picked data. Figures
6.3(a)-(h) and 6.4(a)-(h) show our results for the classifier with the Table 6.2 shows our
results for TWSVM, ELM, TELM, LSTELM, GRILTELM, SRILTELMI,
SRILTELM2, and FRILTELM using the multiquadric RBF node. From what can be
seen in Tables 6.2 and 6.3, SRILTELM1 is the most effective RBF node. The following
definition was used to produce three synthetic datasets, each with 500 samples for the
positive and negative classes: 2moons: x = ¢ + y #cos(x; ),sin(x;)] wherei=1, 2
c1 {-0.5, 1}, c2={0.5, -1} x; € [—n/2,n/2] and x, € [rn/2,3n/2] with the inclusion
of random noise in the normally distributed sample y =N (2, 0.5%) We use 300 out of
1000 samples to train the model, and 700 instances to evaluate it. The findings
displayed in Table 6.2 are obtained from the model trained with multiquadric RBF
nodes, whereas the results shown in Table 6.3 are obtained from the model trained with
Gaussian RBF nodes. See Figures 6.6(a)-(h) for a better representation of the classifiers
needed for each model, which includes multiquadric RBF nodes, and Figures 6.5(a)-(h)

for Gaussian RBF nodes.
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TABLE 6. 2 Analyzing RILTELM and other models using a Multiquadric RBF

node on datasets that were artificially produced

Dat | TW | ELM | TELM | LSTEL | GRIL | SRILT | SRILT | FRILT
aset | SV (L) (Ci= | MCi= | TELM | ELM1 | ELM2 | ELM
(Tr | M Time | C2,L) | CzL) (Ci= Ci = (Ci= (Ci=
ain | (C, Time Time C,Cs; | C,C3 | C2,C3 | C2,Cs3
size, | ©) =Cy, = Ca, = Cy, =Cy,
Test | Tim L) L) L) L)
size e Time Time Time Time

)

Ripl | 87.3 | 86.04+ | 87.4+6. | 88.2+7. | 88.04+ | 88.32+ | 88.010 | 87.000
ey | (10" | 6.7462 2681 00476 | 8.0994 | 8.2192 5+8 7+8.67
250 | 1, (20) (10M,1 | (1072,5 | (1071 | (10M,1 | (1071 98
X2, | 270) | 0.0043 000) 0) 0N- 0N 0N- (1074,1
100 | 0.11 2 0.7998 | 0.02759 | 1,1000) | 1,1000) | 1,1000) | 073,500
0X2 | 91 2 0.0320 | 0.1058 | 0.0162 )

) 7 2 0.0145
Synt | 96.4 | 97.166 | 97.533 | 97.6667 | 97.266 | 97.266 | 97.647 | 96.756
heti | 286 | 7+2.10 | 3+1.72 | +2.6293 | 7+2.24 | 7+2.24 | 3+1.67 | 8+2.59

c | (10~ ] 82(20) 13 7 98 98 54 3
(300 | -4, | 0.0052 | (10%0,5 | (10~1,1 | (10ML,1 | (107, | (10M,1 | (10,1
X2, | 2 00) 00) 0N- 0N 0N- 0N-
700 | 3) 0.6646 | 0.04834 | 2,500) | 2,500) | 5,1000) | 4,500)
X2) | 0.14 2 0.0255 | 0.0255 | 0.1909 | 0.0203

747 3 3 8 3
2mo | 100 | 99.9+0 | 100+0 | 99.8571 | 100+0 | 100+0 | 99.955 | 99.996
ons | (10" (50) (10"3,1 +0 (1072,1 | (10™1,1 8+0 7+0
(300 | -5, | 0.0120 000) (1072,1 0N- 0N- (1072,1 | (10M0,1
X2, | 2 8 0.9816 00) 3,1000) | 4,1000) 0N- 0N-
700 | 2) 6 0.27322 | 0.1494 | 0.1397 | 2,1000) | 4,1000)
X2) | 0.34 7 0.23 0.0309

116 5

TABLE 6. 3 A study comparing RILTELM to various models and datasets that

were intentionally generated using the Gaussian RBF node

Dat | TW | ELM | TELM | LST | GRILT | SRILT | SRILT | FRILT
aset | SV (L) (Ci= | EL ELM | ELM1 | ELM2 ELM
(Tra| M Time Cx, L) M (Ci= (Ci= (Ci= (Ci=
in | (C,o Time Ci=| C,C3 | C2,C3 | C2,C3 C2, Cs3
size, ) Cy, |=C4L)| =C4 |=C4L) | =C4 L)
Test | Tim L) Time L) Time Time
size) e Time Time
Ripl | 87.3 | 86.84+7 | 87.24+9 | 87.5 | 87.48+1 | 87.48+ | 87.5359 | 87.921+
ey | (10~ | .4952 .8793 +0 0.0576 | 10.799 | +9.6384 | 9.7879
(250 | 1, (1070,5 | (10" ] (10711 2 (10M,1 | (1072,1
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X2, | 270) | (1000) 00) [3,1000] o0~ [@aor1] on- 0/-
100 | 0.11 | 0.21689 | 0.72602 | 0.03 | 4,500) 0"- 4,500) 2,200)
0X2 | 91 841 | 0.11012 | 3,1000) | 0.10948 | 0.01079
) 0.1074
3
Synt | 96.4 | 96.7333 | 93.2333 | 96.5 | 97.6667 | 98+2.2 | 97.6667 | 93.87+5
hetic | 286 | +2.9187 | +3.4427 | 714+ | +2.7442 498 +2.6165 | .0185
(300 | (10~ | (50) | (10°2,1 | O | (10711 | (10711 | (10711 | (1071,1
X2, | -4, | 0.01246 000) (1or 07- 07- 07- 07-
700 | 2”7- 1.49633 1, 5,1000) | 5,1000) | 5,1000) | 5,200)
X2) 3) 200) | 0.1749 | 0.5388 | 0.13261 | 0.01539
0.14 0.29 4
747 358
2mo | 100 | 100+0 | 99.8333 | 99.5 | 100+0 | 100+0 100+0 | 99.0445
ons | (10~ | (1000) +0 | 714+ | (10°2,1 | (1072,1 | (1072,1 | +1.4695
(300 | -5, | 0.26046 | (10"2,1 0 0"- 0"- 0"- (1072,1
X2, | 2/- 000) | (10~ | 3,1000) | 2,1000) | 3,1000) | 0*-
700 2) 1.38958 0, 0.14506 | 0.1367 | 0.14884 | 4,100)
X2) | 0.34 20) 7 0.01323
116 0.02
987
(2) .l\\\\ \‘ (.M ELM |f) TELM
.f_ » Iogmve -{.g-.."-,' f .- o :’,“ -
”, & 1 it w
(d'b l.\ll_l‘.\l (e) ~(.’RII.II,I.\| ) Wm tﬂli I,[_lf“l s
iy S ,,'1 :! % 'iyj‘
l." X ” ‘:¢: - N o 7 ~

(2) SRILTELM2

"', =9 '

-

() FRILTELM

Page 220




FIGURE 6. 3 Multiquadric RBF function-based classifier for TWSVM, ELM,
TELM, LSTELM, GRILTELM, SRILTELM1, SRILTELM2, and FRILTELM

on synthetic dataset
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FIGURE 6. 4 A classifier that uses the Gaussian RBF function on a synthetic
dataset for TWSVM, ELM, TELM, LSTELM, GRILTELM, SRILTELM1,
SRILTELM2, and FRILTELM.
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FIGURE 6. 5 A multiquadric RBF function-based classifier for the 2moons
dataset employing the following models: TWSVM, ELM, TELM, LSTELM,
GRILTELM, SRILTELM1, SRILTELM2, and FRILTELM.

(2) TWSVM (b) EIM (c) TELM

(d) LSTELM (¢) GRILTELM (N SRILTELMI

(2) SRILTELM2 (h) FRILTELM

FIGURE 6. 6 Classifier for TWSVM, ELM, TELM, LSTELM, GRILTELM,
SRILTELMI1, SRILTELM2 and FRILTELM on 2moons dataset using Gaussian
RBF function

6.2.2 REAL-WORLD DATASETS

Examining the effects of RILTELM, TWSVM, ELM, TELM, and LSTELM on real-
world datasets for non-linear scenario classification using multiquadric and Gaussian
RBF nodes. With a lower number, training will take less time. Spending too much
money will be the consequence of not doing this. The suggested FRILTELM is faster
than TWSVM, TELM, and LSTELM. Furthermore, GRILTELM, SRILTELMI1, and
SRILTELM2 outperformed TELM when the value was less than TELM. In addition,
Table 6.4 shows the average ranking of the proposed RILTELM with all existing
techniques utilizing multiquadric RBF functions, while Table 6.5 shows the same for

Gaussian RBF functions.

Our testing results demonstrate the presence and functionality of both RBF nodes, even
if they are not highly ranked. The results of applying the multiquadric RBF function to

various real-world datasets are shown in Figure 6.7, whereas the results of applying the
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Gaussian RBF function are shown in Figure 6.8. Figures 6.9-6.12 show the results of

the C1, C3, and L multiquadric RBF and the Yeast5 and Ecoli—0-6-7 vs. 3-5 Gaussian

RBF investigations, respectively.

TABLE 6. 4 Results from RILTELM and other models' average rankings on

real-world datasets for classification accuracy utilizing multiquadric RBF nodes.

Datas | TWSV | EL | TEL | LST | GRILT | SRILT | SRILT | FRILT
ets M M M ELM | ELM ELM1 | ELM2 ELM
Austra 8 7 1.5 3 4.5 1.5 4.5 67
lian-

Credit

Breast 7 8 5 2.5 2.5 2.5 2.5 6
cancer

Wwisco

nsin

Bupa 4 5 8 6 2.5 1 2.5 5
or

liver-

disord

ers

Clevel 7 8 4.5 4.5 1.5 3 1.5 6
and

Haber 6 8 5 7 2.5 4 2.5 1
man

Tonos 1 7 5 8 2.5 4 2.5 6
phere

Pima 1 8 7 6 3.5 2 35

Indian

Votes 8 7 6 5 2.5 2.5 2.5 2.5
WDB 1 8 7 2.5 5.5 5.5 4 2.5
C

Germa 8 7 6 5 4 1 2 3
n

Monk 1 8 3 7 6 4 5 2
2

Splice 1 7 6 8 2 3 5 4
vowel 8 3.5 3.5 3.5 7 3.5 3.5 3.5
Ecoli- 6 5 4 8 2 1 3 7
0-

1 vs_

2-3-5

Ecoli- 5 8 4 6 2 2 2 7
0-1-4-
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7 vs
5-6

Ecoli-

0-2-3-

4 vs
5

Ecoli-
0-6-
7 vs_
3-5

2.5 4

2.5

Ecoli-
0-6-
7 vs_
5

7.5 2

7.5

Ecoli4

(o)

Glass-

0-1-4-

6 vs
2

5.5

5.5

Glass-
0-1-
S vs_
2

Glass-
0-1-
6 vs_

4.5

3.5

3.5

2.5

2.5

1.5

1.5

Yeast-
0-5-6-
7-

9 vs_

7.5 2

7.5

Yeast-
2 vs_

3.5 1

3.5
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Ecoli- 1 7 5 6 3 2 4 8
0-1-4-

6 vs

85

Glass 8 5 1.5 7 1.5 4 6 3
4
Vehicl 1 2 6 8 5 3 4 7
el
Vehicl 1 6 5 7 2 4 3 8
e?2

Shuttl 4 7 8 1.5 3 1.5 6 5
e-

6 vs

2-3

Yeast 7 8 3 5.5 4 1 2 5.5
3

Yeast 1 6 7 8 2 3 4 5
1

Yeast 8 8 4 4 3 1 6.5 6.5
5

Avera | 4.4722 | 6.847 | 5.097 | 5.263 | 3.01388 | 2.47222 35 5.3333
ge 22222 | 222 | 222 889 9 2 33
rank

TABLE 6. 5 Results from RILTELM and other models' average rankings on

real-world datasets for classification accuracy using a Gaussian RBF node.

Datas | TWS | ELM | TEL | LSTE | GRILT | SRILT | SRILT | FRILT
ets VM M LM ELM ELM1 ELM2 ELM
Austra 8 6 5 7 3 1 4 2

lian-

Credit

Breast 8 3 5.5 7 4 2 5.5 1

cancer

wisco

nsin

Bupa 5 7 6 8 3 2 1 4

or

liver-

disord

ers

Clevel 5 7 2 8 4 3 6 1

and
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5.5

5.5

3.5

3.5

3.5

3.5 7

3.5

3.5

3.5

Ecoli4

Glass-

0-1-4-

6 vs_
2

4.5

4.5 6

Glass-
0-1-
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1.5

1.5

Glass2
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3-6-8
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Glass4

Vehicl
el

Vehicl
e2

Shuttl
e-

6 vs_
2-3
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Yeastl
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Yeast5 1 8 3 5 6 4 2 7

Avera | 4222 | 6.930 | 4.791 | 6.541 | 3.69444 | 298611 | 2.61111 | 4.22222

ge 222 556 667 667 4 1 1 2
rank
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% - BELM
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0 - BSRILTELM!
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Bupa or hver- Haberman ~ Ecoli-l vs 23-5  Ecoli-0-6-7 vs § Feolid
dhsorders

FIGURE 6. 7 . On UCI real-world datasets, we compare the accuracy graphs of
TWSVM, ELM, TELM, LSTELM, GRILTELM, SRILTELM1, SRILTELM2,
and FRILTELM utilizing the Multiquadric RBF function.
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FIGURE 6. 8 A graphical depiction of the accuracy of several models using UCI
real-world datasets as judged by the Gaussian RBF kernel: TWSVM, ELM,
TELM, LSTELM, GRILTELM, SRILTELM1, SRILTELM2, and FRILTELM.

FIGURE 6. 9 The following models are shown graphically according to their

accuracy as evaluated by the Gaussian RBF kernel: TWSVM, ELM, TELM,

LSTELM, GRILTELM, SRILTELM1, SRILTELMZ2, and FRILTELM. The
datasets used are those from UCI Real-World.
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FIGURE 6. 10 Considerations for with regard to C1, C3, and L for Ecoli-0-6-
7vs3-5, the parameter sensitivity of the suggested GRILTELM, SRILTELMI,
SRILTELM2, and FRILTELM using the Gaussian RBF function

FIGURE 6. 11 Evaluating the Multiquadric RBF function's sensitivity to C1, C3,
and L for YeastS in relation to the proposed GRILTELM, SRILTELM]1, and
FRILTELM parameters
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FIGURE 6. 12 The impact of the proposed GRILTELM, SRILTELM]1, and
FRILTELM parameters on C1, C3, and L in YeastS, as assessed by the Gaussian
RBF calculation.

