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ABSTRACT 

Cancer ranks as the world’s second most common cause of death, is characterized by 

uncontrolled cell proliferation and metastasis alteration in genetic level that activate 

oncogenes and deactivate tumor suppressor genes. Matrix metalloproteinase-9 

(MMP-9), or gelatinase B, contributes significantly to extracellular matrix 

degradation and the remodeling of tissues, angiogenesis, and tumor microenvironment 

formation, with its overexpression documented in nearly all cancer types. Targeting 

MMP-9 has thus emerged as a promising therapeutic strategy. In this study, we 

employed an in-silico and in-vitro approach to investigate potential MMP-9 inhibitors 

from two distinct chemical classes—natural flavonoids and Non-Steroidal Anti-

Inflammatory Drugs (NSAIDs)—both individually and in synergistic combinations. 

ADMET and bioactivity profiling of selected flavonoids identified luteolin and 

quercetin as the most promising candidates, with molecular docking revealing luteolin 

as the strongest individual inhibitor. Combination docking identified quercetin–

genistein and luteolin–genistein pairs with binding energies of −15.48 and −15.31 

kcal/mol, respectively, surpassing the affinities of individual ligands. Similarly, 

among NSAIDs, oxaprozin and piroxicam demonstrated the highest individual 

binding affinities, with their combination yielding a binding energy of −12.98 

kcal/mol. Further cross-class docking of the top candidates luteolin and piroxicam 

showed substantial inhibitory potential. Experimental validation using DPPH 

scavenging and MTT assays confirmed the combination’s strong antioxidant capacity 

and cytotoxicity, with favourable IC₅₀ values, suggesting its efficacy in combating 

oxidative stress and MMP-9–mediated cancer progression. Overall, our findings 

highlight the potential of synergistic flavonoid–NSAID combinations as a novel 

strategy for MMP-9 inhibition, warranting further in vitro and in vivo evaluation for 

high-efficacy cancer therapy. 
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CHAPTER – 1 

INTRODUCTION 

1.1. Cancer and Its Pathologies 

Cancer is a brought disease, encompassing a vast spectrum of disorders 

characterized by abnormal and uncontrolled cell growth, with the potential to 

invade adjacent tissues and metastasize to distant organs. Globally, it is a leading 

cause of mortality, accounting for millions of deaths annually, and its incidence is 

expected to rise in the coming decades due to aging populations, lifestyle factors, 

and environmental exposures (Sung et al., 2021). At the molecular level, cancer 

develops through a multistep process involving the accumulation of genetic 

mutations and epigenetic alterations (Hanahan & Weinberg, 2011) This process is 

fueled by genomic instability, which facilitates the acquisition of additional 

mutations that drive tumor progression. In cancer research, the concept known as 

the “hallmarks of cancer” serves as a core model for understanding the disease, 

which describe the common capabilities acquired by most malignant cells, 

including ongoing proliferative cues, suppression-evading mechanisms, induction 

of angiogenesis, invasion activation and metastasis, reprogramming of energy 

metabolism, and evasion of immune destruction (Hanahan, 2022). These hallmarks 

are not isolated traits but interact dynamically within the tumor and its 

microenvironment, making cancer a highly adaptive and resilient disease. 

The tumor microenvironment is crucial in driving cancer initiation and progression. 

It comprises a heterogeneous mixture of cancer cells, fibroblasts, and the 

extracellular matrix, all of which engage in complex signaling networks (Quail & 

Joyce, 2013). Contextually, these interactions have the potential to suppress tumors 

or enhance malignant advancement. Chronic inflammation within the TME, often 

driven by infection, autoimmune disorders, or environmental factors, acts as a 

tumor-promoting force by generating reactive oxygen and nitrogen species, 

enhancing DNA damage, and stimulating angiogenesis and tissue remodeling 

(Greten & Grivennikov, 2019). Moreover, cancer cells can reprogram surrounding 

stromal cells to create an immunosuppressive, niche that enables evasion of 
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immune system surveillance. Tumor-associated macrophages, for instance, often 

adopt a pro-tumoral phenotype that supports angiogenesis, extracellular matrix 

degradation, and metastasis (Mantovani et al., 2017). Metabolic reprogramming, 

the Warburg effect — A state in which cancer cells preferentially depend on aerobic 

glycolysis — provides both energy and biologically synthesised precursors 

required for accelerated proliferation, while also influencing the epigenetic 

landscape and gene expression patterns of tumor cells (Pavlova & Thompson, 

2016). These adaptive features make targeting the TME for cancer therapy. 

Metastasis remains the most lethal attribute of malignant tumors, accounting for the 

vast majority of cancer-related deaths (Steeg, 2016). The metastatic cascade 

consists of multiple stages, including local invasion of nearby tissues, entry into 

blood or lymphatic vessels (intravasation), survival within the circulation, exit into 

distant tissues (extravasation), and eventual colonization of secondary sites. Each 

of these steps requires distinct molecular and cellular adaptations, including loss of 

cell–cell adhesion through downregulation of E-cadherin, acquisition of motility 

through epithelial–mesenchymal transition (EMT), and resistance for anoikis, 

triggered by detachment from the ECM (Lambert et al., 2017). Organ-specific 

metastasis patterns reflect both anatomical factors, like vascular drainage routes. 

Like breast cancer often metastasizes to bone, while colorectal cancer frequently 

spreads to the liver. Understanding these organotropisms is essential for developing 

strategies to prevent or treat metastatic disease. Despite advances in surgery, 

radiotherapy, chemotherapy, and targeted therapy, metastasis remains a formidable 

clinical challenge due to its heterogeneity and with therapy-resistant tumor cell 

subpopulations. 

Cancer is also a systemic disease, with widespread effects beyond the primary 

tumor site. Tumor-induced cachexia, a multifactorial syndrome Characterized by 

unintended weight loss and degeneration of muscle tissue and metabolic 

disturbances, significantly reduces patient quality of life and response to therapy 

(Fearon et al., 2011). This syndrome is driven by systemic inflammation, altered 

metabolism, and the factor that derive tumor such as pro-inflammatory cytokines 

and proteolysis-inducing factors. Anaemia, immunosuppression, and 
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thromboembolic events are other frequent systemic manifestations of malignancy, 

reflecting the profound physiological disruptions caused by tumor growth. 

Addressing these systemic effects is critical in comprehensive cancer care, as 

supportive therapies can improve both survival and life style quality. Therefore, 

cancer pathologies are the result of intricate and dynamic interactions between 

genetic mutations, epigenetic reprogramming, metabolic changes, and 

microenvironmental influences. The hallmarks of cancer provide a fundamental 

framework for the study of these processes, while advances in molecular biology, 

pathology, and systems medicine continue to refine our knowledge. Future progress 

will depend on integrating these insights into early detection strategies, targeted 

interventions, and approaches that address both tumor-intrinsic and systemic 

aspects of the disease. By doing so, oncology can move closer to the goal of 

transforming cancer into a manageable chronic condition or achieving durable 

cures for an increasing number of patients. 

1.2. Matrix metalloproteinases (MMPs) and Cancer 

Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases 

that play a main function in extracellular matrix remodeling, a process that is 

critical for both physiological tissue homeostasis and pathological conditions such 

as cancer. In normal tissues, MMP activity is tightly regulated at the transcriptional 

level, by proenzyme activation, and through inhibition by tissue inhibitors of 

metalloproteinases (TIMPs) (Nagase et al., 2006). This process happens through 

the breakdown of ECM components, which facilitates cancer cell invasion, 

migration, and metastasis, and through the release of ECM-associated growth 

factors that upregulate angiogenesis (Egeblad & Werb, 2002).  

MMPs have been involve in modulating the tumor microenvironment by 

influencing immune cell infiltration, inflammation, and signaling cascades that 

elicit tumor survival. As per earlier investigation reported that oxidative stress—a 

hallmark of many cancers—can modulate MMP expression via redox-sensitive 

transcription factors such as NF-κB and AP-1, thereby creating a feedback loop 

where MMP activity exacerbates oxidative damage, and oxidative stress further 

amplifies MMP expression (Karin & Greten, 2005). This correlation between 



 

 

            Chapter – 1                                                                        Introduction  
                                                                                                                                

4 
 

oxidative stress and MMP activation not only accelerates tumor progression but 

also confers resistance to apoptosis, making MMPs potential therapeutic targets. 

The MMPs and oxidative stress relationship in cancer is multifaceted. Free oxygen 

species generated through mitochondrial dysfunction, oncogene activation, or 

inflammatory processes, can directly activate latent proMMPs via oxidation of 

cysteine residues in their propeptide domains (Rajagopalan et al., 1996). 

Furthermore, ROS-mediated activation of mitogen-activated protein kinases 

(MAPKs) enhances MMP gene transcription, leading to increased proteolytic 

activity in the tumor microenvironment. In turn, excessive MMP activity promotes 

ECM breakdown, which releases bioactive fragments known as matrikines that can 

further initiate oxidants production like ROS by both cancer and stromal cells 

(Overall & Kleifeld, 2006). This bidirectional amplification contributes to tumor 

invasion, metastatic niche formation, and angiogenesis, all of which are essential 

for malignant progression. The  elevated circulating levels of certain MMPs 

correlate with tumor aggressiveness and poor prognosis in number of cancers, such 

as breast, colorectal, lung, and pancreatic carcinomas (Kessenbrock et al., 2010). 

Importantly, the oxidative stress–MMP have been connected to therapy resistance, 

where chemotherapeutic agents inadvertently enhance ROS generation, triggering 

compensatory MMP upregulation that facilitates tumor relapse. These findings 

underscore the need to understand MMP regulation in the oxidative context for the 

development of more effective anti-cancer strategies. 

Within the MMP family, MMP-9 (gelatinase B) has been widely investigated due 

to its significant involvement in cancer progression and its responsiveness to 

oxidative regulation. MMP9 specifically degrades collagen type IV, a major 

structural constituent of basement membranes, that support tumor cell intravasation 

and extravasation during metastasis (Vu & Werb, 2000). Elevated MMP9 

expression has been identified in a wide range of malignancies, including breast, 

prostate, gastric, and glioblastomas, often correlating with advanced disease stage 

and poor patient survival (Deryugina & Quigley, 2006).  

Oxidative stress plays a important role in MMP-9 activation; ROS-mediated 

pathways activate transcription factors like NF-κB, which in turn upregulate MMP-



 

 

            Chapter – 1                                                                        Introduction  
                                                                                                                                

5 
 

9 transcription (Bond et al., 1998). Additionally, ROS can directly cleave and 

activate pro-MMP-9, amplifying its proteolytic capacity in the tumor milieu. This 

ROS–MMP9 synergy promotes not only ECM degradation but also enhancing 

angiogenesis and supporting tumor expansion. MMP-9 also shown to modulate 

immune surveillance by regulating cytokine and chemokine availability, thereby 

influencing tumor-associated inflammation (Parks et al., 2004). Considering its 

multifactorial role, MMP-9 is also actively examine as a biomarker for cancer 

diagnosis and prognosis, along with a therapeutic target. Inhibiting MMP-9 

activity—either directly through small molecule inhibitors or indirectly by 

targeting upstream oxidative pathways—has been shown significant preclinical 

results, though applying this clinically is still difficult because of the complexity of 

MMP regulation in vivo. 

1.3. MMP-9 and its inhibitors against cancers 

Matrix metalloproteinase-9 (MMP-9), a member of the gelatinase subgroup of 

MMPs, plays a crucial function in extracellular matrix (ECM) degradation, 

facilitating processes such as tumor invasion, angiogenesis, and metastasis. 

Overexpression of MMP-9 has been identified in a wide range of malignancies, as 

in breast, gastric, pancreatic, and lung cancers, where its activity linked with poor 

prognosis and advanced tumor stage (Vandooren et al., 2013); (Gialeli et al., 

2011)).  

The proteolytic activity of MMP-9 not only enables the breaking of ECM 

constituents, but also regulates the bioavailability of growth factor like VEGF, 

thereby promoting angiogenesis and cancer cell survival (Jabłońska-Trypuć et al., 

2016). MMP-9 is also implicated in oxidative stress–driven tumorigenesis, as 

reactive oxygen species (ROS) can upregulate MMP-9 transcription through redox-

sensitive transcription factors namely NF-κB and AP-1 (Siwik et al., 2001). In 

tumor microenvironment, oxidative stress triggers a feed-forward mechanism 

where elevated MMP-9 levels enhance inflammation, further driving ROS 

production and cellular damage. Given its multifaceted role in cancer progression, 

MMP-9 is considered a critical biomarker and therapeutic target for both diagnostic 

and interventional strategies. 
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Most of the natural compounds may acts as inhibitors of MMP-9 because of their 

relatively low toxicity and ability to modulate multiple signaling pathways. 

Polyphenols such as epigallocatechin gallate (EGCG) from green tea and curcumin 

from turmeric reduce MMP-9 expression by interfering with MAPK and other 

signals (Annabi et al., 2002); (Aggarwal & Harikumar, 2009).  

Flavonoids like quercetin and luteolin similarly downregulate MMP-9 activity and 

suppress tumor cell migration in vitro and in vivo (Liu et al., 2015). These natural 

compounds function via multiple pathways, such as suppressing transcription, 

blocking pro-MMP-9 activation, and neutralizing ROS, thereby mitigating 

oxidative stress–driven MMP-9 upregulation. While promising, the clinical 

translation of natural MMP-9 inhibitors faces limitations such as poor 

bioavailability, rapid metabolism, and inconsistent potency in human studies. 

Consequently, their therapeutic potential is often considered complementary to 

conventional anticancer treatments rather than as standalone interventions. 

In addition to natural molecules, non-steroidal anti-inflammatory drugs (NSAIDs) 

have emerged as pharmacological inhibitors of MMP-9 with significant 

implications in oncology. NSAIDs, including aspirin, indomethacin, and celecoxib, 

have been reported to suppress MMP-9 expression by inhibiting COX-2–mediated 

prostaglandin E2 (PGE2) production, that downregulates MMP-9 transcription 

(Tsujii et al., 1998); Hwang et al., 2006). Selective COX-2 inhibitors such as 

celecoxib have demonstrated additional MMP-9 inhibitory effects independent of 

COX-2 blockade, including direct interference with Akt and ERK signaling 

cascades (Krysan et al., 2004). In preclinical models, NSAID treatment are 

connected with reduced tumor invasion, angiogenesis, and metastasis, correlating 

with decreased MMP-9 levels in both tumor tissue and serum (Jung et al., 2010). 

These findings underscore the potential of NSAID-based strategies as adjunctive 

therapies targeting MMP-9, particularly in cancers characterized by high MMP-9 

activity. However, the risks of gastrointestinal and cardiovascular side effects 

necessitate careful dosing and patient selection in clinical applications. 

Combination strategies that pair bioactive natural compounds with non-steroidal 

anti-inflammatory drugs (NSAIDs) are gaining attention as a means to suppress 
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matrix metalloproteinase-9 (MMP-9)–driven invasion and metastasis while 

potentially lowering doses and side effects of each agent. Natural products such as 

epigallocatechin-3-gallate (EGCG), curcumin, and various polyphenols 

downregulate MMP-9 transcription and activity through inhibition of NF-κB, AP-

1 or MAPK signaling, and by Detoxifying free radical oxygen that otherwise induce 

MMP expression ((Annabi et al., 2002); Aggarwal & Harikumar, 2009). NSAIDs, 

particularly selective COX-2 inhibitors like celecoxib, reduce prostaglandin E₂ 

(PGE₂) signaling that feeds NF-κB–dependent MMP-9 expression and can also 

affect Akt/ERK pathways in a COX-independent manner (Tsujii et al., 1998; 

Krysan et al., 2004). Preclinical studies show that co-treatment with EGCG and 

celecoxib produces synergistic reductions in tumor cell viability, VEGF release and 

MMP family activity, indicating additive or synergistic blockade of both 

inflammatory (COX-2/PGE₂) and redox/transcriptional mechanisms that drive 

MMP-9 (Noda et al. and Zhang et al.; PC-9 and Colo357 cell studies). Such dual 

targeting can blunt ECM degradation, restrict angiogenesis, and reduce invasive 

phenotypes are more effective (Khan et al.;)  

Mechanistically, combinations capitalize on complementary actions: natural 

compounds often act upstream by lowering oxidative stress and inhibiting 

transcription factors that induce MMP-9, whereas NSAIDs suppress prostanoid-

mediated pro-MMP signaling and downstream kinase cascades. For example, 

curcumin reduces MMP-9 via AMPK activation and NF-κB inhibition in colon 

cancer models, and when paired with agents that suppress COX-2 signaling the net 

effect on MMP-9 expression and invasion is amplified (curcumin studies). EGCG 

similarly downregulates MMP-9 and synergizes with celecoxib to enhance 

apoptosis and reduce invasiveness in lung and pancreatic cancer cell lines (EGCG 

+ celecoxib). Importantly, other combined treatment have been examined in diverse 

tumor types (breast, colon, pancreatic, lung) and reported consistent trends: 

decreased MMP-9 expression/activity, reduced migration/invasion in vitro, and 

attenuated tumor growth or metastasis in vivo, supporting the translational rationale 

for combined nutraceutical–NSAID therapy.  
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Though analysis of natural compounds and NSAIDs for reducing the expression 

was investigated previously but studies on structural inhibition of MMP-9 by these 

compounds are limited.  

1.4. Molecular Docking 

Molecular docking is a widely used computational approach in structure-based drug 

design to predict the preferred orientation of a ligand when bound to its target 

protein, thereby estimating binding affinity and interaction modes. Molecular 

docking method has significant role in identifying potential inhibitors against 

specific targets such as matrix metalloproteinase-9 (MMP-9), which is implicated 

in tumor invasion, metastasis, and angiogenesis (Vihinen et al., 2005). Docking 

studies typically involve the preparation of the protein structure, retrieval or 

modeling of ligands, and applying an algorithm such as Autodock or Glide to 

predict ligand–protein interactions ((Morris et al., 2009); (Friesner et al., 2004)). 

Computational docking accelerates drug discovery by allowing in silico screening 

of large compound libraries, reducing time and cost before wet-lab testing. For 

MMP-9 inhibitors, both natural compounds and non-steroidal anti-inflammatory 

drugs (NSAIDs) have been assessed for binding potential, supporting their 

therapeutic relevance in oncology (Rashid et al., 2023). 

1.5. MTT Assay 

The MTT assay is a colorimetric method widely used to evaluate cell viability, 

proliferation, and cytotoxicity of compounds in cancer research. Its principle is 

based on the reduction of yellow tetrazolium salt (MTT) to insoluble purple 

formazan crystals by mitochondrial dehydrogenases in metabolically active cells 

((Mosmann, 1983). In the context of MMP-9 inhibitor research, the MTT assay 

provides crucial in vitro data on the anti-proliferative effects of natural compounds, 

NSAIDs, or their combinations on cancer cell lines that exhibit elevated MMP-9 

activity (Liang et al., 2007); (Li et al., 2023). The assay is typically performed by 

treating cancer cells culture at different concentrations of the test compound, 

incubating for a defined period, adding MTT reagent, and solubilizing the formed 

crystals before absorbance measurement at 570 nm. Reduction in cell viability 
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correlates with compound potency, and IC₅₀ values are calculated. MTT results are 

often complemented assays to establish a broader picture of anti-metastatic 

potential, particularly when MMP-9 downregulation is targeted (Shen et al., 2012). 

1.6. DPPH Assay 

The 2,2-diphenyl-1-picrylhydrazyl (DPPH) is a fast assay, simple method to 

evaluate the antioxidant capacity of natural and synthetic compounds. The DPPH 

display a deep violet colour, which fades upon reduction by an antioxidant (Blois, 

1958). Absorbance decrease at 517 nm quantitatively reflects radical scavenging 

activity. In MMP-9-related cancer studies, DPPH assays are used to find test 

compounds with antioxidant properties that can mitigate oxidative stress–mediated 

upregulation of MMP-9 expression, a key process in tumor progression (Wang et 

al., 2016; (Kessenbrock et al., 2010). Antioxidants from plant sources, such as 

flavonoids and polyphenols, have been shown to exert dual actions by scavenging 

ROS and directly inhibiting MMP-9 activity (Chou et al., 2010). NSAIDs with 

antioxidant-like properties, when combined with natural compounds, can offer 

synergistic effects in suppressing oxidative stress and MMP-9–driven metastatic 

pathways. The DPPH assay thus serves as an initial screening step to select 

candidates for further docking studies, cellular assays, and in vivo testing in cancer 

models (Ryou et al., 2011). 
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AIM 

The aim of this study is to identify promising combinations of a natural molecule 

and an NSAID that synergistically inhibit MMP-9 activity by structural inhibition, 

specifically tailored to counter oxidative stress–mediated upregulation of MMP-

9 in cancer. By focusing on agents with complementary mechanisms—natural 

antioxidants and NSAID-mediated anti-inflammatory action—this research seeks 

to develop a targeted, dual-action therapeutic strategy to mitigate MMP-9–driven 

tumor progression under oxidative conditions. 

OBJECTIVES 

The objective of this study is to explore the combination therapy of NSAID and 

nutraceuticals in mediating MMP9 inhibition against cancer.  

1. Molecular modelling of MMP-9 and Protein-drug interaction in-silico studies 

of nutraceutical combinations for MMP-9 inhibition 

2. Screening of NSAID and plant nutraceutical combinations from medicinal 

plants to identify potential combination drug therapy against cancer. 

3. Exploration of bioactivity of NSAID and nutraceuticals individually and in 

combination (MTT assays, antioxidant assay, ROS etc.) on cancer cell lines. 
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CHAPTER – 2 

REVIEW OF LITERATURE 

 

2.1 Background on Matrix Metalloproteinase (MMPs) 

The Matrix Metalloproteinase (MMP) belongs to the zinc-dependent proteolytic 

enzyme, extensively studied since 1962, covering an enzyme in the mammalian uterus 

that degrades collagen in various animal and tissue models (Woessner, 1962). MMPs 

have been researched across disciplines like biochemistry, cell biology, pathology, 

immunology, physiology, and computational biology, focusing on diseases like 

arthritis, cancer, periodontal diseases, and cardiovascular diseases. In the late 1980s, 

additional MMPs were discovered and given the name MMPs (Okada et al., 1990). 

The MMP family has 25 members (Table 1). The family classification is based on 

sequence homology and substrate characteristics into collagenases, gelatinases, 

matrilysins, stromelysins, and membrane-type MMPs (Iyer et al., 2012). These all are 

capable of degrading constituents of the ECM including collagen, fibronectin, 

laminin, and proteoglycan protein core (Cabral-Pacheco et al., 2020).  

They are accountable for the deterioration and modification of the proteins that form 

the ECM. They have a proteolytic activity that have a significant role in different 

pathological and physiological processes, like as tissue remodeling, organ 

development, control of inflammatory functions, and cancer progression. The 

different classes of MMPs perform different functions, such as collagenase mediates 

the degeneration of triple-helical fibrillar collagen. Gelatinases are important in 

various physiological and cellular processes like wound healing, cell migration, and 

angiogenesis. Stromelysins have the potential to degrade laminin, fibronectin, gelatin, 

and collagen. Matrilysinsdegrade components of ECM. MT-MMPs are cell surface 

active enzymes and have collagenolytic and proteolytic activity towards ECM 

components. All MMPs have a protease domain and a conserved sequence 

HEXGHXXGXXHS/T with three histidine residues making a complex with a 

catalytic Zn atom and a regulatory conserved sequence domain PRCGXPD important 

for binding of cysteine to the Zn at active site found in the protease domain of MMPs 

(Fig.1) (Nagase et al., 2006).  



MMPs Cancer progression 

stages 

Action Results 

MMP-2, MMP-9, MT1-

MMP 

Invasion  Proteolytic ECM 

macromolecules 

degradation 

MMP-1, MMP-2, 

MMP-3, MMP-7, 

MMP-9, MMP-11, 

MMP-19 

 

 

 

 

 

 

 

Proliferation 

Insulin-like growth factor (IGF)-binding protein cleavage 

 

Proliferation  

MMP-3, MMP-7  Release the cell membrane precursors of several growth 

factors, (HB-EGF, TGF-α, and amphiregulin) 

Proliferation 

MMP-9, MMP-2, 

MMP-14 

TGF-β proteolytic activation Proliferation 

MMP-7 cleavage of HB-EGF 

 

Proliferation 

MMP-7  

Apoptosis 

Fas ligand cleavage Resistance to 

apoptosis and 

chemoresistance 

to the cancer 

cells 

MMP-2, MMP-9, 

MMP-14, MMP-1, 

MMP-7  

 

Angiogenesis and 

Vasculogenesis 

Extracellular constituents’ degradation, such as collagen 

type IV, XVIII by secret of VEGF and basic fibroblast 

growth factor (bFGF) 

Angiogenesis 

regulation 

  

MMP-2 Cell adhesion, 

migration, and 

Degradation of ECM molecule causes the generation of 

cryptic peptides 

Facilitates 

cancer cell 

migration 

Table 1: - Classification of MMPs 
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MMP-2, MMP-3, 

MMP-9, MMP-13, 

MMP14 

epithelial to 

mesenchymal transition 

Excessive expression associated with epithelial-to-

mesenchymal transition (EMT) 

Morphological 

transition and 

migration 

MMP-1, MMP-7 Cleavage of E-cadherin Disrupted cell 

adhesion and 

induction of 

EMT causes 

morphological 

transition 

 

MMP-28 Proteolytic activation of TGF-β 

 

EMT inducer 

MMP-9  

 

 

 

Immune surveillance 

Shed interleukin-2 receptor-α by the cell surface of T-

lymphocytes 

 

Suppressing 

proliferation 

MMP-9, MMP-2, 

MMP-14 

TGF-β release  Suppressor of T-

lymphocyte 

reaction 

 

MMP-7, MMP-11, 

MMP-1, MMP-8, 

MMP-3 

Generation of a bioactive fragment from a1-proteinase 

inhibitor 

Suppresses 

cancer-cell 

sensitivity to NK 

cells 

MMP-7, MMP-8 Cleavage of the CC (β-chemokine) and CXC (α-

chemokine) chemokine subfamilies  

Regulate 

mobilization, 

leukocyte 

infiltration and 

migration 

 

1
3

 

C
h
a
p
te

r – 2
                                                          R

e
v
ie

w
 o

f L
ite

ra
tu

re
 



                

 

              Chapter – 2                                                               Review of Literature 
 

14 
 

                  

 Fig. 1 Structure of MMPs 

2.2 Importance of MMPs in Cancer Progression and Metastasis 

Cancer is a group of diseases that are primary contributor of deaths globally. Many of 

the studies have shown that ECM remodeling proteases-Metrix metalloproteinases 

(MMPs) play a valuable role in the changes seen in the microenvironment during 

cancer advancement. (Page-McCaw et al., 2007). During the development of cancer, 

tumor cells communicate with the tumor microenvironment, including the growth 

factors, cytokines, and extracellular matrix and surrounding cells as macrophages, 

neutrophils and mast cells (Murphy, 2008), (Deryugina & Quigley, 2006). The four 

processes of cancer – migration, invasion, metastasis, and angiogenesis depend on this 

microenvironment. The MMPs expression in tumor microenvironment depends on 

cancer and stromal cells. MMPs have proteolytic activity and degenerate ECM 

physical barriers causing angiogenesis, invasion, and metastasis. The growth factors 

and cytokines signaling molecules cause tumor development. These factors are easily 

accessed by MMPs cancer microenvironment. This involves the cells acquiring 
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specific traits to escape the primary tumor, travel through the bloodstream, and form 

new tumors in distant organs. The process requires survival and communication skills 

from tumor cells. Overcoming physiological barriers is crucial for successful 

metastasis (Chambers et al., 2002, Pantel & Brakenhoff, 2004, Geho et al., 2005). At 

the stage of metastasis, tumor cells connect with various components like extracellular 

matrix, protein growth factors, and cytokines during metastasis. These interactions 

occur with different structures such as the basement membrane, blood vessels, and the 

microenvironment of secondary sites. These interactions contribute to the 

displacement of normal tissue and the metastatic foci formation.  

 

MMPs have significant function in metastasis (Deryugina & Quigley, 2006,Quintero-

Fabián et al., 2019). Regulation and dysregulation of MMPs in cancer involves various 

mechanisms that alter their expression, activation, and function. In many cancers, 

MMPs are often overexpressed, leading to increased degradation of ECM, which 

facilitates tumor invasion and metastasis. This upregulation can be mediated by 

various factors such as growth factors (e.g., TGF-β, EGF), cytokines (e.g., TNF-α), 

and oncogenic signaling pathways (e.g., MAPK, PI3K-Akt), cytokines and growth 

factors present in the microenvironment of tumor (Egeblad & Werb, 2002). DNA 

methylation and histone modifications can influence MMP expression patterns in 

cancer cells. For example, hypermethylation of promoter regions of certain MMP 

genes can lead to their silencing, while hypomethylation can contribute to their 

overexpression (Nagaset & Woessner, 1999). MMP activity can be modulated by post-

translational modifications such as glycosylation, phosphorylation, and proteolytic 

processing. These modifications affect MMP activation, stability, and cell and ECM 

microenvironment localization. MicroRNAs (miRNAs) regulating MMP expression 

post-transcriptionally. Certain miRNAs can target MMP mRNAs for degradation or 

inhibit their translation, thereby modulating MMP levels in cancer cells, (Fabbri et al., 

2007). TIMPs are endogenous inhibitors of MMPs that maintain the balance between 

MMP activity and ECM integrity. Dysregulation of TIMPs, either through reduced 

expression or increased degradation, can lead to excessive MMP activity and ECM 

degradation in cancer (Mustafa et al., 2022). The tumor microenvironment, 

characterized by hypoxia, inflammation, and interactions with stromal cells, 

influences MMP expression and activity. Hypoxia-inducible factors (HIFs) and 
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cytokines released by tumor-associated immune cells can upregulate MMP 

production, promoting tumor invasion and metastasis. (Sun, 2010). 