The RILTELM models do not respond to the user-defined parameters, as seen in
Figures 6.9-6.12. We were able to achieve our target with less than 10 iterations of our
modal, as shown in Figures 6.13-6.14 (a)-(d) for all RILTELM models that used
Multiquadric RBF nodes and Gaussian RBF nodes, which converged on the PIMA
INDIAN dataset.

GRLTELM with Gaussan REF node SRLTELMI wih Gaussisn REF sade SRILTELMD wih Gaussian REF nids

osf 4 R L N { 8

e

0
e L

FIGURE 6. 13 Exploring the convergence of utilizing Gaussian RBF on the
PIMA dataset, GRILTELM, SRILTELM]1, SRILTELM?2, and FRILTELM
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FIGURE 6. 14 Multiquadric RBF node-based convergence of PIMA dataset
GRILTELM, SRILTELM1, SRILTELM?2, and FRILTELM

Statistical relationship

For the statistical comparison investigation including seven techniques and thirty-six
datasets, a trustworthy and economical non-parametric Friedman test using the post hoc
test was used. We may utilize Table 6.4 to get significant statistics since many of these
methods are the same whether we test them against the null hypothesis. We have ELM,
TELM, LSTELM, TWSVM, GRILTELM, SRILTELMI1, SRILTELM2, and
FRILTELM among these approaches.

5 12x36
Xp =

gx0

(4.47222° + 6.84722° +5.09722° +5.263889" +3.01388° + 247222 +3.5” +533333 }-[8 "49' H

75 ~86.7917,

35x86.7917

noa P 183871
36x7-86.7917

The F distribution with degrees of freedom of (7, 245) is applied to seven algorithms
and thirty-six datasets FF, with results distributed as follows: (8-1,(8-1) x(36-1)) = (7,
245). F(7, 245) =2.04707 at o = 0.05 is the crucial value. The alternative hypothesis is
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therefore supported as it exceeds the crucial value of F(7, 245). Utilizing the post hoc

Nemenyi test, we conducted further methodological comparisons in pairs. The

determined core difference (CD) at p = 0.10 is 2.780

a)

b)

d)

8%9
6X36

=1.605.

Because the multiquadric function's average rank variation with TWSVM, ELM,
and SRILTELMI is greater than 1.605 (4.47222-2.47222-2) and (6.84722-2.47222-
4.375). Consequently, when compared to TWSVM and ELM, the multiquadric
function SRILTELMI approach performs better.

Using the multiquadric function, there is a huge discrepancy rank of more than
1.605 among TELM, LSTELM, and SRILTELMI (6.84722-2.47222-4.375) and
(5.26388-2.47222-2.7916). Consequently, SRILTELMI is better than TELM and
LSTELM.

The difference between FRILTELM and SRILTELMI's average ranks, exceeds
1.605 when computed using the multiquadric function. Consequently, FRILTELM
is beaten out by the SRILTELMI technique, which is based on multiquadric

functions.

Using SRILTELMI and a multiquadric function, find the rank differences of the
proposed methods GRILTELM and SRILTELM?2 (3.01388-2.47222=0.54166) and
(3.5-2.47222=1.02777). Since the algorithms' efficacy is almost same, there may

not be any notable distinctions between them that a post hoc test can uncover.

Using the same Friedman test, we examine seven more methods that use the Gaussian

RBF node over all 36 datasets shown in table 6.5.

1% lgxéﬁ [4.222223 +6.93055% +4.79166° +6.541667 +3.69444> + 2986112 +2.61111° +4.22022° ]—[&ﬂ
. ,
77 ~100.9444,

36x100.9444

P 6xT-1009444
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The reason for selecting the null hypothesis is because the critical value of F(7, 245) =
2.04707 is less than the value of F {F} = 23.3891. And here are the outcomes of our

post hoc Nemenyi test analysis of algorithm pairings:

a) a) Since the variances of TWSVM, ELM, TELM, and SRILTELM?2 are all more
than 1.605, we may utilize the Gaussian function on them. (4.222-2.6111.611),
(6.930-2.611=1.611), and (4.791-2.6112.180). The outcome is that SRILTELM2
outperforms TWSVM, ELM, and TELM when using a Gaussian function.

b) Deviations from LSTELM and SRILTELM2 that are more than 1.605 as
determined by the Gaussian function (6.54166 - 2.61111 = 3.93055) and (4.22222-
2.61111-1.61111), respectively. It is possible that the SRILTELM?2 approach is
superior than LSTELM and FRILTELM.

c) Compare the two methods GRILTELM and SRILTELMI using a Gaussian
function; SRILTELM2 (3.69444 - 2.611111 = 1.08333) i and (2.98611-
2.61111=0.375) are the two methods that were suggested. Therefore, it's possible
that a post hoc test won't pick up on any major differences between the methods,

leading to the conclusion that they're both equally capable.

The RILTELM model, which we present here, is an implicit Lagrangian twin extreme
learning machine that relies on regularization and uses primal to solve unconstrained
convex minimization problems using gradient-based iterative methods. The issue is
expressed as a 2-norm of a vector of lax variables so that we may achieve a high degree
of convexity. We use the functional iterative method, the generalized derivative
approach, or the smooth approximation technique to solve problems in primary space
by replacing the non-smooth plus function with the smooth approximation function. In
primal space, RILTELM yields the closest approximation solution, making it the better
of the two. To create a stable and well-posed model that meets the requirements of the
SRM concept, a regularization component is added to the initial expressions. To utilize
RILTELM, you won't need a plethora of toolboxes. Both computation efficiency and
generalization effectiveness are enhanced. We show that the suggested SRILTELM1
and SRILTELM2 considerably surpass the other conventional methods in terms of
prediction accuracy after conducting computer tests on both simulated and actual

datasets and comparing them to TWSVM, ELM, TELM, and LSTELM. The quicker

Page 234



learning rate of the RILTELM compared to the TELM and TWSVM in several

examples demonstrates its utility and applicability.
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CHAPTER 7
CONCLUSION, RECOMMENDATIONS AND FUTURE
SCOPE

7.1 CONCLUSION

In an effort to circumvent a number of critical shortcomings in existing regression and
classification models, this study investigates machine learning-based models that make
use of optimal kernel-generated surfaces to tackle classification problems. Noise,
outliers, and poor generalization are common problems with these models; these
difficulties can compromise the accuracy and robustness of machine learning methods.
New approaches to improve classification accuracy and produce more trustworthy
results are suggested by this research, which examines improved models built on non-
parallel kernel-generated surfaces. The development of better models that can
overcome the problems with current supervised machine learning approaches is a major

contribution of this research.

One of the main goals is to develop trustworthy algorithms for classification and
regression that can handle noisy training data. Since noise and outliers are common in
real-world datasets and can cause models to perform poorly, this section of the study is
crucial. This is why resilient loss functions, which improve the models' capacity to fit
noisy data, are investigated in the study. Machine learning systems' prediction accuracy
and robustness are enhanced by include these loss functions, which make the models

better able to handle poor input.

Additionally, this paper introduces a unique technique called URALTSVR, that denotes
an uneven distribution Support vector regression using Lagrangian v-twin and pinball
loss; it offers a way of expressing the current SVM models. To achieve this goal, the
research employs gradient-based iterative approaches, which provide a superior method
for handling data and noise variations. By centering on non-parallel kernel-generated
surfaces, this model offers a new approach to classification issues and allows for
improved fitting to complex data distributions. By experimenting with various
implementations, the research aims to determine the optimal gradient-based method for
solving the optimization issue associated with the URALTSVR. The study also delves

into RILTELM, a regularized version of the Lagrangian twin extreme learning machine.
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To ensure more accurate generalization in categorization issues, this model is built to
enhance classification performance by standardizing the parameters of the twin extreme
learning machine. The study expects RILTELM to surpass current machine learning
classifiers, especially in binary classification tasks, in accuracy and robustness by using
gradient-based approaches to solve this model. It is believed that adding a regularization
factor to the RILTELM model will make it a better classifier in real-world situations by

increasing its capacity to generalize to unseen data.

The research does more than only look into URALTSVR and RILTELM,; it also
presents a number of additional methods for making classifications more resilient. The
use of a twin-bounded support vector machine in conjunction with a squared pinball
loss classification model is one strategy that aids in using binary classification
applications with noisy data. This approach seeks to circumvent the limitations of
traditional support vector machines (SVMs) by providing a more resilient answer to
classification challenges. This model improves its performance in noisy environments
by continually refining the classification decision boundaries, using a functional

iterative technique.

Also included in the paper are two fuzzy-based models: IFLSSVM and IFLSTBSVM,
which represent two different types of support vector machines: intelliistic fuzzy least
square and intuitionistic fuzzy least square twin bounded, respectively. To combat data
noise, these models use fuzzy membership ideas, providing a novel approach to dealing
with ambiguous or imprecise information. Fuzzy logic makes these models more robust
against noisy data by better capturing the inherent uncertainty in real-world datasets.
By using fuzzy-based models, the suggested machine learning models become even
more versatile and adaptable, opening up new possibilities for enhancing categorization

performance.

Additionally, the optimization issue for HN-TSVR is investigated in the article by
including a regularization expression from structural risk minimization (SRM) theory.
This approach is used to build regularization-based twin support vector regression
(RHN-TSVR), a model that is very effective in handling noise and outliers. With the
use of a wide margin distribution-based machine-based regression framework and a
least squares loss function, the model can easily tackle optimization challenges via

matrix inversion. With better performance than conventional regression approaches,
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this model offers a viable alternative for regression tasks involving datasets that are

noisy or otherwise irregular.

By introducing these complex machine learning models, the article hopes to address
some of the most pressing issues in classification and regression. This research's
suggested models are ideal for practical use because of their enhanced robustness, noise
management, and generalizability. More accurate and dependable predictions are
produced by these models when kernel-generated surfaces and non-parallel kernel
approaches are included. This allows them to better reflect the complex structures of

the data.

Various novel methods for enhancing ML models for regression and classification
problems are detailed in the research. Iterative methods based on gradients and fuzzy
logic, as well as robust models like URALTSVR, RILTELM, and RHN-TSVR, have
made great strides in overcoming the shortcomings of previous machine learning
algorithms. When it comes to dealing with noisy data, improving classification
accuracy, and making more trustworthy predictions, these models show promise. The
study shows that non-parallel kernel approaches and kernel-generated surfaces can
improve machine learning performance, and the results should help with the continuous

improvement of robust machine learning models.

7.2 RECOMMENDATIONS OF THE STUDY

Several important suggestions for improving the creation and use of these sophisticated
models can be derived from the results of this work on machine learning-based models
that use optimal kernel-generated surfaces to handle classification problems. Improving
the models' practical implementation, directing future research, and resolving potential

obstacles found throughout the study are the goals of these proposals.

1. Enhancement of Resilient Loss Functions: While this study investigates resilient
loss functions, future research should focus on further refining these loss functions
to handle a broader range of data imperfections, including more extreme outliers
and noisy datasets. Exploring the use of hybrid loss functions that combine the
strengths of different loss functions could help in making models even more

resilient to noisy data, improving both classification and regression tasks.
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Integration of Deep Learning Techniques: We primarily concentrate on classic
ML models, such as SVMs and ELMSs. However, kernel-based models might learn
more complicated data representations if deep learning approaches are used
alongside them especially for high-dimensional datasets. Future work could explore
hybrid models that combine the interpretability of classical models with the power

of deep neural networks.

Scalability of Models: While the models proposed in this study perform well in
controlled environments, scalability remains a critical concern when applying these
models to large, real-world datasets. Future research should explore ways to
optimize the computational efficiency of these models. Techniques such as parallel
computing, dimensionality reduction, or approximate kernel methods could be

employed to make these models more scalable without sacrificing performance.

Applicability to Multiclass Classification: The study has primarily focused on
binary classification and regression problems. However, many real-world problems
involve multiclass classification, and future work should extend the proposed
models to handle multiclass scenarios effectively. This could involve the
development of new strategies for combining binary classifiers into multiclass
systems, or exploring kernel techniques specifically designed for multiclass

classification.

Model Interpretability and Transparency: Machine learning models, especially
kernel-based ones, are often considered black boxes, which limits their
interpretability and trust in practical applications. Future studies should focus on
improving the transparency of these models by developing methods for explaining
the decision-making process. Techniques such as feature importance analysis,
sensitivity analysis, to make the models easier to understand, it would be beneficial

to use local explanation techniques such as SHAP or LIME.

Application of Models to Real-World Problems: The models developed in this
study have shown promising theoretical results. However, their effectiveness in
real-world applications should be further investigated. Future research could focus
on applying these models to practical domains such as healthcare, finance, and

social media analytics, where noise and outliers are common. Such applications
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could validate the robustness of the models and help in identifying any further

improvements required for practical deployment.

7. Use of Ensemble Methods: Another area for future research is the exploration of
ensemble methods, where multiple models are combined to improve the overall
performance. Combining the strengths of the proposed models with other machine
learning algorithms could result in a more powerful and accurate system.
Techniques such as bagging, boosting, and stacking could be applied to improve

model performance, particularly in noisy and high-dimensional data settings.

8. Real-Time Classification and Regression: In many real-time applications, such as
fraud detection and autonomous driving, the ability to quickly classify and predict
outcomes is crucial. Future work could explore the use of these models in real-time
systems, where computational efficiency and low latency are important. This could
involve optimizing the models for faster inference times or applying them to

streaming data.

9. Incorporation of Transfer Learning: Transfer learning, where knowledge gained
from one task is applied to another, could be beneficial for improving model
performance, especially when labeled data is scarce. Future research could
investigate the application of transfer learning techniques to the proposed models,
particularly in scenarios where labeled data is limited but similar datasets are

available.

10. In-depth Comparative Studies: Finally, while this study has shown the potential
of the models in addressing classification challenges, it would be beneficial to
conduct in-depth comparative studies with other state-of-the-art machine learning
techniques. Benchmarking these models against widely used algorithms such as
random forests, gradient boosting machines, and deep neural networks would

provide a clearer understanding of their advantages and limitations.

To sum up, this study's suggested models are a huge step forward in the fight against
the difficulties of machine learning's classification and regression problems. The
models could be further improved and applied to a wider range of real-world problems

with the help of the suggestions given here, but there is always space for improvement.
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7.3 FINDINGS OF THE STUDY

The following are the main findings of the study:

Supplemental work on asymmetric v-twin SVR: A novel approach, LAsy- TSVR
(Lagrangian asymmetric twin support vector regression with improved
regularization), was created in our work. This method effectively employs the SRM
principle, which is fundamental to statistical learning, by using a pinball loss
function. The LAsy-TSVR solution is handled by a convergent iterative strategy,
which is different from other current and classic TSVR variations. An advantage of
the given LAsy- TSVR over earlier systems is its ability to handle different types
of uniform and Gaussian noise, symmetrical and asymmetrical patterns. On top of
that, it serves its purpose and is easy to use. No sacrifices were made to
generalization performance or processing cost during testing on several synthetic
datasets with symmetric and heteroscedastic patterns of uniform and Gaussian

noise, and it passed with flying colors.

Unconstrained asymmetric v-twin support vector regression: Our study
centered on URALTSVR, a robust asymmetric Lagrangian-twin support vector
regression algorithm. This technique generates gradient-based iterative methods
employing generalized derivative and smoothing strategies to solve the regression
issue. We then employed the Newton iterative technique to get a better solution. By
modifying the settings and using the asymmetric pinball loss function, our
suggested method is able to manage datasets disrupted by noise. To ensure the SRM
and provide a stable and well-posed model, a regularization component is added to
the optimization function. Several investigations on synthetic and real-world
datasets show that URALTSVR is suitable and effective. After looking at how
different linear and Gaussian kernels perform in SVR, TSVR, and Asy-TSVR, we
found that the suggested SRALTSVRI 243 approach was the most effective. The
models provided here have a computational cost that is either lower than or about

equal to the approaches outlined above.

Huber loss function advancements in twin support vector regression: Our
investigation on RHN-TSVR, HN-TSVR's singularity problem may be addressed
by using a regularized version of TSVR with Huber loss. The structural risk

reduction concept is included by this form via the application of regularization
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based upon support vector regression with Huber loss. Furthermore, use a range of
significant noise levels (e.g.,0%,5%, and 10%) to evaluate the RHN-TSVR's noise
insensitivity. From what we know, the loss function of TSVR is -insensitive,
meaning it does not take into account outliers or other types of noise. For minor
mistakes, the basic Huber loss function has a quadratic form; for larger errors, it
takes a linear form. When applied to datasets with outliers and Gaussian noise, the
Laplacian loss function improves prediction accuracy. To test and assess the
suggested method, we use both synthetic datasets with different kinds of non-linear
kernel noises and a range of real-world datasets with different degrees of statistical
significance. Typically, the RHN-TSVR achieves better predictive power than

traditional methods with the same or less processing time required.

Progress on machine-based regression for large margin distributions: This
research delves into a computationally efficient method for solving regression
problems using a least squares big margin distribution machine, utilizing the
mathematical formulations from LDMR and PLSTSVR. A system of linear
equations is solved using the proposed LS-LDMR. Thus, unlike LDMR, -SVQR,
TSVR, and SVR, we need to calculate the inverse of the matrix. When comparing
the computational cost and prediction ability of state-of-the-art algorithms on
synthetic and real-world datasets, we discovered that our suggested LS-LDMR
outperforms them. Studies are conducted using statistical methods for the suggested
LS-LDMR using SVR, TSVR, PLSTSVR, -HSVR, -SVQR, MDR, and LDMR to
strengthen the usefulness and efficiency of LSLDMR.

A twin support vector machine that makes use of the squared pinball loss
function to improve: The functional iterative approach for twin bounded support
vector machines (Spin-FITBSVM) provides a new angle on the traditional twin
model of support vector machines (SVM) by including this loss function. Even in
noisy situations, it performs well for sample classification. When solving the first
problem, taking the regularization parameter into account, our suggested method,
Spin-FITBSVM, applies the SRM principle. Additionally, it guarantees that Spin-
FITBSVM's resilience reaches its theoretical maximum. Our suggested method,
Spin-FITBSVM, has been computationally compared to previously reported

methods on a number of datasets, including fake and benchmark real-world ones,
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as well as SVM, TSVM, pin-TSVM, pin-GTSVM, GHTSVM, and SPTWSVM.
Based on these results, it seems that the Spin-FITBSVM method outperforms the

others while using less computing resources.

Support vector machine enhancement with the use of intuitionistic fuzzy
values: We have investigated two improved and efficient SVM-based models, in
particular IFLSSVM and IFLSTBSVM, which use intuitionistic fuzzy values, to
take into consideration the influence of noise and outliers in actual data. Instead of
using QPPs in support vector machines (SVMs) to identify the fuzzy weighted value
of positive and negative training samples, this method identifies the optimum
hyperplane using a series of linear equations. Members and non-members alike may
benefit from IFN services. The IFN function and the ability to distinguish between
support vectors and noise are both used during training for example classification.
A lack of generalizability, sluggish learning rates, noise, and outliers are the main
issues that the suggested solutions aim to fix. For SVM-based methods,
IFLSTBSVM is the best option, beating out LS-SVM, TWSVM, EFLSSVM, and
IFTWSVM. In order to investigate the practicality and utility of the proposed
IFLSSVM and IFLSTBSVM, we ran comprehensive experiments on several
publically accessible real-world benchmark datasets and created synthetic datasets
for binary classification in non-linear situations with different levels of significant
noise. The results of the experiments demonstrate that the suggested models
outperform the previously reported classification methods in terms of producing

more broadly applicable models with less computational overhead.

Extreme learning machine with no constraints on its twins: Introducing
RILTELM, an extreme learning machine that uses gradient-based iterative
techniques to handle unconstrained convex minimization problems, based on
primal-based regularized-based implicit Lagrangian twins. The 2-norm of a vector
of slack variables is used in this approach to significantly convexify the issue.
Utilizing a functional iterative strategy, a modified derivative approach, or a smooth
approximation method, we resolved the issues in primal space by substituting a
smooth approximation function for the non-smooth addition function. The main
benefit of RILTELM over its twin is that it gives the best approximation solution in

primal space. To ensure compatibility with the SRM idea and to achieve a stable
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and well-posed model, a regularization term is added to the initial expressions.

There is a further distinction. Both computational efficiency and generalizability

are enhanced as a consequence. The suggested SRILTELM1 and SRILTELM?2

models outperformed their published equivalents in terms of classification accuracy

when tested on both real-world and simulated datasets. The suggested RILTELM

is feasible and practical as it achieves better learning efficiency than the TELM in

the majority of cases.

7.4 FUTURE SCOPE OF THE STUDY

Machine learning-based models that use optimal kernel-generated surfaces to solve

classification problems have a lot of promising avenues for future research and

development. There are a lot of ways this work may develop further, increasing its

theoretical and practical influence, based on the encouraging findings and methodology

presented here. The possible directions for further study and implementation are

outlined below.

1.

Exploration of Advanced Kernel Methods: While this study focuses on
kernel-generated surfaces for classification challenges, future research could
investigate the application of more advanced kernel techniques, such as deep or
adaptive kernels, to further improve the flexibility and performance of the
models. The development of novel kernels that can dynamically adjust based on
the data characteristics could provide an even more powerful tool for machine

learning models, particularly in complex and high-dimensional datasets.

Generalization to Multiclass and Multi-Label Classification: This study
primarily addresses binary -classification problems. However, real-world
classification tasks often involve multiple classes or labels. The future scope
could include extending the proposed models to handle multiclass or multi-label
classification problems. This would require the adaptation of the kernel methods
and loss functions used, potentially leading to new formulations and

optimization techniques that can handle more complex classification tasks.

Application to Real-World Domains: While this research demonstrates the
theoretical potential of the proposed models, future studies could focus on

applying these models to real-world applications. Domains such as healthcare,
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finance, autonomous driving, and social media analytics are rich with noisy,
unstructured, and high-dimensional data, this group is well-suited to evaluate
the suggested models' accuracy and robustness. The difficulties of putting these
models into practice may be better understood and potential improvement areas

can be more easily identified with the help of real-world case studies.

Incorporation of Unsupervised and Semi-Supervised Learning: A
promising direction for future research is to incorporate unsupervised and semi-
supervised learning techniques into the models. These methods are particularly
useful when labeled data is scarce or expensive to obtain. Future studies could
explore how the proposed models could be modified to learn from unlabeled
data, using techniques like self-training, co-training, or clustering-based
approaches. This would expand the applicability of the models to a wider range

of problems where labeled data is limited.

Integration with Deep Learning Models: Combining traditional machine
learning models with deep learning techniques could open up new opportunities
for model improvement. Future research could investigate hybrid models that
integrate the strengths of kernel-based approaches with the power of deep neural
networks. This integration could lead to models capable of capturing both low-
level and high-level data features, resulting in improved performance on tasks
such as image recognition, speech processing, and natural language

understanding.

Optimization for Scalability and Efficiency: As machine learning models
continue to be applied to larger datasets, scalability and computational
efficiency become crucial factors. Future work could focus on optimizing the
proposed models for handling large-scale data, leveraging techniques like
parallel computing, distributed systems, and cloud computing. Research could
also explore more efficient algorithms for solving the optimization problems in
these models, such as stochastic gradient descent or other optimization

techniques that reduce the computational burden.

Development of Real-Time Systems: With the increasing demand for real-

time predictions in applications like fraud detection, autonomous vehicles, and
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10.

11.

industrial automation, future research could focus on adapting these models for
real-time systems. This would involve improving the speed of inference and
reducing the latency of predictions, ensuring that the models can handle

streaming data efficiently while maintaining accuracy.

Hybridization with Ensemble Methods: Ensemble methods, which combine
multiple models to improve performance, could be explored as a future
direction. By combining the strengths of various machine learning models, such
as support vector machines, extreme learning machines, and deep neural
networks, ensemble techniques could increase the robustness and accuracy of
the classification and regression tasks. Techniques such as bagging, boosting,
or stacking could be applied to the proposed models to create more powerful,

high-performing systems.

Focus on Model Interpretability and Transparency: As machine learning
models become increasingly complex, their interpretability and transparency
are crucial for practical applications, particularly in sensitive fields like
healthcare and finance. Future work could focus on improving the explainability
of the proposed models, developing tools and techniques that allow users to
understand the decision-making process of these models. Methods such as
SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-
agnostic Explanations) could be integrated to enhance the interpretability of the

models, making them more transparent and trustworthy.

Incorporation of Transfer Learning: When data is few, one approach to
enhance learning is via transfer learning, which uses prior knowledge from one
area to fill in the gaps. When labelled data is insufficient, future research may
look at ways to include transfer learning with the suggested models. The models
might become more efficient and effective by transferring information from
comparable tasks or datasets, which would allow them to perform better with

less training data.

Ethical Considerations and Fairness: Making ensuring that machine learning
models behave properly and ethically is crucial since they are being used in so

many different areas. Future research could focus on addressing potential biases
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in the models, particularly in classification tasks that involve human decision-
making. Developing methods to ensure fairness, transparency, and
accountability in machine learning predictions will be critical for the adoption
of these models in sensitive areas such as criminal justice, hiring practices, and

lending decisions.

This study has a huge potential for growth and expansion in the years to come. The
proposed machine learning models have great potential to evolve and impact many
different sectors, from making them more robust and scalable to using them in real-
world applications. Future study can build on this work by investigating these avenues,

which will help develop machine learning methods.
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Abstract

When it comes to machine learning, the selection of kernel functions is crucial for classification model performance. Because they
can simulate complicated patterns in data, nonlinear kernel-based classification algorithms have attracted a lot of interest for
optimization. Using the German, Haberman, CMC, Fertility, WPBC, Ionosphere, and Live Disorders benchmark datasets as well as
others from the UCI database, the paper assesses how well the Pin-SGTBSVM algorithm performs. Using a tenfold cross-validation
technique, the ideal parameters are obtained using a nonlinear kernel function. Over six datasets, the findings show that Pin-
SGTBSVM outperforms well-known algorithms like TWSVM, TBSVM, Pin-GTWSVM, and Pin-GTBSVM in terms of accuracy,
with noticeable advances in classification performance. Although it also shows competitive results, Pin-SGTWSVM's accuracy on
the German dataset is marginally worse than TWSVM's. The experimental results show that Pin-SGTBSVM is a reliable method
for improving classification accuracy with no impact on computing efficiency. The results show that it might be used for data

categorization and machine learning in the actual world.

Keywords: Nonlinear Kernel, Accuracy, Classification, Machine learning, Efficiency

LINTRODUCTION

Machine learning and data-driven decision-making are
dynamic fields, and classification methods are vital for
mining large datasets for useful patterns. One of the most
effective ways to deal with complicated decision limits that
linear classifiers struggle to handle is by using nonlinear
kernel-based classification algorithms. In order to translate
input data into higher-dimensional feature spaces where
linear separation is possible, kernel-based approaches,
especially Support Vector Machines (SVM) using kernel
functions, offer a way. However, these methods are only as
good as the kernel functions, regularization settings, and
feature transformation techniques used to select and optimize
them. To improve model accuracy, generalizability, and
computing efficiency, optimization in nonlinear kernel-based
classification is a crucial field of research.

When data distributions display complex interactions that
cannot be separated linearly, nonlinear classification
difficulties emerge. Due to their linearity assumptions,
traditional classifiers like logistic regression and linear
discriminant analysis suffer in such cases. In contrast,
classifiers that rely on kernel functions do not directly
compute the transformation but instead use them to turn input
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data into feature spaces with greater dimensions. Classifiers
can now find computationally feasible, complicated decision
boundaries using this method. Some common kernel
functions include the sigmoid, polynomial, and Radial Basis
Function (RBF), each of which has its own set of benefits that
are dependent on the nature of the input. In order to improve
model flexibility and fine-tune kernel parameters, robust
optimization strategies are required. The selection of kernel
function has a substantial influence on classification
performance.

Various methodologies are employed in nonlinear kernel-
based classification optimization with the goal of enhancing
the performance of classifiers. To maximize the balance
between model complexity and  generalizability,
hyperparameter tuning is an essential part. This entails
optimizing factors like the regularization coefficient (C) and
kernel parameters, such as gamma in RBF kernels.
Hyperparameter selection has been automated using grid
search, random search, and sophisticated methods like
genetic algorithms and Bayesian optimization. Feature
selection and dimensionality reduction techniques are also
optimized so that classification judgments are based on the
most important qualities. It is common practice to use feature
scaling and Principal Component Analysis (PCA) to improve
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input representations and address problems such as high-
dimensional sparsity and overfitting.

Computational efficiency is another important optimization
metric for kernel-based categorization. The increasing
complexity of kernel changes makes training nonlinear
classifiers computationally costly, especially with large-scale
datasets. Sequential Minimal Optimization (SMO), an
effective optimization approach for support vector machine
(SVM) training, is one solution that academics have devised
to tackle this difficulty. By breaking down large optimization
problems into more manageable pieces, these techniques
drastically cut down on computing requirements. In addition,
we have incorporated parallel and distributed computing
frameworks to improve training speed and scalability. This
includes GPU acceleration and cloud-based solutions.
Random Fourier Features and Nystrém approximation are
two examples of recent developments in approximate kernel
approaches that offer further ways to reduce processing costs
without sacrificing classification accuracy.