2.3 Extracellular Matrix Remodeling by MMPs  

The ECM is commonly composed of structural proteins (collagen and elastin), 

glycosaminoglycan, proteoglycan, and connecting proteins (fibronectin and laminin) 

(Yuan et al., 2023). The most common functions performed by the ECM are cell 

proliferation, differentiation, and maintenance of tissue homeostasis (Chakraborty & 

Edkins, 2021). 

 

MMPs bind with the various ECM proteins involved in connective tissue remodeling 

(Laghezza et al., 2020). The remodeling of the ECM in many tumors has been 

connected with elevated expression of MMP-2, MMP-3, MMP-9, and MMP-14 (L. 

Luo et al., 2021). The degradation of collagen IV is responsible for the invasion of 

tumor cells into the basement membrane mediated by MMP-2 and MMP-9. It causes 

tumor metastasis and diffusion (Taleb et al., 2006). The collagen degradation also 

causes the remodeling of ECM biomechanical properties. The collagen dissolution 

around tumor cells is induced by MMP-14. It is a key contributor for cell invasion and 

migration (N. Chen et al., 2020).  

 

2.4 MMP-Mediated Angiogenesis and Vasculogenesis 

Angiogenesis and vasculogenesis are two common processes in cancer. Angiogenesis 

is the generation of new blood vessels from pre-existing ones (Bajbouj et al., 2021). 

Vasculogenesis is the process for the formation of new blood vessels through 

endothelial progenitor cells during embryonic development or in postnatal tissues 

under certain pathological conditions (Kovacic & Boehm, 2009). However, in cancer, 

it contributes to growth of tumor and metastasis by supplying vital substances and 

oxygen (Lugano et al., 2020). 

 

MMPs are central to both angiogenesis and vasculogenesis, as they facilitate the 

remodeling of the ECM, which is important for the movement of endothelial cell, 

proliferation, and differentiation (Kubis & Levy, 2003). MMPs also modulate the 
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growth factor bioavailability and cytokines, thereby regulating the angiogenesis and 

Vasculogenesis (Mott & Werb, 2004). 

MMP-2 and MMP-9 are important in angiogenesis and Vasculogenesis because of 

their ability to degrade type IV collagen, a basement membrane component. The 

basement membrane behaves as a barrier to cell migration, and its degradation by 

MMP-2 and MMP-9 is a key step for the new blood vessels formation (Shoari, 2024). 

The expression of these MMPs is frequently elevated when stimulated by pro-

angiogenic signals, including VEGF and FGF, and transforming growth factor-beta 

(TGF-β) (Pathak et al., 2024). VEGF is a potent pro-angiogenic factor that stimulates 

EC proliferation, migration, and survival. MMP-9 has been shown to release VEGF 

from the ECM, increasing its bioavailability and enhancing its angiogenic effects. This 

interaction is crucial for the initiation of both angiogenesis and vasculogenesis, and 

for the formation of new vascular branches in the course of angiogenesis (Ghalehbandi 

et al., 2023).  

 

TGF-β plays a bifunctional role in angiogenesis and vasculogenesis, pro-angiogenic 

and anti-angiogenic factor. TGF-β is secreted in a latent form bound to latency-

associated peptide (LAP), which keeps it inactive. MMPs, particularly MMP-2 and 

MMP-9, can cleave LAP, releasing active TGF-β. The initiation of TGF-β by MMPs 

is for the regulation of angiogenesis by influencing EC proliferation and 

differentiation (Neel et al., 2012).  

 

MMPs influence angiogenesis and vasculogenesis by modulating signaling pathways 

through the proteolytic processing of signaling molecules and receptors. Thus, MMPs 

can either activate or inactivate signaling pathways, for fine-tuning the angiogenic and 

vasculogenic response. It activates pro-MMP-2 by cleaving its Propeptide, converting 

it into the active enzyme that degrades type IV collagen and other ECM components 

(J. H. Chang et al., 2016).  

 

MMPs can cleave VEGFR-2, modulating its activity and the downstream signaling 

pathways involved in EC proliferation and migration. This cleavage can result in 

either the activation of VEGFR-2 signaling or its inhibition, depending on the specific 

MMP involved. The regulation of VEGFR-2 by MMPs is critical for maintaining the 
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balance between angiogenesis and vasculogenesis, (X. Wang & Khalil, 2018), (Ceci 

et al., 2020). 

2.5 MMP Inhibition Strategies  

Strategies for MMP inhibition focus on designing and employing approaches that 

block or diminish MMP activity in order to manage or treat various diseases. MMP 

activity can be crucial in treating diseases where MMPs contribute to tissue damage, 

such as cancer, arthritis, and cardiovascular diseases.  

 

2.5.1 Small Molecule Inhibitors of MMP Activity  

 

Batimastat (BB-94) is a synthetic broad-spectrum small molecule that supresses the 

MMP activity including MMP-9. The Batimastat structure has a hydroxamate group 

that binds to the zinc ion at MMPs active site. This interaction is critical for the 

restriction of the enzyme proteolytic activity (Hernandez-Pando et al., 2000). 

Batimastat was administered in oral and intravenous routes. It interferes with ECM 

remodeling by attaching to the active site of MMPs, sequestering the zinc ion required 

for their function, and thereby blocking the breakdown of extracellular matrix 

components (Brew & Nagase, 2010). 

Marimastat (BB-2516) is a next-generation oral broad-spectrum inhibitor, it inhibits 

MMP-1, MMP-2, MMP-3, MMP-7, and MMP-9 activity. The structure of Marimastat 

has a Hydroxymate, that function as a zinc chelator at the MMPs active site. 

Marimastat was studied in pancreatic, non-small cell lung, breast, colorectal, gastric, 

glioblastoma brain, and prostate cancer   (Bramhall et al., 2002). 

 

Other inhibitors including tanomastat Carboxylate zinc chelator, inhibits MMP-2, 

MMP-3, MMP-8, MMP-9, and MMP-13, prinomastat Hydroxymate zinc chelator 

inhibitor, inhibits MMP-2, MMP-3, MMP-9, MMP-13, and MMP-14, and rebimastat 

(Winer et al., 2018), all these inhibitors were investigated in ovarian, pancreatic, lung, 

breast, and prostate carcinomas. These inhibitors demonstrated small inhibitory 

activity and failed in clinical trials for the positive effect on survival. 
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2.5.2 Antibody-Based Therapies Targeting MMPs 

Antibody-based therapies targeting MMPs represent a promising approach to treating 

many diseases where MMP dysregulation is critical. Monoclonal antibodies (mAbs) 

are engineered proteins that can bind to specific antigens, such as MMPs, it is designed 

to selectively inhibit a single MMP with high affinity, greater specificity, reduced side 

effects (Alaseem et al., 2019). 

 

The antib REGA-3G12 and REGA-2D9 are target MMPs (Liu & Khalil, 2017), 

(Fields, 2019). The REGA3G12 inhibits MMP-9 by affecting the catalytic domain and 

the N-terminal region, rather than the catalytic zinc ion of the fibronectin region (K. 

Li et al., 2020). Additionally, monoclonal antibodies AB0041 (Andecaliximab-GS-

5745 humanized version with clinical trails) and AB0044 also target MMP-9 and have 

demonstrated the ability to inhibit tumor growth and metastasis through pro-MMP-9 

activation and non-completely inhibits MMP-9 activity in colorectal carcinoma 

models. 

 

2.6 Natural Compounds as MMP Inhibitors 

Natural products are an important source of bioactive molecules for developing 

therapeutic applications. In some cases, it becomes approved as a drug (Newman & 

Cragg, 2012). Many numbers of the metabolites and small natural compounds are 

known for the inhibition of MMPs expression including MMP-2 and MMP-9 (Mudit 

& El Sayed, 2016), (Gentile & Liuzzi, 2017), (Eun Lee et al., 2019) including the 

flavonoids and polyphenols. 

 

Kaempferol a polyphenol has anticancer, antidiabetic, anti-inflammatory, antiaging, 

and antiallergic properties (Imran et al., 2019). It prevents the nuclear translocation of 

the AP-1 transcription factor to the MMP-2 promoter, which suppresses the production 

of MMP-2 in human tongue carcinoma (SCC4 cells) and stops propagation and 

invasion (Lin et al., 2013). Thus, reducing cancer development and carcinogenesis 

(Lee et al., 2017). Naringenin has anti-inflammatory and anticancer activity extracted 

from fruits. It reduces the nuclear translocation of NF-κB transcription factor in MMP-

2 and MMP-9 and controls inflammation and cancer metastasis (H. L. Chang et al., 
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2017). Luteolin has been found to inhibit cell proliferation, metastasis, and 

angiogenesis and can sensitize cancer cells to therapeutic-induced cytotoxicity by 

suppressing phosphatidylinositol 3′-kinase (PI3K)/Akt and nuclear factor kappa B 

(NF-κB) and suppresses MMP-2 and MMP-9 expression in A375 human melanoma 

cells (Yao et al., 2019). Myricetin regulates MMP-2 and MMP-9 activity and reduces 

the MMP-2 production and expression in colorectal cancer cells (COLO 205). It 

reduces and inhibits metastasis in breast cancer cells (MDA-Mb-231) by reducing the 

expression of MMP-2 and MMP-9 activity (Ci et al., 2018). it also reduces the growth 

and propagation of lung cancer cells (A549-IR) by reducing MMP-2 and MMP-9 

expression and stops the growth and movement of cancer (Kang et al., 2020).  

 

Research conducted on quercetin flavonoids for its anti-inflammatory and anticancer 

activities which reduce propagation and invasion in human hepatocarcinoma cell lines 

(HCCLM3 cells). It suppresses MMP-2 and MMP-9 expression (Lu et al., 2018) in 

human oral cancer cells (HSC-6 and SCC-9) (Zhao et al., 2019). Genistein has 

antitumor, antibacterial, and antioxidant, properties. It inhibits angiogenesis and tumor 

cell programmed death. Silibinin stops skin cancer and affects metastasis in breast 

cancer by inhibiting the expression of MMP-9 in mice through suppression of the 

MEK/ERK cascade. It protects ECM by the control of MMP-9 expression in thyroid 

and breast cancer cell migration (Kim et al., 2009). Caffeic acid is an active 

transcription inhibitor and MMP-9 activity inhibitor were obtained from a plant 

Euonymus alatus (Kuo et al., 2015). Pterostilbene has antiproliferative, anti-

inflammatory, anticancer, and antioxidant activities similar to Resveratrol, obtained 

from blueberries and other grape varieties (Rimando et al., 2002), (McCormack & 

McFadden, 2012).  

2.7 Clinical Trials Assessing MMP Inhibition in Cancer Therapy 

Matrix metalloproteinase inhibitors (MMPIs) ranged from normal, natural, and 

synthetic chelating agents. Many experiments and clinical trials support that MMPs 

participate in tumor invasion, angiogenesis, and metastasis, thus MMP acts as 

potential targets for cancer therapy. These experimental and therapeutic trials have 

been examined in several experimental models. The results of experiments and trials 

give the possibilities as classes of anticancer drugs.  
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Batimastat (BB-94) - Batimastat is a Hydroxymate (zinc chelator) type of inhibitor 

and explored MMPs (MMP-1, MMP-2, MMP-3, MMP-7, MMP-9 and MMP-13) 

inhibitors as preclinical models (Chirvi et al., 1994). Batimastat inhibits the regrowth 

of human breast cancer (MDA-MB-435) in the mammary fat pads, metastasis of the 

lung (Sledge et al., 1995), growth of colon tumors, organ invasion, and metastasis. 

Batimastat has been tested on ovarian carcinomas, both alone and with traditional 

chemotherapy drugs (BROWN, 1994). Batimastat was the first explored MMP 

inhibitor, tested in an I-phase clinical trial and canceled in a Phase III clinical trial, 

due to low solubility and local toxicity. All the trials were stopped due to some general 

tissue reactions.    

Marimastat (BB-2516) - Marimastat is a low-molecular-weight MMP including 

(MMP-1, MMP-2, MMP-7, and MMP-9) Peptidomimetic inhibitor that, has a similar 

action mechanism as Batimastat, with a 20% to 50 % oral bioavailability. The 

preclinical trial of Marimastat reached phases II and III in pancreatic, lung, breast, 

colorectal, brain, and prostate cancer (Levin et al., 2006), (Rosenbaum et al., 2005).  

Prinomastat (AG 3340) - Prinomastat (AG 3340) is a Nonpeptidomimetic hydroxamic 

acid derivative MMP inhibitor that targets MMP-2, MMP-3, MMP-9, MMP-13, and 

MMP-14 and participates in tumor invasion and metastasis (Shalinsky et al., 1999). 

In advanced prostate cancer patients, the Phase I drug trial of Prinomastat (AG 3340) 

in association with mitoxantrone and prednisone is underway (Hidalgo & Eckhardt, 

2001).  

Rebimastat (BMS-275291) - Rebimastat (BMS-275291) is a broad-spectrum 

sulfhydryl-based mercaptoacyl (zinc chelator) targets MMP-1, MMP-2, MMP-3, 

MMP-8, MMP-9, MMP-13, and MMP -14 in Phase I clinical research studies (Sikic, 

1999). Rebimastat (BMS-275291) strong supress MMP-2 and MMP-9 activity.   

Tetracycline Derivatives- The tetracycline derivatives can hamper the activity by 

binding with zinc and calcium ions of MMP   (J. F. Fisher & Mobashery, 2006). The 

chemically modified tetracycline-like Doxycycline is the only FDA-approved MMP 

inhibitor that targets MMP-7 and MMP-8 (Kivelä-Rajamäki et al., 2003) 

Doxycycline - Doxycycline act as an anticancer agent that can restrict the activity and 

production of several MMPs. It inhibits the secretion and activity of MMP-2 and 
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MMP-9 in MDA-MB-435 cancer cell lines culture. In in-vitro studies, it inhibits the 

growth and development of the U2OS osteosarcoma, PC-3 prostate, and MDA-MB-

435 breast cancer cell lines. it also starts apoptosis and suppresses the invasion and 

metastatic of the MDA-MB-435 breast cancer and B16F10 melanoma cell lines, (Fife 

et al., 1998). In phase I medical studies on cancer patients, oral doses of 400 mg 

administered twice a day resulted consisted of fatigue, confusion, nausea, and 

vomiting as in dose-limiting toxicity (Nanda et al., 2016). 

2.8 Natural MMP inhibition compounds 

Neovastat (AE-941) - Neovastat (AE-941) orally administrated compound, has anti-

angiogenic and anti-metastatic activity, and is isolated from shark cartilage. Many of 

the studies identified his effect on the inhibition of vascular endothelial growth factor 

(VEGF) and enzymatic activity of MMPs (FALARDEAU, 2001). The high-dose 

administration of neovastat in Phase I and Phase II clinical trials shows their survival 

benefit in cancer patients (F. E. Mott et al., 2003). The toxicity effects of neovastat 

are nausea, flatulence, diarrhea, vomiting, constipation, and rash.  

Genistein is an isoflavonoid (polyphenol) that has anti-tumor, anti-inflammatory, and 

anticancer activity. It inhibits the activity of MMPs (MMP-2 and MMP-9) and tumor 

growth (X. Huang et al., 2005). In the case of breast and prostate cancers, there are 

several studies explaining that genistein has expressed a lower risk of cancer 

development and cancer patient death (Gu et al., 2005). 

2.9  Conclusion 

The creation of MMP inhibitors has number of challenges, like issues of selectivity, 

toxicity, lack of efficacy, pharmacokinetics, and biomarker identification. MMPs may 

have overlaying substrates and biological functions, thus inhibiting one MMP may not 

fully block the pathological process. This redundancy can reduce the potency of MMP 

inhibitors as therapeutic agents, in diseases like cancer, where multiple MMPs are 

involved in tumor progression and metastasis. Clinical trials of early MMP inhibitors, 

such as Marimastat, showed promising results. Advanced drug designing, targeted 

delivery systems, and biomarker discovery may eventually overcome these challenges 

and limitations, leading to more effective MMP-based therapies. 
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CHAPTER – 3 

Synergistic Structural Inhibition of MMP-9 by Natural 

Flavonoids: A Natural Combinatorial Therapy against Cancer 

3.1 Introduction 

Cancers are a group of diseases connected with uncontrolled growth and rapid rise 

of unusual cells in the body. According to the W.H.O in 2022, there were an 

estimated 200 lakhs registered cancer and around 97 lakhs deaths due to cancer. 

Within in last five years, about a total of 53.5 million people received a cancer 

diagnosis. Globally, about 1 in 5 people develop cancer and approximately 1 in 9 

men and 1 in 12 women die from the disease. Among cancers, the most widespread 

are lung cancer, breast cancer, and colorectum cancer. Lung cancer is a common 

death cause in men while in women, breast cancer is the most common cancer 

type (https://www. who.int/). 

As per, National Cancer Registry Programme Report 2022, India, there were 

approximately 14,61,427 cancer cases, at the rate of 100.4 per 100,000. However, 

in children of age between 0 to 14 years, the most common cancer is lymphoid 

leukemia. In 2022, India recorded 1.4 million new cancer cases and 900,000 

deaths due to cancers. Further, breast and cervix cancers were the most common 

female cancers accounting for 27% and 18% of new cases, respectively. Among 

males, lip and oral cavity cancers and lung cancers were the leading types, making 

up 15.6% and 8.5% of new cases, respectively (Sathishkumar et al., 2022). The 

WHO predicts a significant increase in new cancer cases, with a projected surge 

of 77% to over 35 million by 2050 (https://www.who.int/). This increase is 

attributed to lifestyle factors such as tobacco and alcohol use, obesity, population 

aging, and growth. 

Matrix metalloproteinase-9 (MMP-9) is a Gelatinase B enzyme (Mondal et al., 

2020). It is mainly secreted in the cerebellum, hippocampus, and cerebral cortex 

(Xiao et al., 2024a). The synthesis and secretion of MMP-9 occur in the form of 

inactive enzymes or as zymogens by endothelial cells, neutrophils, fibroblasts, and 

macrophages (Rashid & Bardaweel, 2023). At the time of granulocyte 

http://www/
http://www.who.int/)
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differentiation, the bone marrow is the main site of its synthesis (Mondal et al., 

2020). MMP-9 is connected with ECM degradation, tissue remodeling, and nor- 

mal tissue turnover. The proteolytic activity of MMP-9 is in- volved in the 

alternation of cell-cell and cell-ECM interaction (Hsu et al., 2016). MMP-9 

performs remodeling the basement membrane which is made by collagen type IV. 

Overexpression of MMP-9 has contributed to the progression of many diseases 

such as extracranial arteriovenous mal- formation (AVMs) (Rashid & Bardaweel, 

2023), neurological diseases, and inflammatory processes [(Vafadari et al., 2016), 

(Hannocks et al., 2019), and cancers (H. Huang, 2018), (Li et al., 2017),(Akter et 

al., 2015). Enhanced expression of MMP-9 has been identified by various studies 

as a critical element in tumor development and progression (H. Huang, 2018), (Li 

et al., 2017),(Akter et al., 2015), (Amin et al., 2017). Tumor cells activate the 

neighboring cells that increase the production of MMPs by increasing the 

secretion of interferons, interleukins, and growth factors (Jabłońska-Trypuć et al., 

2016). As a result, overexpression of MMP9 in cancer conditions results in 

basement mem- brane destruction (Hou et al., 2014), (Misko et al., 2002) and 

hence promotes tumor invasion, metastasis, angiogenesis, and intervening tumor 

microenvironment (Akter et al., 2015). 

A past study showed that the MMP-9 polymorphism plays a essential role in 

breast cancer and also helps in the identification of individuals with high risk 

(Rashid & Bardaweel, 2023). In colon cancer, overexpression of avb6 integrin was 

found, that increases MMP-9 secretion, followed by protein-kinase pathway 

activation (Niu et al., 1998). VEGF stimulates the expression of MMP-9 in lung 

cancer, which contributes to enhanced metastatic potential (Hiratsuka et al., 2002). 

The suppression of MMP-9 by matrix metalloproteinase inhibitors (MMPIs) at the 

catalytic site can ameliorate the dreaded consequences of MMP9 over- expression 

(Amin et al., 2017). Inhibition of MMP9 suppresses cell proliferation by inducing 

apoptosis through the release of ligands, such as TNFa and TRAIL (Tumor 

necrosis factor-related apoptosis-inducing ligand), from their membrane-bound in- 

active form (Nyormoi et al., 2003). 

Therefore, overexpression of MMP-9 has a strong association with a wide range of 

cancers and their progression, so MMP-9 can be considered as a potential target to 
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develop effective therapies against cancer. 

Flavonoids, is a polyphenolic compound widely distributed in fruits, vegetables, 

and herbs, have antioxidant and anti-inflammatory properties, their potential to 

support health, and their relatively low toxicity. Several studies have been done to 

evaluate the structural inhibition potential of flavonoids against different targets of 

cancers.  

Rathod et al. in their in-silico investigation of natural anti-cancer agents, identified 

Gancaonin Q as a potential anticancer agent (Rathod et al., 2023). Rajiv Gandhi et 

al. identified chlorogenic acid as an effective inhibitor of MMP-9 (Rajiv Gandhi 

et al., 2024). Kumari & Kumar, in their study on glioblastomas identified 7,4′-

dihydroxyflavan, 4′-hydroxy-7-methoxyflavan, and (3R)-3-(4-hydroxybenzyl)-6-

hydroxy-8-methoxy-3,4-di- hydro-2H-1-benzopyran flavonoids as significant 

inhibitors of MMP-9 (Kumari & Kumar, 2023). Synergistic effects of drug 

combinations have been observed to display more effective inhibition in several 

infectious diseases against the target proteins but few studies on the utilization of 

a synergistic combination of flavonoids have been conducted against cancer (De 

Forni et al., 2022), (Gupta et al., 2022), (Wiraswati et al., 2024), (Ajji et al., 2020) 

3.2 Methodology 

3.2.1 ADMET Analysis 
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Flavonoids like Apigenin, Chrysin, Luteolin, Hesperetin, Naringenin, Taxifolin, 

Quercetin, Catechin, Cyanidin, Peonidin, Genistein, and Thymohydroquinone 

(Table 2) were selected based on previous literature and their low toxicity profiles 

for investigating their potential against cancer. The structures of the selected 

Flavonoids were drawn, using ChemDraw Ultra Version 12.0 for the 

stereochemistry, and converted into SMILES format. To evaluate the 

physiochemical properties, toxicity, and bioactivity of the considered 

compounds Swiss ADME  (Daina et al., 2017), ProTox II (Banerjee et al., 2018), 

and Molinspiration (https://www.molinspiration.com/) web servers were used 

respectively. Further, to validate the ADME properties ADMElab3.0 

(https://admetlab3.scbdd.- com/server/evaluationCal) server was used. 

The comparative analysis is completed by a chord diagram for their different 

properties using the Origin 2023b academic version (https://www.originlab.com/). 

G H I 

J K L 

Fig. 2: - 3D View Flavonoids: (A) Apigenin, (B) Chrysin, (C) Luteolin, (D) 

Hesperetin, (E) Naringenin, (F) Taxifolin, (G) Quercetin, (H) Catechin, (I) 

Cyanidin, (J) Peonidin, (K) Genistein, (L) Thymohydroquinone 

http://www.molinspiration.com/)
http://www.originlab.com/)
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Table 2: - Chemical structure and PubChem CID of selected Flavonoids. 

S. No. Compound 

Name 

PubChe

m CID 

 

Chemical Structure 

1 Apigenin 5280443 

 
2 Chrysin 5281607 

 
3 Luteolin 5280445 

 
4 Hesperetin  72281 

 
5 Naringenin 439246 
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6 Taxifolin 439533 

 
7 Quercetin 5280343 

 
8 Catechin 73160 

 
9 Cyanidin 128861 

 
10 Peonidin 441773 
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11 Genistein 5280961 

 
12 Thymohydroquinone 95779 

 

 

3.2.2 Principal Component Analysis (PCA) 

The Principal Component Analysis (PCA) is used for the analysis of the correlation 

between the physiochemical, bioactivity, and toxicity properties (including Heavy 

Atom, Atom Number, Aromatic Atoms, Mol. Wt., Log P, H-Donor, H-Acceptor, 

Rotatable Bonds, Molar Refractivity, TPSA, Formal charge, Rings, Toxicity class, 

GPCR ligand, Ion channel modulator, Kinase Inhibitor, Nuclear Receptor Ligand, 

Protease Inhibitor, Enzyme Inhibitor) of the considered flavonoids by using the 

Minitab trial version 2021. 

3.2.3 Molecular Docking 

The 3D structure (Fig. 3) coordinate file of the MMP-9 (PDB ID-6ESM) was 

procured from the Protein Data Bank (RCSB). The 3 dimensional structures of all 

considered flavonoids were generated through an online smile translator tool 

(https://cactus.n- ci.nih.gov/translate/). To explore the synergistic effect of 

flavonoids both single ligands and combinations of ligands were docked at the 

active site of MMP-9. For combination docking, both ligands in each combination 

were docked simultaneously by preparing different ligand combinations in 

respective files (Raghavendra et al., 2015). The addition of Kollman charges to 

the protein structure were -20.664 atomic units. The used grid size for the docking 

had grid center: X = -2.6087, Y = 49.4802, Z = 17.5705; grid size: X = 15.545, 

Y= 16.283, Z= 22.504, and grid spacing of 0.375. Docking was performed using 
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the Lamarckian genetic algorithm, with a population size set to 150, the number 

of evaluations as 25,00000, and the number of generations were 27,000. The rate 

of crossover and gene mutation were 0.8 and 0.02 respectively. The binding 

energies of individual ligand docking were compared with the docking of 

combinations of ligands and the best combinations which showed favorably high 

negative binding energy compared to their counterparts were considered the most 

effective synergistic flavonoid combinations that can effectively mediate 

structural inhibition of MMP-9. To further validate the binding energies and 

interactions, all the compounds were docked 100 times each individually. The 

combination dockings of all flavonoids were then performed with the number of 

iterations as 10 and then the obtained two best combinations of flavonoids were 

docked 100 times independently in a site-specific manner. Average values and 

standard deviations of binding energies of 100 independent dockings of all ligands 

individually and the two best combinations were analyzed and the most 

consistent interactions with high negative binding energies were considered. 

                    

 

Fig. 3: Molecular View of MMP-9 (PDBID-6ESM) 

3.3 Results 

The present study deals with the analysis of natural flavonoids that can potentially 

inhibit MMP-9, a lead target for treating the adverse pathologies of cancer. The 

present study initially analyzed the physiochemical, bioactivity, and toxicity 
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properties of the flavonoids. Along with this their MMP-9 inhibition potential both 

individually and in combi- nations was studied using a molecular docking 

approach. All 12 selected flavonoids including Apigenin, Chrysin, Luteolin, 

Hesperetin, Naringenin, Taxifolin, Quercetin, Catechin, Cyanidin, Peonidin, 

Genistein, and Thymohydroquinone were docked individually and in 

combinations of two against MMP-9 (PDB ID-6ESM) to find the synergistic 

inhibition of the considered target of cancer. 

3.3.1 ADMET Analysis 

The ADMET examination of the considered 12 flavonoids (Apigenin, Chrysin, 

Luteolin, Hesperetin, Naringenin, Taxifolin, Quercetin, Catechin, Cyanidin, 

Peonidin, Genistein, and Thymohydroquinone) by using different tools gave 

consistent results and determined the effective physiochemical properties, toxicity 

values, and bioactive properties of the flavonoids. All the compounds followed 

Lipinski’s rule of 5 (Lipinski et al., 2001) with no violation thus displaying high 

drug-likeness of the flavonoids in concern. The LD50 values of all the compounds 

ranged in toxicity class 3 to 5 with most of the compounds lying in class 5 thus 

proving the least toxicity (Table 3 & 4, Fig. 4). The bioactivity scores showed 

negative scores for the maximum number of the flavonoids for GPCR ligands, ion 

channel modulators, protease inhibitors, and kinase inhibitors proving the least off 

target inhibition by these com- pounds. 

3.3.2 PCA Analysis 

Principal component analysis was performed to identify the correlation between 

the physiochemical, bioactivity, and toxicity properties of the flavonoids. The first 

two components defined the maximum variance (61.2% for the first component 

and 14.5% for the second component) among the observations for the considered 

variables or properties. Cumulatively the first two components define 75.6% of the 

variance (Fig. 5). The scree plot displays the eigenvalues of the correlation of 

different components and thus displays the amount of explained variance defined 

by each component (Fig. 5). The score plot indicates that the catechins and 

taxifolin have similar properties compared to others. Luteolin has similar 

physiochemical and bioactive properties to that of quercetin (Fig. 5).



 

Table 3: - ADMET properties of selected Flavonoids were analysed by using Swiss ADMET. 

S. 

No. 