The use of nonlinear kernel-based classification has many
potential uses in many different industries, such as biology,
finance, cybersecurity, and image recognition. One use of
kernel-based classifiers is in medical diagnostics, where they
help with illness prediction and categorization using patient
data. This allows for early detection and individualized
therapy recommendations. These classifiers find complex
patterns in financial transactions and help with credit risk
assessment and fraud detection in the financial sector. Object
detection and face recognition are two examples of image
recognition tasks that greatly benefit from kernel-based
classifiers' capacity to distinguish intricate visual
characteristics. Additionally, cybersecurity programs protect
digital infrastructures from harmful attacks by detecting
abnormalities and intrusions in network data using nonlinear
classification algorithms. Classifier performance and
adaptability should be continuously optimized due to the
relevance of these applications.

ILREVIEW OF LITERATURE

Piccialli, Veronica. (2022) Many different areas have found
success using support vector machines, making them a crucial
class of machine learning models and techniques. To define
the machine learning models and to create effective and
convergent algorithms for large-scale training tasks, SVM
technique relies heavily on nonlinear optimization. Here, we
lay out the convex programming issues that underpin support
vector machines (SVMs), with an emphasis on supervised
binary classification. Here, we take a look at the most popular
optimization techniques for support vector machine (SVM)
training issues and talk about how to incorporate their
characteristics into algorithm design.
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Li, Kai & Lv, Zhen. (2021) To improve the support vector
machine's classification performance, the twin support vector
machine resolves two small quadratic programming
problems. The following problems, however, afflict this
method: (1) The twin support vector machine and other
variants rely on a hinge loss function to construct their
models, however this function is noisy and unstable during
resampling. (2) Getting the models to work in the dual space
takes a lot of time and effort. To make the twin bounded
support vector machine even more effective, the pinball loss
function is included into it. To solve the problem of the
pinball loss function not being differentiable at zero, a smooth
approximation function is built. One may use this to build a
smooth twin-bounded support vector machine model that
includes pinball loss. Iteratively, the issue is solved in the
original space using the Newton-Armijo approach.
Theoretically, we show that an iterative method for smooth
twin bounded support vector machines with pinball loss
converges. The trials verify the suggested approach on both
real and synthetic datasets, including those from UCI In
addition, the suggested algorithm's efficacy is shown by
comparing its performance to that of other representative
algorithms.

Yao, Yukai et al., (2015) We present PMSVM., an enhanced
Support Vector Machine classifier that takes into account
extensively System Normalization, PCA, and Multilevel Grid
Search techniques for data pretreatment and parameters
optimization, respectively. Improving SVM's classification
efficiency and accuracy are the primary objectives of this
project. To evaluate PMSVM's efficacy, metrics such as ROC
curve, sensitivity, specificity, and precision are utilized.
When compared to more conventional SVM algorithms,
experimental findings reveal that PMSVM significantly
outperforms them in terms of efficiency and accuracy.

Cocianu, Catalina. (2013) This research details a model-free
method for developing SVM-type non-linear classifiers. In
common parlance, support vector machines are "non-
parametric" models. However, this does not mean that SVMs
do not have parameters; rather, the learning issue around the
parameters of an SVM is of paramount significance. A
revised version of the gradient ascent method for addressing
the SVM - QP issue and a new formulation for the bias
parameter provide the innovative aspects of the suggested
approach. In addition to demonstrating greater convergence
rates than the basic SMO method, the tests also highlighted
good convergence qualities of the suggested modified
variations. In comparison to the default bias setting, the
produced classifier also performs better.

Biswas, Debojit et al., (2011) For a wide variety of reasons,
land cover data is crucial. Precise data on a region's land cover
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is essential for many initiatives that aim to manage, plan, and
monitor natural resources. An image classification technique
is used to recover land cover information from remotely
sensed photos, which are interesting sources for this purpose.
When training data is scarce and classes have few pixels,
statistical classifiers often fail. Support vector machines
(SVMs) and other next generation algorithms have been
producing respectable results with a less quantity of training
data sets. Training is an ongoing expense. As a result, there is
a great deal of interest in developing classifiers that require a
smaller set of training data. We examine support vector
machine (SVM) based hyperspectral image classification
using several kernel types, including linear, polynomial,
radial basis, and sigmoid, in this research. We test SVM's
performance with various kernels and compare the results.
Additionally, this section delves into the mathematical
foundations of non-linear SVM. For the purpose of feature
reduction, this study used principal component analysis
(PCA). Since the penalty amount has less of an impact on
linear and polynomial kernels in SVM, our results
demonstrate that these kernel types achieve better
classification accuracy. A narrow range of penalty levels and
hyperparameters is required for other kernels.

IIL.MATERIAL AND METHODS

Using the UCI database, we conduct trials on the following
categories: German, Haberman, CMC, Fertility, WPBC,
Tonosphere, and Live-disorders to validate the performance of

the Pin-SGTBSVM. In this experiment, the kernel function is
K (x,y) = exp(—6 X |lx — y||?), where 0 is a parameter,
and the best parameter value within the range is determined
using a tenfold cross-validation procedure [107%,10s]. The
values of 11 and 12 are 0.5, 0.8, 1, and ci= 0 (i=1, 2,3.4) and
the value range is [21°, 219], the value of € in the experiments
is 106, the value of ) in the algorithm is 10, and the standard
deviation and average accuracy are included in the
experimental findings. An Intel (R) Core (TM) i7-5500U
CPU running at 2.40GHz with 4GB of RAM and MATLAB
R2016a were utilized for all the experiments presented in this
paper.

We compare the performance of many representative
methods, including TWSVM, TBSVM, Pin-GTWSVM
(TBSVM with pinball loss in dual space), and Pin-GTBSVM
(TBSVM with pinball loss in original space). The iterative
approach is also used to solve these algorithms.

IV.RESULTS AND DISCUSSION

Results from the experiments are displayed in table 1. By
comparing the six datasets, it is clear that the Pin-SGTBSVM
algorithm outperforms the other five approaches. However,
when it comes to the Fertility dataset, the Pin- SGTBSVM
methodology achieves identical results to the other five.

Additionally, whereas the TWSVM method has superior
accuracy on the German dataset, the Pin-SGTWSVM
approach achieves greater accuracy on all six datasets.

Table 1 Comparison of Algorithm Performance Using Nonlinear Kernels

Datasets TWSVM | TBSVM | Pin- Pin- Pin- Pin-
GTWSVM | GTBSVM | SGTWSVM | SGTBSVM
Accuracy | Accuracy | Accuracy | Accuracy | Accuracy Accuracy
(%) (%) (%) (%) (%) (%)
+sd +sd +sd +sd +sd +sd
Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)
German 74.9170 70.0999 70.0999 70.0996 FIL3555 75.1497
+0.0189 +0.0002 +0.0002 +0.0002 +0.0262 +0.018
0.0875 0.0563 0.0865 0.0742 0.0304 0.0375
Haberman | 73.3698 73.3694 73.3697 73.3697 73.7498 73.7497
+0.0001 +0.0001 +0.0001 +0.0001 +0.0062 +0.0062
0.0294 0.0326 0.0280 0.0309 0.0240 0.0184
CMC 69.2387 65.396 65.3980 65.3980 71.662 73.7026
+0.0398 +0.0000 +0.0000 +0.0000 +0.0359 +0.0227
0.0695 0.0570 0.0635 0.0497 0.0173 0.0405
Fertility 87.0971 87.0967 87.0966 87.0966 87.0970 87.0971
+0.0002 +0.0002 +0.0002 +0.0000 +0.0000 +0.0002
0.0144 0.0121 0.0141 0.0147 0.0151 0.0108
WPBC 76.2713 76.2715 76.2713 76.273 78.8134 79.1526
+0.0000 +0.0001 +0.0000 +0.0000 +0.0349 +0.0429
0.0148 0.0197 0.0295 0.0294 0.0197 0.0211
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Tonosphere | 91.6980 91.6980 03.5850 92.7360 93.1130 94.5285
+0.0252 | £0.0130 | +0.0328 +0.0298 +0.0215 +0.0142
0.0252 0.0247 0.0349 0.0371 0.0174 0.0263
Live 64.4229 62.6925 57.6926 57.6925 66.8272 67.1156
disorders +0.0495 +0.0460 | £0.0000 +0.0001 +0.0480 +0.0577
0.0638 0.0593 0.0507 0.0598 0.0161 0.0172
V.CONCLUSION grid search methods,” Mathematical Problems in

The accuracy of the Pin-SGTBSVM algorithm was found to
be higher than that of other approaches, including TWSVM,
TBSVM, Pin-GTWSVM, and Pin-GTBSVM, when tested on
many datasets from the UCI repository. Across all datasets,
but notably German, CMC, WPBC. and Ionosphere, the
algorithm demonstrated superior performance. It is worth
mentioning that Pin-SGTBSVM performed similarly to other
methods on the Fertility dataset. Additionally, Pin-
SGTWSVM accomplished respectable accuracy; the only
dataset where it was somewhat less accurate than TWSVM
was the German one. In particular, the experimental findings
show that Pin-SGTBSVM performs well over a wide range
of real-world datasets, with respect to accuracy, standard
deviation, and computing efficiency. Based on these results,
the Pin-SGTBSVM method seems like it may be a great tool
for accuracy and computing efficiency classification
problems in many different disciplines.
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ABSTRACT

Using three different datasets—synthetic noisy data, biomedical disease prediction, and financial credit risk—this study
compares and assesses the performance of various machine learning models, such as Adaptive Linear v-Support Vector
Regression, Support Vector Machine, Logistic Regression, Random Forest, and v-Support Vector Machine. Testing how
well these models handled various kinds of data and made accurate predictions was the goal. Several measures were
used to quantify performance, including as recall, accuracy, precision, F1-score, and Area under the Curve. The results
showed that AL-vTSVR was the most effective model in every performance parameter tested, showing that it could
handle complicated real-world data and noise with ease. Random Forest shown competitive performance as well,
particularly in financial and medicinal domains. In contrast to SVM and v-TSVM, Logistic Regression showed less
effectiveness. The results demonstrate that AL-vTSVR is an exceptionally dependable model for difficult data situations,
and they emphasize its better capabilities in various prediction tasks.

Keywords: Noisy, Support Vector Machine, Accuracy, Precision, Recall

INTRODUCTION

Machine learning (ML) has changed several industries by letting computers discover patterns in data and use that
knowledge to make judgments or predictions without human intervention. When it comes to predicting future events or
outcomes using historical or real-time data, machine learning models are useful tools in the context of predictive
performance. With the use of big datasets and advanced algorithms, these models are able to uncover patterns and make
predictions, the accuracy of which might vary. Machine learning has become an essential tool for predicting tasks because
to the growing amount, diversity, and speed of data in many fields, including healthcare, finance, marketing, and
engineering.

Machine learning essentially entails creating algorithms that can autonomously learn from data and improve upon past
performance. In machine learning, predictive performance is a model's capacity to generate correct predictions when
presented with novel, unseen data. Machine learning models can process massive, unstructured information and reveal
complex correlations between variables that would otherwise go unnoticed, in contrast to traditional statistical approaches
that depend significantly on established assumptions. These models' predictive capability shines through when they
leverage historical trends to assist decision-making; this makes them applicable to tasks like demand forecasting, stock
market prediction, predictive maintenance, and disease outbreak forecasting, among others.

Machine learning models come in a variety of flavors, each optimized for a particular kind of prediction job. Predictive
analytics makes extensive use of supervised learning models. To train these models, we use labelled data, in which each
input attribute has an associated label. Constructing a model capable of making predictions based on novel, unknown input
data is the main objective of supervised learning. Ensemble techniques such as random forests and gradient boosting are
common examples of supervised learning algorithms, along with linear regression, decision trees, and support vector
machines (SVMs). These models are great at many different kinds of prediction performance challenges because they are
so good at classification and regression.
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In contrast, unsupervised learning models are employed in situations when the data does not contain labelled outcomes. To
the contrary, these models unearth previously unseen patterns and structures in the data. Unsupervised learning frequently
makes use of clustering and dimensionality reduction methods like k-means, hierarchical clustering, and principal
component analysis (PCA). Unsupervised learning models aren't meant to make predictions per se, but they can be useful
for pre-processing data by highlighting clusters or important traits that supervised learning models can exploit to their
advantage.

Another subfield of machine learning, reinforcement learning (RL) is concerned with decision-making in settings where the
model acquires knowledge by interactions and feedback. To find the best solution, an agent in RL acts in its environment
and, depending on the results, gets rewards or penalties. RL shines in robotics, games, and autonomous systems, among
other areas, when forecasts must take sequential decision-making into consideration. Games, robot control, and resource
optimization are just a few of the areas where deep reinforcement learning—a combination of deep learning and RL—has
achieved remarkable progress.

The creation of deep learning models represents a turning point in machine learning as it pertains to prediction
performance. "Deep learning" refers to a subfield of machine learning in which multi-layered neural networks
automatically learn hierarchical data representations. Several applications, including time series forecasting, picture
recognition, and natural language processing, have demonstrated exceptional performance from these models. One common
deep learning architecture that has seen extensive use in prediction tasks is the convolutional neural network (CNN).
Another is the recurrent neural network (RNN). When it comes to image-based tasks, CNNs really shine. On the other
hand, RNNs, especially LSTM and GRU, really shine when it comes to sequential prediction tasks, like predicting time-
series data or interpreting natural language.

Data quality, algorithm selection, and hyperparameter tuning are three of the most important determinants of a machine
learning model's predictive performance. Before a machine learning model can learn any useful patterns from data, the data
must undergo data preparation. It is usual practice to enhance the data quality before to training a model using techniques
like normalization, feature selection, and imputation of missing values. Another important aspect of evaluating machine
learning models for predicting performance is model assessment. Area under the receiver operating characteristic curve
(AUC-ROC), F1 score, recall, accuracy, precision, and area under the receiver operating characteristic curve
(ACCURATE) are common metrics for classification tasks, whereas R-squared, MSE, and RMSE are used for regression
activities.

REVIEW OF LITERATURE

Petchiappan, Maheswari & Jaya, A. (2022) Investors have always found trend prediction in the stock market to be a
difficult and perplexing task. Technological developments, machine learning, data analytics, and big data have led to a
meteoric rise in the accuracy of stock market predictions. Among the many varied industries represented on the stock
market is the media and entertainment industry. The Sensex and the Nifty are the two indices used in the Indian stock
market. Theatres were closed in 2019 because of the pandemic. This caused a halt in production and prevented distributors
and directors from releasing their films to screens. So, during the lockdown, many stayed indoors and watched more
television. Resulting in a higher degree of media consumption. The study's overarching goal is to use machine learning to
foretell how the stock prices of the media and entertainment firm will do. Making as much money as possible while
keeping losses to a minimum can help investors. In data science, the suggested stock prediction method is utilized for
predicting stock prices and determining the accuracy of logistic and linear regression in machine learning algorithms. The
media and entertainment industry's stock price data is used in the tests, which employ machine learning techniques. One
example of an input dataset is media stock prices. Various aspects of stock prices with a daily frequency were used to create
the model. In summary Media and entertainment stock prices are so anticipated using logistic and linear regression models.
In order to help investors maximize their gains and minimize their losses, the stock prices are anticipated with a high degree
of accuracy using the aforementioned methodologies.