 

Molecule 
Heavy 

Atom 

Atom 

Number 

Aromatic 

Atoms 

Mol. Wt. Log P  

H-

Donor 

 

H-

Acceptor 

Rotatable 

Bonds 

Molar 

Refract

ivity 

 

TPSA 
Form

al 

Char

ge 

 

Rings 

Lipinski 

Rule 

violatio

n 

Ghose 

vi- 

olation 

Veber 

violation 

Rule 

of 3 

violati

on 

Reos 

violation 

LD50 

(mg/ 

Kg) 

1 Apigenin 20 20 16 270.053 2.577 3 5 1 72.914 90.9 0 3 0 0 0 1 0 2500 

2 Chrysin 19 19 16 254.058 2.871 2 4 1 71.25 70.67 0 3 0 0 0 1 0 3919 

3 Luteolin 21 21 16 286.048 2.282 4 6 1 74.579 111.13 0 3 0 0 0 1 0 3919 

4 Hesperetin 22 22 12 302.079 2.519 3 6 2 76.747 96.22 0 3 0 0 0 2 0 2000 

5 Naringenin 20 20 12 272.068 2.51 3 5 1 70.195 86.99 0 3 0 0 0 1 0 2000 

6 Taxifolin 22 22 12 304.058 1.186 5 7 1 73.249 127.45 0 3 0 0 0 2 1 2000 

7 Quercetin 22 22 16 302.043 1.988 5 7 1 76.244 131.36 0 3 0 0 0 2 1 159 

8 Catechin 21 21 12 290.079 1.546 5 6 1 72.623 110.38 0 3 0 0 0 1 1 10000 

9 Cyanidin 21 21 16 287.055 2.909 5 5 1 74.381 112.45 1 3 0 0 0 1 1 5000 

10 Peonidin 22 22 16 301.071 3.212 4 5 2 79.268 101.45 1 3 0 0 0 2 0 5000 

11 Genistein 20 20 16 270.053 2.577 3 5 1 72.914 90.6 0 3 0 0 0 1 0 2500 

12 Thymohydroq

uinone 

12 12 6 166.099 2.53 2 2 1 48.598 40.46 0 1 0 0 0 0 2 1000 
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Table 4: - Bioactivity scores of the selected Flavonoids estimated by the 

Molinspiration online server.  

S. 

No. 

Molecule GPCR 

ligand 

Ion 

channel 

modulator 

Kinase 

Inhibitor 

Nuclear 

Receptor 

Ligand 

Protease 

Inhibitor 

Enzyme 

Inhibitor 

1 Apigenin -0.07 -0.09 0.18 0.34 -0.25 0.26 

 

2 Chrysin -0.12 -0.18 0.19 0.17 -0.35 0.26 

 

3 Luteolin -0.02 -0.07 0.26 0.39 -0.22 0.28 

 

4 Hesperetin 0.04 -0.26 -0.20 0.38 -0.13 0.16 

 

5 Naringenin 0.03 -0.20 -0.26 0.42 -0.12 0.21 

 

6 Taxifolin 0.09 0.03 -0.04 0.29 0.05 0.29 

 

7 Quercetin -0.06 -0.19 0.28 0.36 -0.25 0.28 

 

8 Catechin 0.41 0.14 0.09 0.60 0.26 0.47 

 

9 Cyanidin -0.13 -0.09 0.02 0.09 -0.30 0.01 

 

10 Peonidin -0.16 -0.18 0.01 0.03 -0.34 -0.04 

 

11 Genistein -0.22 -0.54 -0.06 0.23 -0.68 0.13 

 

12 Thymohydroquinone -0.92 -0.44 -1.06 -0.54 -1.17 -0.46 

 

 

The biplot contains the information from both the loading plot and the score plot. It 

shows the bioactivity properties of the components. while most of the physiochemical 

properties mostly have positive coefficients for the first component but less positive or 

negative coefficients for the second component (Fig. 5). 

3.3.3 Molecular Docking 

The docking studies of individual flavonoids with MMP-9 exhibited that luteolin has 

the highest negative binding energy (-10.04 kcal/mol) followed by apigenin (-9.674 

kcal/mol) with MMP-9, (Table 5). The formation of hydrogen bond defines effective 

interactions indicated that the majority of the flavonoids formed hydrogen bonds with 

MMP-9 at the active site residues. Results indicated that luteolin, quercetin, and 

catechin established four hydrogen bonds, apigenin, naringenin, taxifolin, cyanidin, 

and genistein formed three hydrogen bonds, hesperetin, and peonidin resulted in two 

hydrogen bonds with the active site of the target protein. (Table 5 and Figs. 7). The 

residues of AAs that established hydrogen bonds with the selected ligands are 



Chapter – 3       Synergistic Structural Inhibition of MMP – 9 by Natural Flavonoids 

 

 
 
 
 

34 

 

GLN227, ALA189, LEU188, PRO240, ALA242, VAL223, MET247, ARG249, 

PRO246, but TYR245 amino acid residue formed a hydrogen bond with 

thymohydroquinone and genistein. The binding energies of all the flavonoids ranged 

from -10.04 kcal/mol for luteolin to -7.166 for naringenin and the inhibition constants 

(Ki) ranged from 0.0437 to 5.5884μM (Table 5). Thus, most of these flavonoids 

possess the potential to inhibit MMP-9, which has an important role in cancers. 

   

 

Fig. 4: - Chord diagram showing distribution of different physiochemical, 

bioactivity and toxicity properties of selected 12 flavonoids. 
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Eigen analysis of the Correlation Matrix 

Eigenvalue 11.619 2.748 1.574 1.408 1.036 0.338 0.163 0.074 0.036 0.003 0.000 

 

Proportion 0.612 0.145 0.083 0.074 0.055 0.018 0.009 0.004 0.002 0.000 0.000 

 

Cumulative 0.612 0.756 0.839 0.913 0.968 0.985 0.994 0.998 1.000 1.000 1.000 

 

Eigenvalue 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 -0.000    

 

Proportion 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 -0.000    

 
Cumulative 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000    

 

Fig. 5: - PCA analysis of physiochemical, bioactivity and toxicity properties of the 
12 considered flavonoids showing A) Scree plots, B) Score plot, C) Loading plot and 
D) Biplot.  
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Table. 5: - Amino acids interaction, Hydrogen bond formation, and Binding 

energies of MMP-9 (6ESM) – with selected Flavonoids. 

S. 

No. 

Ligands with 

6ESM 

Amino acids 

interaction 

Hydrogen 

bond 

formation 

with Amino 

acid 

Hydrogen 

bond  

length 

Binding 

energies 

(kcal/mol) 

Ki 

(μM) 

1 Apigenin LEU243(A), 

ARG249(A), 

HIS226(A), 

LEU222(A), 

GLN227(A, 

VAL223(A), 

ALA189(A), 

GLY186(A), 

LEU188(A), 

PRO246(A), 

TYR248(A), 

MET247(A) 

GLN227(A)

ALA189(A), 

LEU188(A) 

2.70 

2.96,  

2.90 

2.98 

-9.674 0.0811 

2 Chrysin VAL223(A), 

TYR248(A), 

LEU222(A), 

LEU243(A), 

THR251(A), 

ALA242(A), 

GLU241(A), 

PRO240(A), 

ARG249(A), 

TYR245(A), 

MET247(A), 

HIS226(A), 

GLN227(A), 

PRO246(A) 

PRO240(A) 2.71 -9.45 0.1183 

3 Luteolin LEU188(A), 

VAL223(A), 

ALA189(A), 

GLN227(A, 

LEU222(A), 

ARG249(A), 

ALA242(A), 

MET247(A), 

LEU243(A), 

HIS226(A), 

TYR248(A), 

TYR245(A), 

PRO246(A) 

LEU188(A), 

ALA189(A), 

GLN227(A)

ALA242(A) 

3.11 

2.95,  

2.96 

2.79 

3.11 

-10.04 0.0437 

4 Hesperetin GLY186(A), 

ALA189(A), 

LEU188(A), 

VAL223(A), 

LEU222(A), 

GLN227(A, 

ARG249(A), 

LEU243(A), 

MET247(A), 

TYR248(A), 

TYR245(A), 

ALA189(A), 

GLN227(A) 

2.90,  

2.97 

2.71 

-8.23 0.9276 
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HIS226(A), 

PRO246(A), 

5 Naringenin ARG249(A), 

MET247(A), 

LEU222(A), 

GLN227(A, 

VAL223(A), 

ALA189(A), 

LEU187(A), 

LEU188(A), 

GLY186(A), 

PRO246(A), 

HIS226(A), 

TYR248(A), 

TYR245(A), 

LEU243(A) 

GLN227(A)

ALA189(A), 

LEU188(A) 

2.75 

2.88,  

3.10 

2.80 

-7.166 5.5884 

6 Taxifolin LEU243(A), 

MET247(A), 

TYR248(A), 

LEU222(A), 

GLN227(A, 

VAL223(A), 

LEU188(A), 

LEU187(A), 

ALA189(A), 

GLY186(A), 

PRO246(A), 

TYR245(A), 

HIS226(A) 

GLN227(A)

, 

LEU188(A), 

ALA189(A) 

3.21,  

2.62 

2.69 

3.02 

-7.412 3.6895 

7 Quercetin TYR245(A), 

LEU243(A), 

LEU222(A), 

HIS226(A), 

PRO246(A), 

GLY186(A), 

LEU187(A), 

ALA189(A), 

LEU188(A), 

GLN227(A, 

MET247(A), 

TYR248(A), 

VAL223(A), 

ALA189(A), 

ALA189(A), 

LEU188(A), 

GLN227(A) 

3.12 

2.93 

2.69 

3.21,  

2.65 

-7.965 1.4508 

8 Catechin LEU243(A), 

LEU222(A), 

TYR245(A), 

VAL223(A), 

HIS226(A), 

GLN227(A), 

ALA189(A), 

LEU188(A), 

LEU187(A), 

PRO246(A), 

GLY186(A), 

TYR248(A), 

MET247(A, 

ARG249(A) 

VAL223(A), 

ALA189(A), 

LEU188(A), 

MET247(A) 

3.19 

2.87,  

3.11 

2.80 

3.13 

-7.348 

 

 

 

4.1103 
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9 Cyanidin GLN227(A), 

VAL223(A), 

LEU188(A), 

TYR248(A), 

LEU222(A), 

GLU241(A), 

LEU243(A), 

THR251(A), 

TYR245(A), 

MET247(A), 

ALA242(A), 

PRO240(A), 

ARG249(A, 

PRO246(A), 

HIS226(A) 

PRO240(A), 

ARG249(A)

PRO246(A) 

2.90 

3.06 

2.70 

-9.601 0.0917 

10 Peonidin ARG249(A, 

TYR245(A), 

PRO240(A), 

GLU241(A), 

PRO246(A), 

HIS226(A), 

HIS236(A), 

MET247(A), 

GLN227(A), 

VAL223(A), 

LEU222(A), 

TYR248(A), 

THR251(A), 

LEU243(A), 

ALA242(A) 

ARG249(A)

PRO240(A) 

3.22 

2.82 

-9.11 0.2101 

11 Genistein GLN227(A), 

ALA189(A), 

VAL223(A), 

TYR248(A), 

HIS226(A), 

LEU222(A), 

THR251(A), 

ARG249(A), 

LEU243(A), 

ALA242(A), 

TYR245(A), 

MET247(A), 

LEU188(A) 

ALA189(A), 

TYR245(A), 

LEU188(A) 

3.33 

2.80 

3.20 

-9.54 0.1017 

12 Thymohydroquinone LEU222(A), 

TYR248(A), 

ARG249(A) 

ALA242(A) 

LEU243(A) 

TYR245(A) 

MET244(A) 

MET247(A) 

HIS226(A) 

VAL223(A) 

PRO246(A) 

LEU188(A) 

GLN227(A) 

TYR245(A) 3.06 -7.5 8.2113 
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Fig.6: - 3D Molecular docking conformations of MMP-9 (6ESM) with 

Flavonoids: (A) Apigenin, (B) Chrysin, (C)   Luteolin, (D) Hesperetin, (E) 

Naringenin, (F) Taxifolin, (G) Quercetin, (H) Catechin, (I) Cyanidin, (J) 

Peonidin, (K) Genistein and (L) Thymohydroquinone. 

K 
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Fig.7: - 2D-Molecular docking surface view between MMP-9 (6ESM) and 

selected flavonoids: (A) Apigenin, (B) Chrysin, (C) Luteolin, (D) Hesperetin, (E) 

Naringenin, (F) Taxifolin, (G) Quercetin, (H) Catechin, (I) Cyanidin, (J) 

Peonidin, (K) Genistein and (L) Thymohydroquinone. 

 

K 
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3.3.4 Molecular Docking of Combinations of Flavonoids 

The top 10 compounds that showed the best binding energies in individual ligand 

docking were considered for combination dockings to study their synergistic inhibition 

effect against MMP-9. All the combination docking conformations showed 

significantly high binding energies compared to the individual dockings. The two best 

combinations (Quercetin- Genistein and Luteolin and Genistein) that interacted with 

the active site residues were docked 100 times independently and the highest value, 

average values, and standard deviations of the binding energies are presented in (Table 

6). The highest binding energy of quercetin and genistein was -15.48 kcal/mol and 

luteolin and genistein was -15.31 kcal/- mol for MMP-9. The 2D and 3D docking 

conformations of the two combinations in (Fig. 8). Both the combinations of flavonoids 

makes many hydrogen bonds with LEU188, ALA189, HIS226, HIS230, ASP235, 

TYR245, PRO246, and MET247 revealing effective inhibition of MM- P-9 

synergistically. 

Table 6: -Molecular docking binding energies and amino acids interaction of 

the two best combinations of flavonoids with MMP-9 (6ESM). 

 

 

 

 

 

 

Fig. 8: - 3D Molecular docking conformations of MMP-9 (6ESM) with a 

combination of (A) Quercetin and Genistein and (B) Luteolin and Genistein 

Flavonoid 

Combination 

with 6ESM 

Amino Acids Interaction Amino acid with 

hydrogen bond 

interaction 

Highest 

Binding 

Energy 

(Kcal/mol) 

Quercetin-

Genistein 

HIS230, GLN227, PHE181, ALA189, 

LEU187, PRO180, TYR179, HIS190, 

HIS236, MET247, PRO246, HIS226  

ALA189, 

PRO180, PRO246 

-15.48 

Luteolin and 

Genistein 

PHE192, ALA191, HIS236, HIS230, 

HIS190, HIS226, GLN227, ALA189, 

LEU188. ASP235, PRO193,  

ASP235, 

ALA191, 

ALA189 

-15.31 
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3.4 Conclusion 

The present combination analysis of flavonoids for structural inhibition of MMP-9 

provided quercetin and luteolin in combination with genistein identified as the potent 

flavonoid combinations. The PCA investigation of the physiochemical and bioactive 

properties of flavonoids in turn depicted similarity in physio chemical and biological 

properties of quercetin and luteolin. Genistein showed a significant binding energy of 

-9.54 kcal/ mol in individual docking and in combinations with quercetin and luteolin 

showed highly efficient binding energy values of greater than -15 kcal/mol revealing 

the synergistic effect of the combinations of flavonoids. In both combinations, the 

binding orientation of genistein was at the same position displaying its high affinity 

binding at the respective site containing LEU188, ALA189, HIS226, TYR245, 

PRO246, and MET247.  
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CHAPTER – 4 

In-Silico Combinatorial inhibition effects analysis of NSAIDs 

against MMP-9 for the treatment of cancer  

4.1 Introduction 

Cancer refers unusual division and growth of body cells with the capability to 

proliferate to distant parts of the body. It is the second major cause of death worldwide. 

The International Agency for Research on Cancer gave a detailed report on global 

cancer occurrence and death based on GLOBOCAN (Global Cancer Observatory) 

2020 data. According to report about 19.3 million fresh cancer cases identified, and 

about 10.0 million cancer patients died worldwide in the year 2020. Approximately 

2.3 million (11.7 %) new breast cancer cases and 2.2 million (11.4 %) new lung cancer 

cases were identified in the year 2020.  Also, an increase to 28.4 million cancer 

patients by the year 2040 has been proposed (Sung et al., 2021) 

According to the National Cancer Registry Programme (NCRP) Report 2022, India's 

estimated breast cancer occurrence and prevalence rate was 105.4 per 100000 in 

females, and the lung cancer rate was 95.6 per 100000 in males. The occurrence of 

cancer cases in India is known to increase by 12.8 % from the year 2022 to 2025. The 

Global Cancer Observatory forecasted 2.08 million cancer cases, indicating a rise of 

57.5 % from the year 2020 to 2040 for India. The most common body parts prone to 

cancer are the digestive system, breast, genitals, oral cavity, and respiratory system. 

Lung cancer is most prominent in males, while breast cancer is in females. 

Matrix metalloproteinase 9 (MMP-9) is a component of the family of Gelatinase B, 

and it is capable of degrading gelatin.  It is normally present in the cerebellum, 

hippocampus, and cerebral cortex (Xiao et al., 2024). The bone marrow is the main 

site for the synthesis of MMP-9, which is then stored in neutrophils. Further, 

macrophages are also a dominant originator of MMP-9 (Y. Wang et al., 2024). 

Upregulation of MMP-9 has promoted the progression of many diseases, such as 

emphysema in Smad3-null mice. MMP9 overexpression also enhances the 

invasiveness of the LNCaP cell line of prostate tumor.  
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MMP-9 (Gelatinase B) has been reported to promote cancers. In lung cancer, MMP-9 

is induced by Skp2, a constituent of the E3 ubiquitin ligase. Skp2 has significant 

function in the induction of p27 degradation; thus, overexpression of Skp2 may cause 

an increase in p27 proteolysis and encourage cell and tumor invasion and metastasis 

(Hung et al., 2010). In breast cancer, the overexpression of MMP-9 relates to the 

expression of transcription factor activator proteins AP-2 and HER2. The 

overexpression of HER2 and AP-2 is responsible for MMP induction and gelatinase 

regulation (Pellikainen et al., 2004). Overexpression of MMP-9, therefore, has a 

strong connection with the extensive range of cancers and their progression, so MMP-

9 can be considered as a potential target to develop effective therapies against cancer. 

Nonsteroidal anti-inflammatory drugs are frequently used drugs for the treatment of 

pain, fever, stiffness, and inflammation. Globally, over 300 lakhs people use NSAID 

per day. Asprin has been used for the last 120 years and is considered the procreator 

of all NSAIDs. Based on chemical structures, COX inhibitory properties, and 

selectivity, the NSAIDs are classified as non-selective and selective NSAIDs. The 

non-selective NSAIDs include NSAIDs-carboxylic acid (Asprin, Naproxen, 

Diclofenac, Ibuprofen, Indomethacin, Ketoprofen, and Flurbiprofen), Oxicams 

(Piroxicam), preferential COX-2 inhibitors-Carboxamides (Meloxicam), 

Sulphonanilides (Nimesulide), and Naphthalenes (Nabumetone), while the selective 

COX-2 inhibitors include diaryl-substituted Pyrazoles/Furanones (Celecoxib, 

Rofecoxib, Valdecoxib) (Ozleyen et al., 2023). The major mode of action of NSAIDs 

is inhibition of cyclooxygenase (COX-1 and COX-2) 

Wang et al., 2020, studied that flurbiprofen inhibits inflammatory factor expression, 

multiplication, invasion, and migration of colorectal cancer cells by suppressing the 

expression of COX2 and MMP-9. The inflammatory factor inhibition is measured by 

TNF-α, IL-β, and IL-6 levels through ELISA. These factors are decreased in 

flurbiprofen-treated cells. Moreover, multiplication, invasion, and migration were 

measured by transwell and wound healing assay with SW620 cells. The western 

blotting method showed the inhibited expression of MMP-9 in the samples treated 

with Flurbiprofen (X. Wang et al., 2020). Prasad et al., 2024 studied the protective 

effects of NSAIDs (Aspirin and Naproxen) in TMPSS2-ERG fusion-driven prostrate 

tumorigenesis as inhibitory effects in proliferation and inflammation. The effect of 
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NSAIDs was concerned with the inhibited expression of M-CSF, IL-33, CCL22, 

CCL12, and CD93, which are tumor-promoting factors; chemerin, Fit-3 ligand, and 

IGFBP-5, which are growth signaling molecules, and MMP-9, which are stromal 

alternation proteins (Prasad et al., 2024). Syggelos et al., 2007 investigated the 

inhibitory effects of NSAIDs on both MMP-2 and MMP-9 by gelatin zymography 

(Syggelos et al., 2007). Fisher & Demel, 2019 discussed NSAIDs as potential 

therapeutic agents in overcoming inflammation in intracranial aneurysms (IA) 

progression. They effectively suppress many inflammatory factors, including nuclear 

factor-kB and MMPs (MMP-9) which are involved in IA. Various studies have been 

focused on the downregulation of MMP-9 through NSAIDs for treating cancer and 

other inflammatory responses (Fisher & Demel, 2019).  

Therefore, the effective role of MMP-9 in the development and progression of 

carcinogenic conditions and the efficient anti-inflammatory properties of the Non-

Steroidal Anti-inflammatory drugs (NSAIDs), provide a foundation to the present 

study for the identification of potential NSAID combinations that display synergistic 

effects and can inhibit the MMP-9 structurally, using an in-silico approach, to provide 

a high potential treatment against cancers.   

4.2 Methodology 

4.2.1 ADMET Analysis and Principal Component Analysis (PCA)  

Previous studies and anti-inflammatory properties of non-steroidal anti-inflammatory 

drugs (NSAIDs) focused on the selection of Diflunisal, Fenoprofen, Flurbiprofen, 

Ketoprofen, Ketorolac, Nabumetone, Naproxen, Oxaprozin, Piroxicam, and 

Celecoxib (Table 7 and Fig 9) for identification of their possibilities as MMP-9 

inhibitor. The structures of the all 10 selected NSAIDs were drawn, using ChemDraw 

Ultra Version 12.0 for the stereochemistry, and converted into SMILES format. The 

physiochemical properties of these NSAIDs were evaluated using SwissADME 

(Daina et al., 2017).  

The analysis of toxicity was performed using Pro Tox II while the bioactivity was 

analyzed in-silico by Molinspiration (https://www.molinspiration.com/)  web servers 

https://www.molinspiration.com/
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respectively (Banerjee et al., 2018). The Origin 2023b was used for generating a chord 

diagram for comparison of different NSAID properties.  

The Minitab trial version 2021 was utilized for conducting the PCA which evaluates 

the connection between the bioactivity, physiochemical properties, and toxicity of the 

selected NSAIDs. 
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Fig. 9: - 3D View NSAIDs: (A) Celecoxib, (B) Diflunisal, (C) Fenoprofen, (D) 

Flurbiproxen, (E) Ketoprofen, (F) Ketorolac, (G) Nabumetone, (H) Naproxen, 

(I) Oxaprozin, (J) Piroxicam 

 

4.2.2 Molecular Docking 

The crystal structure of MMP-9 was downloaded from RCSB-PDB, which had PDB 

ID 6ESM. The structures of selected non-steroidal anti-inflammatory drugs (NSAIDs) 

in 3D-conformations were generated by online smile translator tool 

(https://cactus.nci.nih.gov/translate/). Molecular docking was performed by 

G H 

I J 

https://cactus.nci.nih.gov/translate/
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AutoDock Tools 1.5.6 (https://autodock.scripps.edu/), individually and in 

combinations at the active site having coordination of 3 histidine (His 226, His 230, 

His 236, and Zn. For combination docking, two NSAIDs were considered together in 

pdbqt format to perform docking. The Kollman charges of -75.265 atomic units were 

added to the MMP-9. The grid size X = 12.165, Y= 15.184, Z= 18.128, grid center: X 

= 1.582, Y = 50.36, Z = 19.54; and grid spacing of 0.33 Å was used for docking. The 

population size =150, the number of evaluations =25,00000, and the number of 

generations =27,000 were used in the Lamarckian Genetic Algorithm in docking. The 

crossover and gene mutation rates were 0.8 and 0.02 respectively. The docking 

binding energies and docking interactions of both individual and combination 

dockings were analyzed to study the individual and synergistic effect of molecules 

and the images of best conformations were generated using PyMol 

(https://www.pymol.org/). 

Table 7: - Chemical structure and Pub Chem CID of considered NSAIDs. 

 

S. No. NSAIDs Name Pub 

Chem 

CID 

Chemical Structure 

1 

CELECOXIB 2662  
2 

DIFLUNISAL 3059  

https://www.pymol.org/
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3 

FENOPROFEN 3342  
4 

FLURBIPROFEN 3394 
 

5 

KETOPROFEN 3825  
6 

KETOROLAC 3826  
7 

NABUMETONE 4409  
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8 

NAPROXEN 156391  
9 

OXAPROZIN 4614  
10 

PIROXICAM 54676228  
 

4.3 Results 

MMP-9 has been established as an effective cancer target due to its overexpression in 

different types of cancers. In this study, different NSAIDs have been selected based 

on their chemical and drug-like properties and that have potential to inhibit MMP-9 

using molecular docking. The 10 selected NSAIDs effective candidates are Celecoxib, 

Diflunisal, Fenoprofen, Flurbiprofen, Ketoprofen, Ketorolac, Nabumetone, 

Naproxen, Oxaprozin, and Piroxicam (Table 7) and the PDB ID of 6ESM was used 

for 3D structure of MMP-9. 
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4.3.1 ADMET and PCA analysis 

The ADMET analysis was done by Swiss ADME for all the selected NSAIDs. The 

predicted LD50 values present the lethal median dose of substance required to kill 

50% of the test animals. These values ranged from 49mg/kg to 3880mg/kg for the 

considered NSAIDs, and showed the diverse nature of the selected NSAIDs (Table 9). 

Lipinski’s rule of 5 is considered to assess the drug-likeness of molecules, and 

molecules having molecular weight ≤ 500 Daltons, LogP ≤ 5, hydrogen bond donors 

< 5, and hydrogen bond acceptors < 10 are considered to have effective drug-like 

properties. The analysis based on Lipinski’s rule of 5 to evaluate drug-likeness proved 

that all the ligands follow these rules with no violation, proving that all NSAIDs have 

high drug-like properties (Table 9). Bioactivity scores showed negative score values 

for the ability of the considered NSAIDs to convey inhibition of common off-targets 

or toxic targets (Table 8). 

Table 8: - Bioactivity scores of the considered NSAIDs estimated by the 

Molinspiration online server. 

 

 

S. 

No. 

Ligands GPCR 

ligand 

Ion 

channel 

modulator 

Kinase 

Inhibitor 

Nuclear 

Receptor 

Ligand 

Protease 

Inhibitor 

Enzyme 

Inhibitor 

1 

CELECOXIB 

-0.06 -0.27 0.01 0.28 -0.06 0.17 
 

2 

DIFLUNISAL 

0.01 0.15 0.05 0.26 -0.14 0.22 
 

3 

FENOPROFEN 

-0.02 0.02 -0.26 0.29 -0.27 0.20 
 

4 

FLURBIPROFEN 

0.09 0.20 -0.12 0.30 -0.03 0.28 
 

5 

KETOPROFEN 

0.09 0.07 -0.15 0.39 -0.09 0.27 
 

6 

KETOROLAC 

0.29 -0.04 -0.09 -0.03 -0.29 0.62 
 

7 

NABUMETONE 

-0.26 -0.09 -0.70 -0.25 -0.33 0.08 
 

8 

NAPROXEN 

-0.11 -0.06 -0.38 0.14 -0.26 0.15 
 

9 

OXAPROZIN 

0.27 0.05 0.06 0.40 -0.16 0.32 
 

10 

PIROXICAM 

-0.42 -0.57 -0.50 -0.73 -0.04 0.18 
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Principal Component Analysis is a multivariate technique that correlate information 

from a number of observed variables related to a subject into a smaller number of 

variables. It reduces a large dataset of variable to extract essential features known as 

principal components. Variance indicates the amount of variability of the variables 

(Greenacre et al., 2022). PCA was performed for the compounds to study the variance 

and the association among the compounds based on their ADMET properties. The first 

two components generated by the analysis define the 80.8% variance of the data. The 

contribution of the top ten principal components in defining explained variance is 

presented in the Scree Plot (Figure 10). Close association among naproxen, 

flurbiprofen, ketorolac, and ketoprofen was observed on the basis of ADMET 

properties in the score plot, where the scores of these molecules lie in the same 

quadrant and are closely linked to each other (Figure 10). The loading plot displays 

the association among the variables or the ADMET properties selected for analysis 

(Figure 10). Among the physicochemical properties of the NSAIDs, molecular 

refractivity, aromatic heavy atoms, heavy atoms, molecular weight, hydrogen bond 

acceptors, and total polar surface area (TPSA) were found to be associated with the 

first principal component, while the number of rotatable bonds was associated with 

the second component. The LD50 values were positively associated with the second 

component. The association was observed between the number of rotatable bonds and 

LD50 values. The biplot compiles both score and loading plots and defines the 

association of compounds with different properties as well as with first and second 

components (Figure 10). The compounds fenoprofen, ketoprofen, ketorolac, 

flurbiprofen, and naproxen were observed to have similar bioavailability scores and 

thus were closely arranged in the biplot. Nabumetone, with the least TPSA, significant 

bioavailability, and extremely high LD50 of 3880mg/kg was observed to be different 

among all the selected NSAIDs. Oxaprozin and piroxicam were distantly associated 

to the each other on the basis of bioavailability. Still, they were found to have a 

positive association with the first component due to mild similarity in 

physicochemical properties. This analysis proves that a diverse variety of NSAIDs 

have been selected to examine the for identification potential compounds.    