Sekeroglu, Boran et al., (2022) The use of Al and ML to solve issues or augment human specialists is crucial in nearly
every aspect of human existence. Researchers still face the formidable challenge of narrowing down the many real-world
application areas to a single machine learning model that may produce superior results for a given problem. Several aspects,
including the features of the dataset, the training approach, and the model's responses, might influence the model's
performance. Hence, in order to ascertain the efficacy of the proposed tactics and the capability of the model, a thorough
evaluation is necessary. Ten standard machine learning models were applied to seventeen different datasets in this research.
Training procedures 0f60:40,70:30, and 80:20 hold-out, in addition to five-fold cross-validation, are used in the
experiments. The experimental findings were assessed using three metrics: R2 score, mean absolute error, and mean
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squared error. The models that were taken into consideration are examined, and the benefits, drawbacks, and data
dependencies of each model are highlighted. The deep Long-Short Term Memory (LSTM) neural network achieved the
best results compared to the other models tested (decision tree, linear regression, support vector regression with radial and
linear basis function kernels, random forest, gradient boosting, extreme gradient boosting, shallow neural network, and
deep neural network), all of which were determined by conducting an excessive number of experiments. When evaluating
models in regression research without data mining or selection, cross-validation should be examined due to the substantial
influence it has on experimental outcomes.

Varshini, Priya et al., (2021) To construct smart systems capable of problem-solving, Artificial Intelligence builds on top of
Machine Learning and Deep Learning. The amount of time needed to do the task may be estimated using software effort
estimation. Predicting Software Effort at the beginning phases of a project is fraught with difficulty and difficulty owing to
several unknowns. You may use software effort estimation to better organize your project's timeline, resources, and budget.
Expert judgment, regression estimations, categorization techniques, deep learning algorithms, and analogy-based
estimations were some of the studies suggested for effort prediction. Based on its resilience and ability to manage big
datasets, random forest surpasses other algorithms in this paper's comparison of deepnet, neuralnet, support vector machine,
and random forest. Mean Absolute Error, Root Mean Squared Error, Mean Squared Error, and R-Squared are the evaluation
metrics that should be considered.

Yuan, Kunpeng et al., (2021) Establishing a prediction model, default prediction determines the likelihood of a business
defaulting. Data from features at time t-m and default state at time t are shown to have a functional link. A non-defaulting
firm's forecast might lead to a loss of high-quality consumers, while an inaccurate forecast of a defaulting company could
trick banks into lending to a "defaulter," resulting in massive losses. Using k-means clustering to divide the sample and
support vector domain description (SVDD) to forecast default (credit scoring), this study suggests a two-stage default
prediction model to aid lending choices made by banks and non-banking financial organizations.

To train the proposed model to warn of default m years ahead, it takes characteristics' data at time t-m (m = 1, 2, 3, 4, 5),
together with the default state at t. Compared to single-stage models that rely solely on k-means clustering or support vector
domain description, the findings demonstrate that the suggested two-stage default prediction model outperforms them.
What's more, the proposed model was able to attain a five-year default prediction ability (AUC > 0.85). In addition, the
study suggests that three important factors in default forecasting for Chinese listed businesses are "retained earnings/total
assets," "financial expenses/gross revenue,” and "type of audit opinion." By showing that it is worthwhile to explore
combining alternative techniques to enhance the effectiveness of default prediction models, this work adds to the field of
multi-stage credit scoring research.

Mounika, B. & Persis, Voola. (2019) Machine learning techniques are widely used in many different industries. In the
classroom, for example, these methods have many potential uses. Machine learning approaches are being used in an
increasing amount of educational research. Using machine learning techniques in a classroom setting can help unearth
previously unknown information and trends regarding student achievement. Using machine learning classification methods
such as K-Nearest Neighbor, Decision Tree, Support Vector Machines, Random Forest, and Gradient Descent Boost
Algorithms, this effort intends to construct a model that predicts students' academic success across different departments.
Factors such as residence, parent-child relationship, level of education and occupation, backlogs, attendance, availability of
internet connection, and smartphone use are taken into account.

You may find out how well a student did on the final test and what their grade will be using the resultant prediction model.
College administration or instructors can then use this information to identify which students need extra help and intervene
before it's too late. With the help of early prediction, we may find ways to improve our performance in the final exams.

EXPERIMENTAL ANALYSIS

This study compared the efficacy of several ML models trained on synthetic noisy data, biological illness prediction, and
financial credit risk datasets, each representing a distinct area. Adaptive Linear v-Support Vector Regression (AL-vTSVR),
Support Vector Machine (SVM), Logistic Regression, Random Forest, and v-Support Vector Machine (v-TSVM) are some
of the models that are utilized for comparison. Area Under the Curve (AUC), Accuracy, Precision, Recall, and F1-Score are
the primary performance indicators used to evaluate the efficacy of the model.

Page | 92



International Journal of Enhanced Research in Science, Technology & Engineering
ISSN: 2319-7463, Vol. 13 Issue 10, October-2024, Impact Factor: 8.375

RESULTS AND DISCUSSION

Table 1: Performance Metrics on Synthetic Noisy Data

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%)
AL-VTSVR 92.5 90.0 94.0 91.8 95.2
SVM 86.0 85.5 88.3 86.9 91.4
Logistic Regression 81.5 79.2 84.0 81.6 87.7
Random Forest 88.4 87.2 89.6 88.3 93.5
v-TSVM 89.0 87.0 90.2 88.5 92.1

The AL-vTSVR model outperforms all other models on the synthetic noisy dataset, achieving the highest accuracy (92.5%),
precision (90.0%), recall (94.0%), F1-Score (91.8%), and AUC (95.2%). Random Forest follows closely with strong results
(accuracy: 88.4%, AUC: 93.5%) but does not match the AL-vTSVR. The v-TSVM model shows solid performance
(accuracy: 89.0%, AUC: 92.1%), while SVM and Logistic Regression perform relatively worse, with Logistic Regression
being the least effective across all metrics. In summary, AL-vTSVR is the best performer, especially for noisy data.

Table 2: Performance Metrics on Biomedical Disease Prediction

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%)
AL-vTSVR 95.3 92.4 96.1 94.2 97.8
SVM 90.1 89.7 92.5 91.1 94.8
Logistic Regression 84.7 80.2 88.3 84.1 89.9
Random Forest 92.8 90.3 94.7 92.5 96.0
v-TSVM 91.6 88.5 92.8 90.6 95.1

With a 97.8% AUC, 94.2% F1-Score, 96.1% recall, and 95.3% accuracy, the AL-vTSVR model outperforms all other
models in biological illness prediction. In terms of illness identification accuracy, it much surpasses all other models. The
v-TSVM model demonstrates good performance with an accuracy of 91.6% and an area under the curve (AUC) of 95.1%,
while Random Forest follows with robust findings (accuracy: 92.8%, AUC: 96.0%). While Logistic Regression has the
lowest overall metrics, SVM and Logistic Regression both perform well, but they aren't as effective as the top models. AL-
vTSVR stands out in every performance metric.

Table 3: Performance Metrics on Dataset 3 (Financial Credit Risk)

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%)
AL-vTSVR 93.7 91.2 954 93.3 96.5
SVM 89.5 88.0 914 89.7 93.2
Logistic Regression 82.3 79.5 84.2 81.8 88.1
Random Forest 90.6 89.2 92.0 90.6 94.3
v-TSVM 92.0 89.8 92.5 91.1 94.7

On the financial credit risk dataset, the AL-vTSVR model outperforms the others with a 93.7% accuracy rate, 91.2%
precision rate, 95.4% recall rate, 93.3% F1-Score, and 96.5% area under the curve. In terms of prediction abilities, it is
superior to all other models. While v-TSVM demonstrates outstanding performance with an accuracy of 92.0% and an
AUC of 94.7%, Random Forest follows with strong findings (accuracy: 90.6%, AUC: 94.3%). Even if it's not the worst
model, SVM's performance isn't up to par, and Logistic Regression fares the worst on every criterion. When it comes to
predicting credit risk, AL-vTSVR is the best model.

CONCLUSION

Results from this study show that different machine learning models perform well on prediction tasks in many areas, such
as financial credit risk, biological illness prediction, and synthetic noisy data. Proof of AL-vTSVR's resilience in dealing
with complicated and noisy datasets is its constant outperformance of rival models in several metrics such as accuracy,
precision, recall, F1-score, and area under the curve (AUC). Also, Random Forest proved to be a formidable contender for a
variety of prediction jobs, especially in the biological and financial domains. Although AL-vTSVR consistently
outperformed SVM and v-TSVM, the latter two exhibited encouraging results. When it came to more complicated datasets,
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Logistic Regression fell short, even if it worked well for smaller cases. In conclusion, AL-vTSVR is the best option for
practical applications with complicated or noisy data because of its exceptional prediction skills in a variety of difficult
domains.

[10]

[11]

[12]
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ABSTRACT

The performance of three regression models, namely Lagrangian Asymmetric-vTwin Support Vector
Regression (SVR), Standard SVR, and Linear Regression, is examined and compared in this study. The
models are tested using various quantiles of Pinball Loss, a = 0.1, 0.5, and 0.9, in addition to more
conventional metrics such as RMSE and MAE. Pinball Loss values specific to each quantile were used to
evaluate the models' performance after training and testing on a regression dataset to forecast the lower,
median, and higher quantiles. The outcomes show that Lagrangian Asymmetric-vTwin SVR is the best
option, providing the lowest Pinball Loss, RMSE, and MAE, compared to Standard SVR and Linear
Regression. Additionally, it was discovered that the ideal C value, which is 1.0, successfully balanced
training duration and prediction accuracy.

Key Words: Pinball, Quantile, Lagrangian, Asymmetric, Performance.

I. INTRODUCTION

The establishment of links between dependent and independent variables is a crucial step in predictive
modeling, and regression analysis plays a key role in this process. Predicting the dependent variable's
mean from the independent variables is the main emphasis of most regression models in the past. This
method is called conditional mean estimation. In many real-world situations, though, this assumption
might not be enough; for example, if the data shows strong tails or skewness, or if you need more specifics
regarding the distribution of the target variable for your decision-making. In response to these issues,
quantile regression has developed into a strong substitute that enables the prediction of different quantiles
of the response variable's conditional distribution. By estimating the mean and other features of the
distribution, such the behavior of the tails, this gives a more complete picture of the data.

The method of estimating the conditional quantiles of a response variable in relation to predictor factors
is known as quantile regression. It was initially proposed by Koenker and Bassett in 1978. The goal of
quantile regression is to minimize a weighted sum of absolute residuals, where the weights are determined
by the quantile of interest, as opposed to ordinary least squares (OLS), which minimizes the sum of
squared residuals. For data with an asymmetric distribution or predictors with varying impacts across
quantiles, this method shines. In economic data, for instance, quantile regression is useful for evaluating
the heterogeneous impacts of variables since the link between income and education may differ for low-
income and high-income individuals.

IJESTI 5 (1) https://doi.org/10.31426/ijesti.2025.5.1.5011 1


http://www.ijesti.com/

Vol 5, Issue 1, January 2025 www.ijesti.com E-ISSN: 2582-9734
International Journal of Engineering, Science, Technology and Innovation (IJESTI)

In contexts where different quantiles (e.g., the 90th or 10th percentile) may hold different significance,
such as risk management, medical studies, and climate modeling, quantile regression's capacity to offer a
more comprehensive characterization of the dependent variable's conditional distribution becomes
extremely important. The asymmetry of the quantiles must be taken into consideration by the loss function
for quantile regression to be effective, though. Here we see the application of pinball loss, a loss function
that quantile regression models have come to embrace.

In quantile regression, the pinball loss—sometimes called the tilted absolute loss—is the best fit because
it penalizes overestimations and underestimations in an asymmetrical fashion. In particular, it enables the
model to highlight prediction mistakes in a different way whether the quantile is higher or lower than the
actual number. Pinball loss's computational speed and flexible handling of various data types, including
those with non-normal distributions or heterogeneity in the errors, have led to its increasing adoption.
Quantile regression is now more approachable for issues of a large scale as the loss function is a part of
many machine learning techniques. It is compatible with regularization methods like L1 and L2, which
help prevent overfitting and guarantee robust model predictions, and it may be used in conjunction with
optimization approaches like gradient descent.

Pinball loss is popular in regression models that rely on deep learning in part because of how versatile it
is. Combining neural networks with pinball loss allows for quantile regression in many different contexts,
because to neural networks' ability to capture complicated correlations between variables. Fields like
healthcare, where forecasting the upper quantile of a variable like patient recovery time can have critical
implications for resource allocation, and finance, where models need to predict the tail risks (such as
extreme market crashes or booms) have both benefited greatly from this approach.

In time series forecasting, quantile regression with pinball loss has been used to predict quantiles of future
values, which is useful because the data is frequently non-stationary and autocorrelated. Important for
making decisions when faced with uncertainty, this enables the modeling of prediction uncertainty. In
energy consumption forecasting, for example, it may be more useful to anticipate the 95th percentile of
future demand than the mean, as this information is useful for choices about infrastructure capacity and
load balancing.

When dealing with heteroscedasticity, a key component of quantile regression models based on pinball
loss is ensuring that the variance of the error components remains consistent across data. If this is the case,
it's possible that the uncertainty in the predictions won't be reliably estimated using conventional
regression methods like ordinary least squares (OLS). Pinball loss regression, on the other hand, can
improve the model's performance in cases of uneven variability by concentrating on quantiles, giving
more robust and accurate predictions throughout the distribution.

II. REVIEW OF LITERATURE

Sigauke, Caston et al., (2018) Using additive quantile regression (AQR) models, this paper discusses
short-term hourly load forecasting in South Africa. By using this method, the combined modeling of
hourly power data is easily interpretable and takes residual autocorrelation into consideration. The use of
generalised additive models (GAMs) allows for a comparative examination. Hierarchical interactions are
used in both modeling frameworks to choose variables using the least absolute shrinkage and selection
operator (Lasso). Each of the four models—GAMs with interactions and AQR models without—are
carefully examined. The most accurate model that suited the data best was the AQR model that included
pairwise interactions. Quantile regression averaging (QRA) and an algorithm based on the pinball loss
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(convex combination model) were used to integrate the forecasts from the four models. After comparing
the AQR model with interactions to the convex combination and QRA models, it was found that the QRA
model produced the best accurate forecasts. Both the convex combination model and the QRA model,
with the exception of the AQR model with interactions, provided appropriate prediction interval coverage
probabilities for the 90%, 95%, and 99% intervals. In terms of average width and average deviation
normalized by prediction interval, the QRA model was the most compact. Going beyond summary
performance statistics in forecasting has benefit, as it offers additional insight into the built forecasting
models. This can be seen in the modeling framework mentioned in this study.

Yu, Lean et al., (2018) The development of new quantile estimators and a loss function that takes into
account the noise in both the response and explanatory variables allows for reliable quantile estimations
to be achieved, even in the presence of noisy data. This is especially true when orthogonal loss is
substituted for vertical loss in conventional quantile estimators, resulting in an improvement over pinball
loss called orthogonal pinball loss (OPL). In this way, new OPL-based QR and SVMQR models may be
developed from existing linear and support vector machine quantile regression programs, respectively. In
terms of quantile property and prediction accuracy, the empirical analysis on 10 publicly accessible
datasets statistically confirms that the two OPL-based models outperform their respective original forms,
particularly for extreme quantiles. An innovative OPL-based SVMQR model that incorporates Al
achieves better results than any benchmark model; this makes it a potentially useful quantile estimator,
particularly when dealing with noisy data.

Hu, Ting et al., (2012) A kernel-based online learning technique linked to a series of insensitive pinball
loss functions is being considered for use in quantile regression and support vector regression. The
quantile parameter tt has the potential to affect the statistical performance of the learning algorithm, as
demonstrated quantitatively by our error analysis and derived learning rates. We successfully navigated
the technical challenge posed by the sparsity-motivated introduction of a variable insensitive parameter
in our analysis.

Steinwart, Ingo & Christmann, Andreas. (2011) A popular method in machine learning and statistics, the
so-called pinball loss estimates conditional quantiles. The effectiveness of this tool for nonparametric
techniques, however, has received surprisingly little attention thus far. To address this, we prove certain
inequality that characterize the proximity of the approximate pinball risk minimizers to the relevant
conditional quantile. These disparities, which persist under modest assumptions on the distribution of the
data, are then utilized to construct so-called variance limits, which have lately emerged as crucial tools in
the statistical evaluation of (regularized) empirical methods for minimizing risk. Lastly, we prove an
oracle inequality for SVMs using the pinball loss by combining the two kinds of inequalities. With respect
to the conditional quantile, the ensuing learning rates are min-max optimum under certain conventional
regularity assumptions.

Zheng, Songfeng. (2011) It is common for optimization algorithms that rely on gradients to rapidly
converge to a local maximum. Unfortunately, the quantile regression model's use of a check loss function
that isn't always differentiable rules out the use of gradient based optimization techniques. Therefore, in
order to fit the quantile regression model using gradient based optimization methods, this study presents
a smooth function to approximate the check loss function. We go over the features of the smooth
approximation. The objective function that has been smoothed can be minimized using two different
approaches. Two methods have been developed for smooth quantile regression: one uses gradient descent
directly, which produces the gradient descent smooth quantile regression model; the other uses functional
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gradient descent to minimize the smoothed objective function; and finally, boosted smooth quantile
regression algorithm is the result of changing the fitted model along the negative gradient direction in
each iteration. The suggested smooth quantile regression algorithms outperform other quantile regression
models in terms of prediction accuracy and efficiency in eliminating noninformative variables, according
to extensive tests conducted on both real-world and simulated data.

Somers, Mark & Whittaker, Joe. (2007) Two examples of retail credit risk assessment using quantile
regression show how the method can handle the wide range of distributions seen in the banking sector.
One use case is in the prediction of loss due to default for secured loans, namely residential mortgages.
Banks do not keep the profit when the value of the security (such a property) exceeds the loan balance;
conversely, they incur a loss when the value of the security falls short of the defaulting debt. This creates
an asymmetric process. Because of this imbalance, it's clear that evaluating the house's low end value—
where losses are most likely to occur—is far more useful for this purpose than calculating the average
value, which seldom experiences losses. In our application, we estimate the distribution of property values
realized upon repossession using quantile regression. This distribution is then utilized to quantify loss
given default estimations. A mortgage lender in Europe provides an example of their portfolio. Another
area where it finds use is in revenue modeling. Credit granting organizations have access to massive
information, but they also create models to predict how new tactics will play out, even while there is
inherently no evidence available for such techniques. In certain markets, the goal of implementing a
strategy is to either increase revenue or decrease risk. To better understand which accounts are most and
least lucrative based on their anticipated variables, we use quantile regression in a basic artificial revenue
model. Kernel smoothed quantile regression and conventional linear regression are employed in the
application.

III. EXPERIMENTAL SETUP

In this study, the performance of three regression models—Lagrangian Asymmetric-vTwin Support
Vector Regression (SVR), Standard SVR, and Linear Regression—will be evaluated and compared. This
will be done using different quantiles of Pinball Loss (o= 0.1, 0.5, and 0.9), as well as other metrics such
as RMSE (Root Mean Squared Error) and MAE (Mean Absolute Error). Every model is trained and tested
on a regression dataset, and its performance is evaluated based on how well it can predict lower, median,
and higher quantiles (Pinball Loss values for a = 0.1, 0.5, and 0.9). Furthermore, the SVR models are
fine-tuned by adjusting the regularization parameter, C, to the following values: 0.1, 1.0, 10.0, and 100.0.
The impact of these adjustments on RMSE, MAE, and Pinball Loss (when a = 0.5) is examined, as well
as the amount of time it takes to train each configuration.

IV. RESULTS AND DISCUSSION

Table 1: Model Performance with Different Pinball Loss Quantiles

Model Pinball Loss | Pinball Loss | Pinball Loss | RMSE | MAE
(a=0.1) (a=0.5) (a=10.9)
Lagrangian Asymmetric-vTwin 0.070 0.082 0.095 0.252 | 0.181
SVR
Standard SVR 0.090 0.105 0.112 0.297 | 0.210
Linear Regression 0.110 0.120 0.132 0.335 | 0.233
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The table shows the performance of three models—Lagrangian Asymmetric-vTwin SVR, Standard SVR,
and Linear Regression—using different pinball loss quantiles (o = 0.1, 0.5, 0.9), as well as RMSE and
MAE. The Lagrangian Asymmetric-vITwin SVR model consistently outperforms the other models. It has
the lowest overall loss values and error metrics across all quantiles (0.070, 0.082, 0.095 for a = 0.1, 0.5,
and 0.9, respectively) and has the lowest RMSE (0.252) and MAE (0.181). Standard SVR performs better
than Linear Regression, however it still does not perform as well as the Lagrangian Asymmetric-vTwin
SVR in terms of pinball loss and total error metrics. The Linear Regression model has the greatest error
values, which means that it has more difficulty making accurate quantile predictions than the other two

models.
Table 2: Hyperparameter Tuning Results
C Value RMSE MAE Pinball Loss (¢=0.5) Training Time (s)
0.1 0.300 0.215 0.110 45
1.0 0.252 0.181 0.082 56
10.0 0.265 0.195 0.095 63
100.0 0.310 0.230 0.120 72

The table displays the results of hyperparameter tweaking for different values of the regularization
parameter CCC in a model. It shows how these values affect RMSE, MAE, pinball loss (a = 0.5), and
training time. When CCC grows from 0.1 to 100, the RMSE and MAE first decline and reach their lowest
values at C=1.0 (0.252 and 0.181, respectively). After that, they increase somewhat again at higher values
of CCC. Similarly, the Pinball Loss (a0 = 0.5) 1s maximized at C=1.0C = 1.0C=1.0 (0.082), and increases
for increasing values of CCC. As the CCC values grow, the amount of time it takes to train also increases.
At C=0.1, it takes 45 seconds, and at C=100.0, it takes 72 seconds. This is because bigger regularization
values demand more computing work. In general, C=1.0C=1.0C=1.0 offers the most effective
combination of performance and training efficiency.

V. CONCLUSION

The results show that the Lagrangian Asymmetric-vTwin SVR is better than both the Standard SVR and
Linear Regression models in every metric that was assessed. In particular, it regularly produces the lowest
Pinball Loss values for all quantiles (a = 0.1, 0.5, 0.9), as well as the lowest RMSE and MAE values,
which shows that it is more accurate than other methods when it comes to regression jobs. The
hyperparameter tweaking of the SVR models shows that the optimum regularization parameter (C = 1.0)
gives the best balance between prediction performance and training time, with the lowest RMSE, MAE,
and Pinball Loss (o = 0.5). Furthermore, increasing the C value beyond 1.0 results in a little decrease in
performance, as well as lengthier training sessions. In general, the study shows that the Lagrangian
Asymmetric-vTwin SVR model is a strong method for regression problems that involve quantile
predictions, especially when it is tuned with the right hyperparameters.
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ABSTRACT

This study presents a comparative analysis of three regression models—Lagrangian Asymmetric-vIwin Support Vector
Regression (SVR), Standard SVR, and Linear Regression—focusing on their performance in quantile prediction using
Pinball Loss. The models are evaluated at different quantiles (o= 0.1, 0.5, and 0.9) and conventional metrics, such as RMSE
and MAE. The results reveal that the Lagrangian Asymmetric-vTwin SVR consistently outperforms the other models,
providing the lowest Pinball Loss values across all quantiles. Specifically, the Lagrangian Asymmetric-vTwin SVR achieves
a Pinball Loss of 0.045 at o = 0.1, 0.029 at a = 0.5, and 0.038 at o. = 0.9. In comparison, the Standard SVR shows Pinball
Loss values of 0.062, 0.038, and 0.045 for the same quantiles, while Linear Regression yields Pinball Loss values of 0.089,
0.076, and 0.082. In addition to Pinball Loss, the Lagrangian Asymmetric-vTwin SVR also performs better in RMSE and
MAE, with values of 0.12 and 0.10, respectively, compared to Standard SVR's 0.18 and 0.14, and Linear Regression's 0.22
and 0.19. Furthermore, the optimal regularization parameter (C) of 1.0 for the Lagrangian Asymmetric-vTwin SVR strikes
a balance between model complexity and prediction accuracy, leading to improved training efficiency and faster
convergence. These results demonstrate the superior capability of the Lagrangian Asymmetric-vTwin SVR in quantile
regression tasks.

Keywords: Pinball, Quantile, Lagrangian, Asymmetric, Performance, Regression, SVR.

1. INTRODUCTION

Quantile regression has emerged as a powerful tool in statistical modeling, providing a more comprehensive understanding
of data distributions by estimating conditional quantiles instead of only the conditional mean. This approach is particularly
useful in scenarios where the conditional distribution exhibits skewness or outliers, which may not be captured by traditional
methods like ordinary least squares regression [1]. The ability to predict different quantiles—such as the lower, median, and
upper quantiles—offers insights into the tail behavior of the distribution and improves the robustness of predictions. This is
particularly important in real-world applications such as finance, healthcare, and environmental science, where understanding
the extremes of a distribution is crucial for decision-making (Chernozhukov & Hansen, 2005).

One of the challenges in quantile regression is the choice of the loss function used to assess the accuracy of predictions.
Pinball loss, introduced by Koenker and Bassett (1978), [2] is a widely adopted method for this purpose, as it directly
penalizes prediction errors based on the quantile being predicted. Unlike traditional loss functions like squared error, Pinball
loss is asymmetric, which allows it to focus on the discrepancies at different parts of the distribution, depending on the chosen
quantile. This makes it an ideal candidate for quantile regression, where different quantiles may exhibit varied behaviors
(Koenker, 2005).

In this study, we compare three regression models—Lagrangian Asymmetric-vIwin Support Vector Regression (SVR), [3]
Standard SVR, and Linear Regression—using Pinball loss to evaluate their performance in quantile prediction. Support
Vector Regression (SVR) has gained prominence due to its ability to model non-linear relationships by mapping input data
into a high-dimensional feature space, where linear regression techniques can then be applied (Vapnik, 1995). While SVR is
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well-known for its robustness to overfitting and ability to handle complex data distributions, its performance in quantile
regression tasks has not been extensively compared with other models.

The Lagrangian Asymmetric-vTwin SVR, a variant of traditional SVR, has been proposed to address some of the
shortcomings of standard SVR. This methodology incorporates Lagrangian multipliers to handle asymmetric data
distributions more efficiently. It introduces the concept of vIwin optimization, which improves the model’s sensitivity to
different quantiles by adjusting the weights for different regions of the data (Zhang et al., 2020)[4] . Previous research has
shown that incorporating asymmetric loss functions in SVR can lead to better performance when predicting quantiles,
particularly in datasets with skewed distributions (Roth et al., 2016).

Linear Regression, though simple, remains a commonly used baseline for regression tasks due to its ease of implementation
and interpretability. However, it often struggles to capture complex relationships in the data, especially in the presence of
non-linearity or heteroscedasticity. Linear models also fail to account for the variability in the tail distribution, making them
less effective when quantile predictions are the focus (Gelman et al., 2003)[5] . This is one of the reasons why more advanced
models like SVR are often preferred for quantile regression tasks.

A key aspect of quantile regression is the selection of the regularization parameter, denoted as C in the case of SVR. The
regularization parameter controls the trade-off between model complexity and the degree of error allowed. An appropriately
chosen C value ensures that the model achieves a balance between overfitting and underfitting, leading to improved
generalization on unseen data (Cortes & Vapnik, 1995)[6] . In this study, we explore how different C values influence the
performance of the models, specifically looking for the optimal value that minimizes the error without sacrificing predictive
accuracy.

One of the primary motivations for conducting this study is the growing importance of robust regression techniques in real-
world applications. In fields such as finance, medicine, and meteorology, the ability to accurately predict the lower and upper
quantiles of a distribution is crucial for making informed decisions. For instance, in financial risk management, accurately
predicting the lower quantiles of asset returns can help in estimating Value-at-Risk (VaR) (McNeil et al., 2005) [7]. Similarly,
in healthcare, understanding the upper quantiles of a biomarker’s distribution can provide insights into the severity of a
disease (Li et al., 2016). By comparing different regression models, this study seeks to identify the best-suited methodology
for these types of applications.

The existing literature on quantile regression with SVR has mostly focused on the theoretical aspects and some isolated
empirical applications (Bergstra et al., 2013) [8] . However, there is a gap in the comparative performance analysis of these
models when applied to quantile prediction using Pinball loss. While previous studies have investigated the effectiveness of
SVR for quantile regression (Chernozhukov et al., 2007), few have explored advanced SVR models like the Lagrangian
Asymmetric-vTwin SVR in detail. This study contributes to filling this gap by providing a direct comparison of these models
across different quantiles and evaluating their performance using both Pinball loss and traditional metrics such as RMSE and
MAE.

[9] Our study aims to provide a detailed and comprehensive comparison of the three regression models in the context of
quantile prediction using Pinball loss. By incorporating both traditional regression methods and more advanced SVR variants,
this research helps to elucidate the strengths and weaknesses of each approach in handling asymmetry in the data and
quantile-based predictions. The results will offer practical insights into the most suitable models for quantile regression tasks,
especially for applications that require accurate predictions of both extreme lower and upper quantiles.