 

 

 



 

Table 9: - ADMET Properties of selected NSAIDs were analyzed by using Swiss ADMET 

 

 

Molecule MW 

Heavy 

atoms 

Aromatic 

heavy 

atoms 

Rotatable 

bonds 

H- 

bond 

acceptor 

H-

bond 

donor M R TPSA Log P 

Lipinski 

violations 

Ghose 

violations 

Veber 

violations 

Bio 

availability 

Score 

Lead 

Likeness 

violations 

LD50 

(mg / 

Kg) 

Celecoxib 381.37 26 17 4 7 1 89.96 86.36 3.4 0 1 0 0.55 1 
1400  

Diflunisal 250.2 18 12 2 5 2 60.78 57.53 3.27 0 0 0 0.85 1 
392  

Fenoprofen 242.27 18 12 4 3 1 69.31 46.53 3 0 0 0 0.85 1 
800  

Flurbiprofen 244.26 18 12 3 3 1 68.19 37.3 3.59 0 0 0 0.85 2 
117  

Ketoprofen 254.28 19 12 4 3 1 72.67 54.37 2.84 0 0 0 0.85 0 
49  

Ketorolac 255.27 19 11 3 3 1 69.81 59.3 2.05 0 0 0 0.85 0 
189  

Nabumetone 228.29 17 10 4 2 0 70.03 26.3 3.23 0 0 0 0.55 1 
388  

Naproxen 230.26 17 10 3 3 1 66.79 46.53 2.76 0 0 0 0.85 1 
248  

Oxaprozin 293.32 22 17 5 4 1 83.73 63.33 3.4 0 0 0 0.85 1 
1210 

Piroxicam 331.35 23 12 3 5 2 87.52 107.98 1.38 0 0 0 0.56 0 
216  
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4.3.2 Molecular Docking of Individual NSAIDs   

The docking of MMP-9 with the selected NSAIDs was completed to examine the 

high-affinity inhibitor. The highest negative binding energies of -12.98 and -12.98 

kcal/mol were obtained for Oxaprozin and Piroxicam with MMP-9. The binding 

energies of other NSAIDs were significant ranging from -12.42 to -11.31 kcal/mol 

(Table 10). The interaction analysis showed that all the NSAIDs formed significant 

hydrogen bonding with MMP-9, containing the three histidine-Zn coordination 

complexes, which mediates the catalysis (Fig. 12 and 13). Flurbiprofen having a 

binding energy of -12.56 kcal/mol, was observed to form a hydrogen bond with 

His226 of this coordination complex. The sulfonamide group celecoxib formed four 

hydrogen bonds at the MMP-9 active site residues with backbone atoms of Val223, 

Leu243, Tyr248 and Leu222. The diflunisal formed 6 hydrogen bonds with the 

Met247, Pro246, Tyr245, Leu243, Ala242, and Arg249. Oxaprozin and Piroxicam 

with the highest binding affinities formed 3 and 5 hydrogen bonds with Gln227, 

Ala191, and His190 and, Met247, Tyr248, Pro246, His190, and Leu187, respectively.  
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Fig. 11: - 3-D Molecular Docking View of NSAID with MMP-9 (6ESM)-(A) 

Celecoxib, (B) Diflunisal, (C) Fenoprofen, (D) Flurbiprofen (E) Ketoprofen (F) 

Ketorolac, (G) Nabumetone, (H) Naproxen, (I) Oxaprozin (J) Piroxicam. 
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Fig. 12: - 2-D Molecular Docking View of NSAID with MMP-9 (6ESM) - (A) 

Celecoxib, (B) Diflunisal, (C) Fenoprofen, (D) Flurbiprofen (E) Ketoprofen (F) 

Ketorolac, (G) Nabumetone, (H) Naproxen, (I) Oxaprozin (J) Piroxicam. 

 

Table 10: - Amino acids interaction, Hydrogen bond formation, and Binding 

energies of MMP-9 (6ESM) with 10 Selected NSAIDs. 

S. 

No. 

Ligands Amino acids 

interaction 

Amino acid 

with 

hydrogen 

bond 

interaction 

Hydrogen 

bond 

length 

Binding 

energies 

(kcal/mol) 

Ki 

(μM) 

1 

CELECOXIB 

GLY186,   PRO246, 

VAL223,   TYR248, 

LEU243,   ARG249, 

MET247,  LEU222, 

TYR245,   HIS226, 

HIS236,     HIS230, 

ALA189,  ALA191, 

GLN227,    HIS190, 

LEU187,    LEU188 

ARG249, 

MET247, 

GLN227 

2.91,  

2.96,  

3.03 

-12.42 0.0008 

J 
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2 

DIFLUNISAL 

LEU222, LEU243, 

GLN227, LEU188, 

HIS226, VAL223, 

TYR248, MET247, 

PRO246, TYR245, 

ALA242, PRO240, 

GLU241, ARG249, 

PRO255, PHE250, 

THR251 

ARG249 3.03 -12.42 0.0008 

3 

FENOPROFEN 

PRO240, ALA242, 

MET247, PRO246, 

TYR248, LEU188, 

VAL223, TYR245, 

MET244, HIS226, 

LEU222, LEU243, 

PRO255, THR251, 

ARG249,       PHE250 

ARG249, 

HIS226 

2.94,  

2.56 

-11.31 0.0051 

4 

FLURBIPROFEN 

GLU241, ALA242, 

TYR245,MET247,

PRO246, HIS226, 

VAL223, LEU188, 

GLN227, TYR248, 

LEU222, LEU243, 

ARG249, PHE250, 

THR251 

ARG249 2.77 -12.56 0.0006 

5 

KETOPROFEN 

PRO246, MET247, 

TYR245, HIS226, 

LEU243, LEU222, 

TYR248, ARG249, 

VAL223, GLN227, 

ALA189, LEU187, 

LEU188,   GLY186 

LEU188, 

GLN227, 

ALA189 

2.75,  

3.11, 

2.92,  

3.05 

-12.56 0.0006 

6 

KETOROLAC 

ARG249, TYR248, 

GLN227, LEU188, 

HIS226, PRO246, 

VAL223, MET247, 

TYR245, LEU243, 

ALA242, GLU241, 

PRO255, LEU256, 

THR251,   LEU222 

PRO255 3.04 -12.12 0.0013 



             

 
             Chapter – 4  In-Silico Combinatorial inhibition effects analysis of NSAIDs against MMP – 9  

 

77 
 

7 

 

 

 

NABUMETONE 

 

TYR245, ALA242, 

LEU243, THR251, 

GLU241, PRO255, 

ARG249, LEU222, 

HIS226, TYR248, 

GLN227, VAL223, 

ALA189, LEU188, 

MET247 

ARG249, 

GLN227 

2.89,  

3.18,  

3.18 

-11.54 0.0035 

8 

NAPROXEN 

MET247, TYR245, 

PRO240, ALA242, 

THR251, PHE250, 

PRO255, GLU241, 

ARG249, LEU243, 

LEU222, HIS226, 

TYR248, LEU188, 

VAL223,   GLN227 

ARG249 2.94 -11.6 0.0031 

9 

OXAPROZIN 

LEU222, LEU243, 

TYR248, LEU188, 

MET247, PRO246, 

GLY186, LEU187, 

HIS236, GLN227, 

HIS230, HIS190, 

ALA189, HIS226, 

VAL223,   ARG249 

ARG249 2.74 -12.98 0.0003 

10 

PIROXICAM 

GLU241, ALA242, 

LEU243, TYR245, 

MET247, HIS226, 

PRO246, VAL223, 

ALA189, GLN227, 

LEU188, LEU222, 

TYR248, ARG249, 

THR251 

ARG249, 

TYR245 

2.64, 

2.44 

-12.98 0.0003 

 

4.3.3 Molecular docking of combination of NSAIDs  

The synergistic effect of these compounds for inhibition of MMP-9 was observed by 

combination docking of the selected compounds into the active site of the MMP-9. 

The two compounds that exhibited high negative binding affinities in individual 
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molecular docking were considered for evaluation of the synergistic inhibition effect. 

The binding energy of the combination docking was the same as that of the dockings 

performed individually. The Oxaprozin-Piroxicam combination gave the binding 

energy of -12.98 kcal/mol with MMP-9 showing consistency of interactions of the two 

compounds (Table 11 and Fig. 13 - 14). The combination of ligands formed 2 

hydrogen bonds of which one was with Ala191 and the other with His226 which 

participates in the coordination complex with the Zn ion at the active site. Thus, our 

analysis of NSAIDs suggested that the identified combination of NSAIDs can convey 

highly effective synergistic structural inhibition of MMP-9 by binding at the active 

site of the enzyme. 

Table 11: Binding energies of (MMP-9) with Oxaprozin – Piroxicam 

combination. 

 

 

Fig.13: - Docking conformation of MMP-9 (6ESM) with Oxaprozin – Piroxicam 

Combination.  

NSAIDs Combination and 6ESM   Highest Binding Energy (Kcal/mol) 

 

Oxaprozin-Piroxicam -12.98 kcal/mol 
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Fig. 14: - Molecular Docking interaction of MMP-9 (6ESM) with Oxaprozin – 

Piroxicam Combination.  

 

4.4 Conclusion 

The present study evaluated the physiochemical and biological properties of NSAIDs 

by PCA analysis. The docking binding energies in the present study were highly 

significant compared to previous studies and thus showed the immense potential of 

the selected NSAIDs to inhibit MMP-9. The combination analysis of Non-Steroidal 

Anti-Inflammatory Drugs (NSAIDs) for inhibiting MMP-9 revealed that the 

combination of Oxaprozin-Piroxicam with MMP-9 was the most effective one. 

Oxaprozin and Piroxicam revealed high affinity in both individual and combination 

dockings and the docking conformations were consistent blocking the active site of 

the MMP-9 thus inhibiting its activity. 
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CHAPTER – 5 

Molecular Docking and In Vitro Evaluation of Luteolin and 

Piroxicam Reveal Synergistic Anticancer Potential 

5.1 Introduction 

Cancer is a highly complicated disease that influences a large number of people and 

is a prime cause of death in the world (9.7 million cancer deaths in 2022), with about 

78 % of cases diagnosed in individuals aged 55 and older. The most common types of 

fatal cancers vary between men and women, with lung, stomach, liver, colon, and 

breast cancer being the most frequent. Worldwide, cancer deaths are projected to rise, 

with an estimated 12 million deaths expected annually by 2030 (Sainz et al., 2012).  

Free radicals are normally reactive oxygen species (ROS) and reactive nitrogen 

species (RNS), which oxidize cellular proteins, nucleic acids, and lipids. Lipid 

peroxidation is a process where free radicals cause damage to polyunsaturated fatty 

acids. This process involves the propagation of oxidative damage. It can be terminated 

by enzymes such as glutathione reductase, glutathione peroxidase, and superoxide 

dismutase (Schattler et al., 1998) or antioxidants present in the body that scavenge 

free radicals. (Cheeseman & Slater, 1993). While the body has antioxidant defences 

to manage these free radicals, an excess can lead to oxidative and nitrosative stress. 

This chronic stress is linked to several diseases, including cancer, highlighting the 

importance of maintaining a balance in the body’s redox system. It is investigated that 

ROS may cause the breaking of the DNA strand, and oxidative damage to the 

nucleotides, causing mutagenesis, resulting in cancer. Cancer cells have high levels of 

reactive oxygen species (ROS), that may cause DNA damage and cell death. Increased 

levels of ROS cause oxidative stress, damaging proteins, lipids, DNA and 

mitochondria (Pizzino et al., 2017), with DNA being particularly vulnerable. This 

damage can lead to genomic instability and cancer progression, Recent studies on 

treatment called NCX4040 (a nitric oxide donor) generates ROS, may destroy tumor 

cells (Sinha et al., 2022). Thus, Oxidative stress and inflammation are related to cancer 

and apoptosis tumor cells (Reuter et al., 2010).  

A moderate accumulation of ROS can support tumor growth, (Moloney & Cotter, 

2018), while excessive ROS or insufficient clearance leads to oxidative stress, (Perillo 
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et al., 2020), causing damage to DNA, which can promote cancer. Guanine is 

particularly vulnerable to oxidation, resulting in products like 8-oxoguanine that 

linked to tumorigenesis (Burrows & Muller, 1998), (C. Li et al., 2022). The base 

excision repair pathway is crucial for repairing oxidative DNA damage, if it fails, the 

likehood of mutation rises can cause tumor induction (Boiteux et al., 2017). 

additionally, cancer cells can adapt to higher ROS levels by enhancing their 

antioxidant defences, which further support cancer progression. Thus, a moderate 

increase in ROS is seen as beneficial for cancer transformation.   

Excessive generation of reactive oxygen derivatives are linked to cancer development 

and progression (Circu & Aw, 2010), (Feng et al., 2020). High oxygen radicals levels 

are associated with various malignancies. Factors such as adaptation to low oxygen, 

metabolic changes, oncogenic mutation, and activation of pro-tumor signaling 

contribute to tumor formation. Hypoxia induced ROS control the expression of MMP-

2 and MMP-9. It also promotes proliferation, migration and invasion of glioblastoma. 

Thus, it has been specially noted as a significant factor in this process.  

Excessive concentration of free oxygen species may lead to cell-cycle arrest and 

apoptosis. To counteract this, cancer cells activate the transcription of antioxidants 

enzymes (Perillo et al., 2020). The nuclear erythroid 2-related factor (NRF2) act as a 

key factor in regulating antioxidants response (Sporn & Liby, 2012). NRF2 is often 

overexpressed in cancer, promoting cell survival by regulating the antioxidant system. 

Normally NRF2 is degraded by KEAP1, but under oxidative stress, it separates from 

KEAP1, moves to the nucleus, and activates antioxidant response elements (ARE) in 

target genes (Kansanen et al., 2013). These genes include those for various antioxidant 

enzymes, such as NAD(P)H Quinone dehydrogenase 1 and catalyse (Ma, 2013). Thus, 

cancer cells prevent themselves from excessive ROS. 

Reactive oxygen species (ROS) may perform oxidative DNA damage, leading to 

double-stranded breaks and the creation of mutagenic 8-oxo-7-hydroxy-2-

deoxyguanosine (8-oxodG). This compound is a significant contributor to 

spontaneous mutagenesis, as it can cause the conversion of guanine to thymine by 

pairing with cytosine and adenine (Sallmyr et al., 2008), (Oka & Nakabeppu, 2011). 

The build-up of 8-oxodG in cellular genome is a factor for cancer development.  
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Iron is a root source of ROS production and perform a key function in cell death across 

various organism and pathological conditions (Dixon & Stockwell, 2013). it is 

considered as a contributor component in the development of several cancers due to 

iron-induced oxidative stress (Toyokuni, 2016). The clinical impact of excess iron-

induced ROS in cancers, emphasizing the connection between iron-induced ROS and 

carcinogenesis. The reducing therapeutic iron levels and lowering ROS can improve 

liver health and decreases HCC risk in liver cancer patients (Kato et al., 

2007).Antioxidants help mitigate this damage by breaking the chains formed by these 

free radicals either by donating a hydrogen atom or an electron. Many of the 

investigations suggested that vegetables, fruits, and plants contain natural substances 

such as flavonoids, which have an antioxidant effect and can reduce the potential stress 

generated by reactive oxygen species. Approximately 4000 flavonoids have been 

found to date. (AQIL et al., 2006) The protective role of flavonoids in biological 

systems is attributed to their capacity to donate electrons to free radicals, bind metal 

catalysts, stimulate antioxidant enzymes, and neutralize alpha-tocopherol radicals, 

and inhibit oxidases. The common flavonoids included in DPPH and MTT assay study 

were Luteolin, Apigenin, and Quercetin. They have significant health benefits in 

various studies, such as luteolin has potential use as a chemopreventive agent against 

chromium-induced cancer by scavenging ROS and modulating cell signalling in 

human bronchial epithelial cells (Pratheeshkumar et al., 2014). It may also have 

medicinal benefits for cognitive dysfunction in Alzheimer’s disease (Fu et al., 2014), 

and can positively influence liver carcinogenesis by reducing mast cell recruitment 

(Balamurugan & Karthikeyan, 2012). Apigenin have antioxidative properties and 

chelating redox-active metals. Apigenin’s antioxidative activities are linked to its 

ability to donate hydrogen ions and electrons, which helps to stop the production of 

free radicals and prevent oxidative damage by scavenging free radical (Abdulla et al., 

2017). The antioxidant mechanism of apigenin, highlighting its ability to enhance 

bioavailability and inhibit oxidative enzymes. The major in-vitro methods for 

assessing Apigenin’s antioxidant potential include DPPH, ORAC and ABTS. 