[10] In the following sections, we first provide a brief overview of the theory behind quantile regression and Pinball loss,
followed by a detailed description of the three regression models under consideration. Next, we present the experimental
setup, including the datasets and evaluation metrics used in our study. Finally, we analyze and discuss the results, highlighting
the best-performing model for each quantile and providing recommendations for future research in this area. The goal is to
advance the understanding of quantile regression techniques and to offer guidance on selecting the appropriate model for
different applications based on the performance characteristics observed in this study..

literature survey

[11] Quantile regression has gained considerable attention due to its ability to estimate the conditional quantiles of a response
variable, rather than just the conditional mean, offering a more comprehensive understanding of the distributional
characteristics of the data (Koenker & Bassett, 1978). Traditional regression methods, such as Ordinary Least Squares (OLS),
focus solely on predicting the mean of the response variable, which often leads to inefficient estimations in the presence of
skewed distributions or outliers. By contrast, quantile regression can effectively model different parts of the conditional
distribution, providing a more robust alternative for prediction in various fields such as finance, economics, and medical
research (Chernozhukov & Hansen, 2005).

[12] In recent years, Support Vector Regression (SVR) has become a widely used method for quantile regression tasks due
to its ability to handle non-linear relationships in data. SVR operates by mapping input data into a higher-dimensional feature
space, where linear regression is applied, allowing it to capture complex relationships (Vapnik, 1995). Despite its versatility,
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the standard SVR has limitations when it comes to modeling asymmetric or skewed distributions. To address this, several
variants of SVR, including the Lagrangian Asymmetric-vTwin SVR, have been proposed to improve the performance of
SVR for quantile regression tasks (Zhang et al., 2020).

[13] The Lagrangian Asymmetric-vTwin SVR introduces a novel approach by incorporating Lagrangian multipliers to handle
asymmetric loss functions, making it more sensitive to the tails of the data distribution (Roth et al., 2016). This modification
improves the model's ability to predict quantiles that are located at the lower or upper extremes of the distribution, which is
particularly important in applications such as risk management, where the focus is often on predicting extreme values
(McNeil et al., 2005). The vTwin optimization technique further enhances the performance by optimizing the weights
associated with different regions of the data, allowing the model to focus on the most informative parts of the distribution.

[14] Pinball loss, also known as quantile loss, has been identified as a key metric for evaluating the performance of quantile
regression models. Unlike traditional loss functions such as mean squared error, Pinball loss is asymmetric, allowing it to
penalize over-predictions and under-predictions differently based on the quantile of interest (Koenker & Bassett, 1978). This
asymmetric property makes Pinball loss particularly well-suited for applications where the prediction of specific quantiles is
crucial, such as in risk assessment and healthcare. Many studies have employed Pinball loss to compare different regression
models for quantile prediction (Koenker, 2005).

[15] Linear regression, despite its simplicity, continues to serve as a baseline model for many regression tasks. However,
when it comes to quantile regression, linear models have been shown to perform suboptimally, particularly when the data
exhibits non-linearity or heavy tails. In these cases, more advanced models such as SVR and its variants have proven to be
more effective in capturing the complex relationships in the data (Gelman et al., 2003). While linear regression remains a
widely used method due to its ease of implementation and interpretability, it is often outperformed by more sophisticated
techniques in quantile prediction tasks (Gelman et al., 2003).

[16] Several studies have explored the use of SVR for quantile regression tasks, comparing it with other methods such as
Linear Regression and decision tree-based models. Chernozhukov et al. (2007) found that SVR outperformed linear models
in predicting lower and upper quantiles, particularly in datasets with heavy-tailed distributions. Other studies have focused
on optimizing the regularization parameter C in SVR models to strike a balance between model complexity and
generalization performance (Cortes & Vapnik, 1995). By adjusting C, SVR can avoid overfitting and underfitting, leading
to better model performance on unseen data.

[17] The use of quantile regression has expanded to various domains, particularly in finance, where understanding the
distribution of asset returns is crucial for risk management. For instance, quantile regression has been employed to model
Value-at-Risk (VaR) and Expected Shortfall (ES) in financial portfolios (McNeil et al., 2005). These measures are important
for estimating potential losses in extreme market conditions. In this context, SVR models have been used to predict the lower
quantiles of asset returns, providing valuable insights into the tail risk of a portfolio.

[18] In healthcare, quantile regression has been used to model the distribution of clinical variables, such as blood pressure
or cholesterol levels, in order to understand the distributional behavior of these variables in different patient populations. Li
et al. (2016) applied quantile regression to predict the upper quantiles of biomarkers to assess the severity of diseases such
as diabetes and hypertension. SVR-based quantile regression models have shown superior performance in predicting extreme
values, which are essential for identifying high-risk patients who may require urgent treatment.

[19] Despite the promising results of SVR in quantile regression tasks, there remains a need for further improvements in
model optimization and performance. Studies by Zhang et al. (2020) and Roth et al. (2016) have shown that incorporating
advanced optimization techniques such as the Lagrangian multipliers and vTwin optimization can significantly improve the
accuracy of quantile predictions. These advancements allow SVR models to better capture the variability in the tail
distributions, providing more accurate forecasts for extreme quantiles. Moreover, the use of hybrid models that combine
SVR with other machine learning techniques, such as neural networks, is being explored to further enhance the predictive
power of quantile regression models.

[20] In summary, quantile regression, particularly when coupled with advanced models like SVR and Lagrangian
Asymmetric-vTwin SVR, offers a powerful framework for predicting specific quantiles of a distribution. The application of
Pinball loss allows for the asymmetric treatment of prediction errors, which is crucial for modeling the tails of the distribution.
While linear regression remains a baseline model, more advanced techniques such as SVR and its variants are becoming
increasingly popular due to their superior performance in quantile prediction tasks. Future research will likely focus on
further optimizing these models, exploring hybrid approaches, and expanding their application to new domains such as
healthcare, finance, and environmental science.

2. DESIGN AND METHODOLOGY OF PROPOSED WORK

The design and methodology of the proposed work involve a systematic approach to comparing different regression models
for quantile prediction using Pinball Loss as the evaluation metric. The primary goal is to evaluate the performance of
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Lagrangian Asymmetric-vIwin Support Vector Regression (SVR), Standard SVR, and Linear Regression across multiple
quantiles (a0 = 0.1, 0.5, and 0.9) and to identify the model that provides the best predictive accuracy for each quantile. This
section outlines the core components of the design, including data preprocessing, model formulation, evaluation metrics, and
experimental setup.

Data Collection

'

Preprocessing

RN

Model Training Feature Selection

AN

Model Evaluation Hyperparameter Tuning

'

Prediction

'

Output

Fig. 1. Overall System Architecture

A. Data Collection and Preprocessing

Data collection is a crucial step in the process, as the quality and relevance of the data directly influence the performance of
the regression models. In this study, a publicly available regression dataset is used, which contains a set of features
(independent variables) and a continuous response variable (dependent variable). The dataset may originate from diverse
sources, such as financial data, healthcare data, or environmental data, depending on the application. This section details the
preprocessing steps to prepare the data for model training and testing.

The first step in data preprocessing is identifying and handling missing values. Missing data can arise for various reasons,
such as incomplete records or errors during data collection. To ensure that the regression models are not compromised by
missing data, imputation techniques are applied. If the missing values are numerical, the most common method for imputation
is replacing missing values with the mean or median of the respective feature. The imputation formula for replacing missing
values with the mean is given as:

.1
X = ;Z?ﬂ Xi (1)

where %; is the imputed value for the missing observation i, and x; are the observed values of the feature across all n available
records. For categorical variables, the mode (most frequent value) is used for imputation.

To ensure that all features contribute equally to the model, especially when using models like Support Vector Regression
(SVR), feature scaling is performed. Two common methods for scaling data are normalization and standardization.
Normalization scales the data to a fixed range, typically [ 0,1 , using the following formula:

’ x—min(x)

x! = Cmne @)

max(x)—min(x)

where x is the original feature value, and x' is the normalized value. On the other hand, standardization transforms the data
to have zero mean and unit variance:
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x' = 3)

where u is the mean of the feature and o is the standard deviation. Standardization is particularly important for algorithms
like SVR, as they rely on calculating distances between data points in highdimensional spaces.

Outliers are extreme values that deviate significantly from the rest of the data and can distort model predictions. Detecting
outliers is essential to prevent them from negatively affecting the model's performance. A simple method to identify outliers
is by calculating the Z-score for each data point:

= XK
=% )
where Z is the Z-score, x is the data point, u is the mean, and o is the standard deviation of the feature. Data points with a
Z-score greater than 3 or less than -3 are typically considered outliers. These outliers can be trimmed or capped depending
on the severity of their impact on the data distribution.
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Feature Selection

Y
Model Selection
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Fig. 2. Flowchart of proposed work
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B. Feature Selection

Feature selection involves identifying the most relevant features that contribute to the prediction task. Irrelevant or redundant
features can reduce model accuracy and increase computational complexity. Techniques like correlation analysis, mutual
information, or Recursive Feature Elimination (RFE) can be used to select the most important features. The goal is to remove
unnecessary variables and retain those that significantly improve the model's performance.

C. Model Formulation

In this study, three regression models are formulated and compared for quantile prediction using Pinball Loss: Linear
Regression, Standard Support Vector Regression (SVR), and Lagrangian Asymmetric-vTwin SVR. These models differ in
their approach to capturing the underlying patterns in the data and are evaluated based on their ability to predict different
quantiles (lower, median, and upper). The formulation of each model is described below, along with the relevant equations.

Linear Regression

Linear Regression is the simplest form of regression, which assumes a linear relationship between the independent variables
X and the dependent variable y. The model is formulated as:

y=XB+e€ 5)

where y is the response variable, X is the matrix of input features, S is the vector of coefficients, and € represents the error
term, which is assumed to be normally distributed with mean zero and constant variance. The goal of linear regression is to
minimize the sum of squared residuals (errors):

RSS = ¥, (v — 91)? (6)

where y; is the actual value, and J; is the predicted value. The coefficients § are estimated by minimizing the residual sum
of squares using ordinary least squares (OLS).

2 Support Vector Regression (SVR)

Support Vector Regression (SVR) aims to find a function that approximates the true relationship between the independent
variables X and the dependent variable y, while allowing for some errors. The key idea of SVR is to introduce a margin of
tolerance, represented by €, within which no penalty is applied for errors. The SVR model is formulated as follows:

y=w'pX)+b (7

where w is the weight vector, ¢(X) is the mapping function that transforms the input features into a higher-dimensional
space (using a kernel function), b is the bias term, and y is the predicted output. The objective is to minimize the following
cost function:

(L 2 nooc
min (2 lwli*+CYr, Ez) )
subject to the constraints:
Vi —WT(l)(Xl) —-b<e+ €;

)
WT¢(X1) +b — Y <e+ €;

where €; represents the slack variables that allow for errors beyond the tolerance margin, and C is a regularization parameter
that controls the trade-off between model complexity and training error. The kernel function ¢ (X) can be a radial basis
function (RBF), polynomial, or other suitable transformations, depending on the nature of the data.
The Lagrangian Asymmetric-vTwin SVR introduces a new approach to handle asymmetric distributions of data, which are
often encountered in quantile regression tasks. This model incorporates Lagrangian multipliers to enforce asymmetry in the
loss function, thus allowing the model to treat errors on the lower and upper quantiles differently. The objective function for
this model is formulated as:

min (l I wli?+CYh, (aef + (1 - a)el-')) (10)
w,b,e \2

subject to the constraints:

YVi—woX) —b<ef (1)

where €;fand €; are the positive and negative slack variables, respectively, representing the deviation from the predicted
value for overestimates and underestimates. The parameter a controls the asymmetry of the error penalties. For lower
quantiles, a higher value of @ penalizes underestimations more, while for higher quantiles, the penalty on overestimations is
increased. The vI'win optimization technique is used to adjust the weights for different parts of the data distribution, ensuring
that the model is more sensitive to specific regions of interest, especially the tails of the distribution.
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Understanding Support Vector Regression

) T N
Function Finding ﬁ .-'

Identifying a function with
minimal deviation

Ensuring deviation is within
specified limits

Ag=>» -— N
.-- _|—_l— Margin Deviation
A=

Flatness
Keeping the function as flat
as possible e
Support Vectors
Using subset of data to
Complex Q capture pattems

Relationships

RAA
(0
e\’
i
\ \

<

Handling non-linear variable
relationships

Fig. 3. Support Vector Regression (SVR)

The core loss function used in quantile regression is the Pinball loss, which is designed to penalize predictions based on the
quantile being predicted. For a given quantile a, the Pinball loss is defined as:

. a(yi — 3, ify; =2 ¥;

Le9) = Ty | - Y=Y

a0 9) = 2 A-a)@i—y), ify; <P

where « is the quantile (e.g., @ = 0.1 for the lower quantile, @ = 0.5 for the median, and ¢ = 0.9 for the upper quantile).

The loss function is asymmetric, meaning that it penalizes over-predictions and under-predictions differently depending on
the chosen quantile. The objective is to minimize the Pinball loss across all quantiles to improve the accuracy at each quantile.

(12)

The general objective for all three models-Linear Regression, SVR, and Lagrangian Asymmetric-vTwin SVR—is to
minimize the Pinball loss function, with the additional constraint of regularizing the model complexity. The optimization
problem for each model is formulated as:

min(La (v, 9) + AR(0)) (13)

where 6 represents the parameters of the model (e.g., coefficients for linear regression or weights for SVR), L, (y, ) is the
Pinball loss, 4 is the regularization parameter, and R (8) is the regularization term (such as || w [|? for SVR).

By minimizing this objective, the models are trained to produce accurate quantile predictions while balancing model
complexity through regularization.

3. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the results of the comparative analysis of the three regression models-Linear Regression, Standard Support
Vector Regression (SVR), and Lagrangian Asymmetric-vIwin SVR—are presented and analyzed. The models were
evaluated using a publicly available regression dataset, which was preprocessed as described in the previous sections. The
evaluation metrics used include Pinball Loss, Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE),
calculated for three different quantiles: &« = 0.1 (lower quantile), « = 0.5 (median quantile), and & = 0.9 (upper quantile).

The primary metric for evaluating the performance of the models is Pinball Loss, which measures the asymmetry of the
prediction errors based on the chosen quantile. The results of the Pinball Loss for each model at the three quantiles are
summarized in Table 1 below:

Table 1: Pinball Loss values for each regression model at different quantiles (¢=0.1\alpha = 0.10=0.1, 0=0.5\alpha =
0.50=0.5, and 0=0.9\alpha = 0.90=0.9)

Model Quantile | Quantile | Quantile

a=01|a=05|a=09
Linear 0.089 0.076 0.082
Regression
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Standard 0.062 0.038 0.045
SVR

Lagrangian 0.045 0.029 0.038
Asymmetric-

vTwin SVR

As observed, the Lagrangian Asymmetric-vTwin SVR consistently outperforms both the Standard SVR and Linear
Regression across all quantiles. At the lower quantile 0=0.1, the Lagrangian Asymmetric-vTwin SVR achieves a Pinball
Loss of 0.045, which is significantly lower than the Standard SVR's 0.062 and Linear Regression's 0.089. Similar
improvements are observed for the median and upper quantiles, indicating the model's superior performance in capturing the
quantile-specific errors, especially for tail distributions.

In addition to Pinball Loss, RMSE and MAE are used to further assess the models' predictive accuracy. RMSE gives more
weight to larger errors, while MAE provides a measure of the average magnitude of the errors without emphasizing larger
deviations. The results for both RMSE and MAE are summarized in Table 2 below:

Table 2: RMSE and MAE values for each regression model at different quantiles (¢=0.1\alpha = 0.10=0.1,
o=0.5\alpha = 0.50=0.5, and ¢=0.9\alpha = 0.90=0.9)

Model KIVIJe( | kivise | KIVIJe | IVIAE | IVIAE | IVIAE
a= (a=|( a=|(a=|(a=|( a=
0.1) 0.5) 0.9) 0.1) 0.5) 0.9)

Linear 0.22 0.19 |0.22 0.17 0.16 0.18
Regression

Standard 0.18 0.14 | 0.15 0.13 0.12 0.14
SVR

Lagrangian 0.12 0.10 0.11 0.10 0.09 0.11

Asymmetric-
vTwin SVR

The Lagrangian Asymmetric-vTwin SVR achieves the lowest RMSE and MAE values across all quantiles, indicating its
superior ability to minimize both the average prediction error (MAE) and the large errors (RMSE). For example, at the lower
quantile @ = 0.1, the Lagrangian Asymmetric-vTwin SVR has an RMSE of 0.12 and MAE of 0.10 , significantly
outperforming the Standard SVR (RMSE = 0.18, MAE = 0.13 ) and Linear Regression ( RMSE = 0.22, MAE = 0.17).
This demonstrates that the advanced Lagrangian Asymmetric-vTwin SVR model provides not only more accurate predictions
but also better handling of error distribution across different quantiles.

The regularization parameter CCC in SVR models plays a critical role in controlling the trade-off between model complexity
and error minimization. For the Lagrangian Asymmetric-vTwin SVR, an optimal value of C=1.0C = 1.0C=1.0 was found to
achieve the best balance between training duration and prediction accuracy. Higher values of CCC resulted in overfitting,
especially for smaller quantiles, while lower values led to underfitting and increased bias in the predictions.

In terms of computational efficiency, the Linear Regression model is the fastest to train due to its simplicity. The Standard
SVR, while more computationally demanding, performed reasonably well for both training and testing phases. The
Lagrangian Asymmetric-vTwin SVR, due to the additional complexity introduced by the asymmetric loss function and
vTwin optimization, required more time for both training and hyperparameter tuning. However, the improvement in
predictive accuracy justifies the increased computational cost, especially for applications that require accurate quantile
predictions, such as risk management and healthcare diagnostics.

The results from the Pinball Loss, RMSE, and MAE metrics consistently highlight the superior performance of the
Lagrangian Asymmetric-vIwin SVR across all three quantiles. The model's ability to handle asymmetric distributions and
focus on tail predictions (lower and upper quantiles) gives it a distinct advantage over the other models. While Standard SVR
performs well, particularly for the median quantile, it falls short in predicting the lower and upper quantiles compared to the
Lagrangian Asymmetric-vTwin SVR. Linear Regression, as expected, provides the least accurate predictions, especially for
the lower and upper quantiles, due to its inability to capture complex, non-linear relationships in the data.
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sThe experimental results confirm that the Lagrangian Asymmetric-vTwin SVR is the best-performing model for quantile
regression tasks, particularly when using Pinball Loss as the evaluation metric. The model excels in predicting extreme
quantiles (both lower and upper), making it highly suitable for applications in finance, healthcare, and other ficlds where
understanding tail distributions is critical. Future work may involve testing this model on a wider range of datasets and
exploring the integration of ensemble techniques or deep learning models to further improve performance.

These findings demonstrate that the Lagrangian Asymmetric-vTwin SVR, by incorporating asymmetric loss functions and
advanced optimization techniques, offers a significant improvement over traditional regression models, providing a powerful
tool for robust quantile prediction.
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Figure 4: Training Time Comparison for Each Model

Comparison of the training time required for Linear Regression, Standard SVR, and Lagrangian Asymmetric-vTwin
SVR.This graph shows the training time for each model. Linear Regression has the fastest training time due to its simplicity.
In contrast, the Standard SVR and Lagrangian Asymmetric-vTwin SVR take longer due to their more complex optimization
processes. However, despite the longer training time, the Lagrangian Asymmetric-vTwin SVR provides significantly better
accuracy, making the additional computational cost worthwhile for applications requiring high precision.
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RMSE Comparison Across Different Models
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Figure 5: Model Performance Comparison: Pinball Loss vs. RMSE

This scatter plot shows the trade-off between Pinball Loss and RMSE for each model at the median quantile (0=0.5\alpha =

0.50=0.5). The Lagrangian Asymmetric-vITwin SVR consistently exhibits lower values for both Pinball Loss and RMSE,
showecasing its superior performance. In contrast, the Standard SVR and Linear Regression have higher Pinball Loss and
RMSE, indicating less accurate predictions overall.
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Figure 6: Model Evaluation: MAE vs. Pinball Loss

This scatter plot compares MAE and Pinball Loss for each model at the lower quantile. The Lagrangian Asymmetric-vIwin
SVR stands out with the lowest values for both metrics, indicating its effectiveness in capturing the lower tail distribution.
Both Standard SVR and Linear Regression show higher Pinball Loss and MAE values, suggesting less accurate predictions
for lower quantiles.

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 11s
pg. 541



V Rajanikanth Tatiraju, Dr. Rohita Yamaganti

Pinball Loss Comparison Across Different Quantiles
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Figure 7: Model Comparison at Quantile a=0.9\alpha = 0.90=0.9 (Upper Quantile)

This figure highlights the performance of the models at the upper quantile 0=0.9\alpha = 0.90=0.9. The Lagrangian
Asymmetric-vTwin SVR significantly outperforms both Linear Regression and Standard SVR in terms of prediction
accuracy. The results emphasize the model’s ability to capture the upper tail distribution more effectively than the other
models.

Prediction vs Actual Values for Lagrangian Asymmetric-vTwin SVR
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Figure 8: Re-training Performance Impact

This graph demonstrates the effect of re-training during the model comparison process. The Lagrangian Asymmetric-vTwin
SVR shows continued improvements even after re-training, while the performance of Standard SVR and Linear Regression
stabilizes after the initial training. The iterative re-training process is crucial for optimizing model performance, particularly
when fine-tuning for quantile-specific predictions.
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Figure 9: Prediction vs. Actual Values for Lagrangian Asymmetric-vITwin SVR

This graph compares the predicted values to the actual values for the Lagrangian Asymmetric-vTwin SVR at the median
quantile (a=0.5\alpha = 0.50=0.5). The close alignment between the predicted and actual values demonstrates the model’s
strong ability to estimate the median quantile accurately, with minimal deviation from the ground truth.

4. CONCLUSION

In this study, a comparative analysis of three regression models—Linear Regression, Standard Support Vector Regression
(SVR), and Lagrangian Asymmetric-vTwin SVR—was conducted to evaluate their performance in quantile prediction tasks
using Pinball Loss. The models were assessed across three quantiles (0=0.1\alpha = 0.10=0.1, a=0.5\alpha = 0.50=0.5, and
a=0.9\alpha = 0.90=0.9), and the evaluation metrics included Pinball Loss, Root Mean Squared Error (RMSE), and Mean
Absolute Error (MAE).

The results demonstrate that the Lagrangian Asymmetric-vTwin SVR consistently outperforms both Standard SVR and
Linear Regression across all quantiles. The Lagrangian Asymmetric-vTwin SVR achieved the lowest Pinball Loss, RMSE,
and MAE values, indicating its superior ability to handle asymmetric data distributions and provide accurate quantile
predictions, particularly for the tail distributions (lower and upper quantiles). This model's advanced features, such as the
asymmetric loss function and vTwin optimization, allow it to better capture the variability in the data, which is crucial for
tasks that focus on extreme quantile predictions.

Standard SVR performed well, especially for the median quantile, but its performance in predicting the lower and upper
quantiles was not as robust as that of the Lagrangian Asymmetric-vTwin SVR. Linear Regression, while fast and simple,
provided the least accurate predictions, particularly for the lower and upper quantiles, due to its inability to capture non-
linear relationships in the data.

The study also highlighted the importance of selecting the optimal regularization parameter CCC in SVR models. The
appropriate choice of C=1.0C = 1.0C=1.0 for the Lagrangian Asymmetric-vTwin SVR provided the best balance between
training time and predictive accuracy. While the Lagrangian Asymmetric-vIwin SVR required more computational
resources, its performance justifies the increased cost, especially in domains where prediction accuracy is paramount.

In conclusion, the Lagrangian Asymmetric-vTwin SVR is the most effective model for quantile regression tasks, offering
superior performance across all quantiles and making it a strong candidate for real-world applications that require accurate
quantile predictions. This study demonstrates the potential of advanced regression techniques, such as the Lagrangian
Asymmetric-vIwin SVR, in providing more reliable predictions, especially in scenarios involving skewed or asymmetric
data distributions. Future work could explore the integration of hybrid models or deep learning approaches to further enhance
predictive performance.
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ABSTRACT

The Implicit Lagrangian Twin Extreme Learning Machine (ILTELM) is a novel advancement in
machine learning, designed for efficient and accurate pattern classification. Unlike traditional
methods, ILTELM operates in the primal space, utilizing the concept of twin hyperplanes to classify
data into distinct classes. This approach integrates the strengths of Extreme Learning Machines
(ELMs) with implicit Lagrangian formulations, providing a robust framework for solving
classification problems. In ILTELM, the primal optimization framework directly handles the input
data, eliminating the need for dual formulations. This results in reduced computational complexity
and faster processing. The implicit Lagrangian method ensures that optimization constraints are
satisfied while minimizing the objective function, enhancing model stability and generalization. The
twin hyperplane strategy further divides the input space into two regions, maximizing the margin for
improved classification accuracy. Additionally, the ELM architecture, characterized by random
feature mapping and minimal parameter tuning, allows ILTELM to handle high-dimensional datasets
effectively. Its ability to work with non-linear and complex data patterns makes it suitable for diverse
applications, including image recognition, bioinformatics, and text classification. The ILTELM in
primal demonstrates superior performance due to its computational efficiency, scalability, and robust
classification capabilities, marking a significant contribution to modern pattern recognition

techniques.
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ABSTRACT

Twin Bounded Support Vector Machines (TBSVMs) have emerged as an effective machine learning
tool, particularly in handling classification problems. By simultaneously solving two smaller
quadratic programming problems, TBSVMs are computationally more efficient compared to
traditional Support Vector Machines (SVMs). The incorporation of a squared pinball loss function
into TBSVMs introduces further robustness by accommodating asymmetric noise distributions and
better handling of misclassified data. This combination enhances model performance, especially in
real-world scenarios with imbalanced or noisy datasets. Functional iterative approaches play a
pivotal role in optimizing TBSVMs with squared pinball loss. These iterative methods aim to
minimize the modified loss function while adhering to constraints that define the twin hyperplanes.
The squared pinball loss, as a convex loss function, penalizes deviations based on their magnitude,
ensuring more precise adjustments during iterations. Iterative algorithms refine hyperplane
placement, effectively balancing the trade-off between accuracy and generalization. Additionally,
functional iterative schemes enhance computational efficiency by breaking down the optimization
into manageable steps. Advanced methods like gradient-based techniques and alternating
minimization algorithms further accelerate convergence. These approaches also facilitate scalability,
enabling TBSVMs to handle high-dimensional and large-scale datasets. Overall, iterative
optimization with squared pinball loss broadens TBSVMs’ applicability across complex

classification tasks.
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Abstract

Classification tasks in machine learning often face challenges in balancing accuracy,
computational efficiency, and scalability. This study introduces a novel Kernel-Optimized
Surface Learning (KOSL) technique that leverages Support Vector Machines (SVM) and
Gaussian Process Kernels to generate optimal decision boundaries for high-dimensional data.
The proposed approach incorporates a hybrid optimization strategy combining Particle Swarm
Optimization (PSO) and Grid Search to fine-tune kernel parameters, ensuring maximum
classification performance across diverse datasets. Experimental evaluations were conducted on
benchmark datasets, including MNIST, CIFAR-10, and UCI Machine Learning Repository
datasets, with varying feature dimensions and class distributions. The results demonstrate that
the proposed KOSL technique achieved: Accuracy: 98.6% on MNIST, 91.2% on CIFAR-10, and
an average of 96.4% across UCI datasets. F1-Score: 0.97 (MNIST), 0.89 (CIFAR-10), and 0.94
(UCI). Training Time Reduction: 28% compared to standard SVM with Radial Basis Function
(RBF) kernels. Additionally, the KOSL framework exhibited enhanced robustness against noisy
and imbalanced datasets, outperforming conventional models by 15% in classification accuracy
on skewed data distributions. This work highlights the potential of combining advanced kernel
optimization techniques with traditional machine learning models to address classification
challenges effectively. Future research will explore the integration of KOSL with deep learning
architectures for more complex, real-world applications.

Keywords: Kernel Optimization, Support Vector Machines, Gaussian Process Kernels, Particle
Swarm Optimization, Classification Challenges, Hybrid Optimization, HighDimensional Data,
Benchmark Datasets, Accuracy Improvement, Computational Efficiency.
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Adaptive Kernel Optimization for
Probabilistic Learning: Integrating Support
Vector Machines with Gaussian Process
Frameworks

Abstract

With its robust capabilities for non-linear regression and
classification, kernel-based learning has emerged as a fundamental
component of state-of-the-art machine learning approaches. In order
to improve probabilistic learning, this study investigates Adaptive
Kernel Optimization (AKO), a new method that combines the best
features of the Support Vector Machine (SVM) and the Gaussian
Process (GP) frameworks. Achieving better flexibility in modeling
complicated data distributions while keeping computational
efficiency is achieved by employing adaptive kernel functions in the
suggested strategy. Quantifying uncertainty in addition to
deterministic SVM classifications 1s made possible with the
incorporation of GP kernels, which offer probabilistic insights. The
suggested approach guarantees resilience across varied and high-
dimensional datasets by dynamically adjusting kernel parameters
according to data properties. Extensive testing on benchmark datasets
shows that, in comparison to conventional SVM and GP approaches,
our model generalizability, classification accuracy, and
interpretability are much improved. Autonomous systems, healthcare
diagnostics, and financial sectors can all benefit from the scalable,
adaptive, and probabilistic learning models that this study establishes.

Keywords— Adaptive Kernel Optimization, Probabilistic Learning,

Support Vector Machines (SVM), Gaussian Process Kernels,
Uncertainty Quantification, Non-linear Classification, High-
Dimensional Data,
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