(Kashyap et al., 2022). There is limited information available on Apigenin’s 

antioxidant properties and discussion on its effects and mechanisms of action. 

Quercetin has been researched for its biological activities, including antioxidants, anti-

inflammatory, antitumor (Y. Li et al., 2016). Quercetin can impede growth of cancer 
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cell by causing cell cycle arrests at G2/M or G1 phase and promoting the activity of 

enzymes and ROS in cells (Seufi et al., 2009). It activates ROS-scavenging enzymes 

for the reduction of intracellular ROS level (N. Li et al., 2014). Pure Quercetin have 

higher antioxidant activity. Due to the contribution of hydroxyl groups. The radical 

inhibitory and metal reducing activity of quercetin decreases when cations are 

chelated. It utilized three methods including DPPH. The metal ions significantly alter 

the chemical properties, affecting its antioxidant activity. Quercetin may reduce Fe 

(III) in a concentration and time dependent manner (Dolatabadi et al., 2014).  

Various assays are employed to assess the antioxidant activity of herbal extracts and 

phenolic compounds, utilizing different radicals and methods to analyze antioxidant 

effects and determine oxidation products. The most potent method involves using a 

stable free radical, DPPH, to assess how well antioxidants can neutralize reactive 

species.  The ability of antioxidants to reduce DPPH is a key feature of this method, 

as a single electron of the nitrogen atom in DPPH is reduced by hydrazine by taking 

a hydrogen atom from the antioxidants. The DPPH radical is intensely coloured and 

stable; due to this property, its solution is commonly used. It is identified that the UV-

vis spectrum of DPPH shows two distinct bands due to ℼ-ℼ* transitions with the 

unpaired electron contributing significantly to the visible band (O. Chen et al., 2009). 

When DPPH is mixed with a hydrogen atom donor substance solution, its violet colour 

fades, indicating the formation of the reduced DPPH radical (DPPH-H) (Yapıcı et al., 

2021). This colour change from violet to pale yellow occurs due to radical reduction 

by antioxidants, examined by using UV-vis spectroscopy and to evaluate the 

antioxidant property of substances like herbal extracts and phenolic compounds (Xie 

& Schaich, 2014). 

The DPPH test is used to estimate the total content of reductants in plant extracts, 

indicating the antioxidant capabilities of phenolic compounds and their capacity is 

quantified (Gulcin, 2020), (Gülçin, 2011).  

XO* + ROOH                  XOH + ROO 

This method is known for being simple, sensitive, fast, and reproducible, making it a 

convenient choice for evaluating the antioxidant potential of various compounds and 

herbal extracts. The concentration referred to as IC50, indicates its efficiency or 
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inhibitory capacity. The IC50 values are essential for comparing the radical scavenging 

capacities of various antioxidants.  

The MTT assay, developed in 1983, is widely utilized to determines viability of cells 

and metabolic activity (Mosmann, 1983).The MTT reagent (3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyl-2H-tetrazolium bromide) consists of a positively charged tetrazole 

ring surrounded by aromatic rings. When reduced by metabolically active cells, MTT 

is converted into a violet-blue insoluble molecule called formazan (Berridge et al., 

2005), (Stockert et al., 2018). This reaction allows for colorimetric measurement of 

cell metabolic activity.  While mitochondria are often associated with MTT reduction, 

(Surin et al., 2017), (Stockert et al., 2018). Various studies have found formazan in 

multiple cellular organelles, including the endoplasmic reticulum, lipid droplets, 

plasma membranes, nucleus, and microsomes (Stockert et al., 2012) (Bernas & 

Dobrucki, 2000), (Y. Liu et al., 1997). In an MTT assay, the IC50 value represents the 

concentration of a drug or compound needed to inhibit a biological process by 50% 

and indicates the potency of the drug.  

The present study deals with in vitro investigation of natural phytochemicals for their 

antioxidant and, Anticancer activity toward cancer cell lines. Further analysis in in-

vivo conditions can provide safe, natural and effective treatment against cancers. 

5.2 Methodology 

5.2.1 Molecular Docking analysis of MMP-9 

Molecular docking studies were performed to evaluate the binding interactions of 

selected flavonoids (Quercetin, Luteolin, and Genistein) and NSAIDs (Ketorol and 

Piroxicam), both individually and in combination, against matrix metalloproteinase-9 

(MMP-9) based on our previous studies (Singh et al., 2024). The three-dimensional 

crystal structure of MMP-9 was retrieved from the Protein Data Bank (PDB). The 

ligands were obtained from the PubChem database and converted into PDBQT files. 

For docking, a grid box was constructed to cover the MMP-9 active sites, with 

dimensions large enough to accommodate ligand flexibility and ensure comprehensive 

exploration of the binding pocket. The Lamarckian Genetic Algorithm (LGA) was 

employed as the search method, with a population size of 150, maximum number of 

evaluations set to 2.5 × 10^6, and 100 independent docking runs for each ligand. 
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Docking results were ranked based on binding free energy (ΔG, kcal/mol). The most 

stable complexes were selected for further analysis. Protein–ligand interactions were 

visualized using PyMol. Comparative docking of combinations of flavonoids and 

NSAIDs was performed to assess potential synergistic binding interactions within the 

active site of MMP-9. 

5.2.2 DPPH assay  

Free radicals are molecules that can damage DNA, and contributing to aging and 

diseases like cancer and inflammation. The DPPH (2,2-diphenyl-1-picrylhydrazyl) 

radical is commonly used to test antioxidant activity because it changes colour from 

purple in methanol to yellow when it reacts with antioxidants, indicating the reduction 

process. The DPPH purple colour in methanol has maximum absorption at 517 nm, 

that decreases in yellow colour when it reacts with hydrogen to produce the reduced 

DPPH-H species. The produced electrons consequent decolorization are 

stoichiometric.  

To measure flavonoids anticancer activity (Luteolin, Genistein, and Quercetin) and 

NSAIDs (Ketorol and Piroxicam) using the DPPH radical scavenging test. A small 

amount (0.5 mg/mL) of flavonoids and NSAIDs solution was mixed with 10 % (v/v) 

ethanol to obtain 100 µL were mixed to a test tube using a micro syringe and 1ml 

DPPH solution (100 μM) in 99.8% (v/v) ethanol and 1 mL of 96% (v/v) ethanol, then 

vortexed and incubation time for 30 minutes. The change in colour was measured at 

517 nm to determine how well flavonoids and NSAIDs can neutralize free radicals. It 

is tested with gallic acid (0.05 mg/mL) and Trolox (1 mg/mL) for comparison. The 

percentage of DPPH radical inhibition was calculated by following expression to 

assess antioxidant effectiveness.  

Antioxidant Activity (%) = [Abs Control – Abs Sample / Abs Control] × 100 

The final results are shown as IC 50 values, which indicate the concentration of 

antioxidant or radical-scavenging agent needed to reduce the initial radical amount by 

50 %. Linear regression analysis was used to determine these values from the 

concentration versus activity graphs. The spectrophotometric tests were performed in 

triplicate on both the samples and reference substances. 
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5.2.3 MTT assay  

Many flavonoids can inhibit cancer cell growth. The MTT assay was used to monitor 

cell development and changes, showing by the flavonoids and NSAIDs, which was 

prominent in phytochemical and antioxidant tests. This experiment evaluates the 

anticancer potential of Flavonoids (Luteolin, Genistein, and Quercetin) with MCF-7 

a human breast cancer cell line. The results compared to the NSAIDs (Ketorol, and 

Piroxicam), indicating that increasing flavonoids concentrations increases cell death, 

proposing as an anticancer agent. 

The testing of the cytotoxic effects of flavonoids and NSAIDs on breast cancer cells 

(MFC-7). The samples were dissolved in DMSO and applied to cells cultured in 96-

well plates. After 24 hours, the medium was replaced, and cells were incubated for an 

additional 24 or 48 hours with different concentrations of the samples. The MTT assay, 

which involves adding MTT solution (5 mg/mL), incubating 3 hours, and then 

processing the plates further with 10 % SDS buffer (100 µL) were mixed in each well, 

incubate overnight then absorbance was determined at 570 nm with the help of 

microplate reader. The current study determines the potential substances which kill 

cancer cells.  

5.2.4 ROS Assay 

Intracellular ROS levels were quantified using the Cellular Reactive Oxygen Species 

Detection Assay Kit (Abcam, UK) with the fluorogenic dye H2DCFDA, following 

the manufacturer’s protocol. Breast cancer cells (25,000/well) were inoculated in 96-

well black-wall plates (Corning, USA) and incubated overnight. On the subsequent 

day, cells were washed with HBSS (150 μl; Gibco, UK) and incubated with staining 

buffer (100 μl; 20 μM H2DCFDA in HBSS) for 40 min at 37 °C. After washing, HBSS 

(100 μl) was added, and fluorescence was measured using a POLARstar Omega reader 

at 485 nm excitation and 535 nm emission. For treatment-induced ROS measurement, 

compounds (flavonoids and NSAIDs) were added along with HBSS, and fluorescence 

was recorded after the desired incubation time. 

The viability of treated MCF-7 cells was expressed in percentage of control cell 

viability. Each test was repeated three times, and results are shown as mean ± SD. 

Data analysis was performed using GraphPad Prism software.   
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5.3 Results and Discussion 

5.3.1 Molecular docking of flavonoids and NSAIDs 

Molecular docking of the Quercetin, Luteolin, Genistein, Ketorol and Piroxicam was 

performed individually as well as in combination of one flavonoid and one NSAID. 

These flavonoids and NSAIDs were selected based on our previous analysis 

conducted separately for inhibition of MPP-9 (Singh et al., 2024). the docking of 

piroxicam-luteolin combination gave the highest negative binding affinity of -6.89 

kcal/mol (Table 12), indicating the effective inhibition of MMP-9. To further explore 

the inhibition potential and to evaluate the antioxidant effect of the best flavonoids 

and NSAIDs in vitro, DPPH assay, MTT assay, and ROS assay were performed both 

individually and in combinations.  

Table 12: Amino acids interaction, Hydrogen bond formation, and Binding 

energies of MMP9-flavonoid-NSAID complex 

 

 

 

 

 

 

 

 

 

 

 

Fig 15: Molecular docking view of Piroxicam – Luteolin combination 

S. 

No. 

Combination of 

NSAID and 

Flavonoid 

Amino Acids Interaction Binding Energy 

(Kcal/mol) 

1 Piroxicam-

Luteolin 

GLU241, ALA242, LEU243, 

TYR245, MET247, PRO245, 

HIS226, GLN227, ALA189, 

LEU188, LEU222, TYR248, 

ARG249 

-6.89 kcal/mol 

Piroxicam 

Luteolin 
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5.3.2 DPPH Assay 

The samples were analysed to determine their antioxidant potential, and the 50% 

inhibitory concentration (IC₅₀) values were calculated to identify the most potent 

flavonoids and non-steroidal anti-inflammatory drugs (NSAIDs) demonstrating 

effective inhibition of MMP-9. Among the compounds screened, the flavonoids and 

NSAIDs exhibiting the most favourable binding energies in combined docking studies 

(Table 13). In individual analyses, luteolin and piroxicam displayed highly significant 

antioxidant effects, with IC₅₀ values of 22.85 ± 0.080 μM and 20.512 ± 0.04 μM, 

respectively. However, when tested in combination, luteolin and piroxicam produced 

a markedly reduced IC₅₀ value of 10.89 ± 0.34 μM, indicating a substantially 

enhancement in antioxidant capacity as compared to their individual effects. The 

reduced IC₅₀ value expressing the synergistic connection between luteolin, a naturally 

occurring flavonoid with well-documented antioxidant and anticancer properties, and 

piroxicam, an NSAID as an anti-inflammatory and potential anticancer effects. The 

observed synergy demonstrates that the combined administration of luteolin and 

piroxicam may significantly improve the mitigation of oxidative stress conditions that 

associated in cancer progression. Such results indicating the therapeutic potential of 

integrating natural compounds with conventional pharmacological agents to enhance 

overall efficacy, reduce required dosages, and potentially reduce side effects, thereby 

offering a strategy for developing novel combination therapies targeting oxidative 

mechanisms in cancer. 

Table 13: Inhibitory concentration (IC50) values of best flavonoids and NSAIDs 

in DPPH assay 

S. No. Sample Name Inhibitory Concentration 

(IC50) Value (μM) 

1 Ascorbic Acid 27.73 ± 0.018 

2 Quercetin 65.46 ± 0.055 

3 Luteolin 22.85 ± 0.080 

4 Genistein 2798 ± 0.056 

5 Ketorol 1248 ± 0.041 

6 Piroxicam 20.512 ± 0.04 

7 Luteolin and Piroxicam 10.89 ± 0.34 
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Graph 1: IC50 values of all considered compounds (Flavonoids and NSAIDs) in 

DPPH assay 

5.3.3 MTT Assay 

The MTT assay is a widely used, sensitive, and reliable colorimetric technique to 

identify viability of cells, proliferation, and activation. It functions in metabolically 

active cells can convert the yellow, water-soluble compound 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT) into insoluble dark blue formazan 

crystals. The quantity of formazan produced is directly proportional to the number of 

viable cells, making this assay a robust quantitative measure of cytotoxicity. In this 

study, flavonoids and NSAIDs exhibiting the most favourable docked ligands were 

selected for evaluation against a human breast cancer cell line. All tested compounds 

demonstrated the ability to inhibit cancer cell proliferation to varying degrees. 

Notably, luteolin and piroxicam emerged as the most potent agents, showing 

individual IC₅₀ values of 198.3 ± 0.088 μM and 175.5 ± 0.129 μM, respectively (Table 

14). Further assessment of their combined effect revealed a remarkably reduced IC₅₀ 

value of 73.3 ± 0.25 μM, indicating a pronounced synergistic cytotoxic effect. This 

substantial decrease in IC₅₀ suggests that the luteolin–piroxicam combination 

significantly enhances the inhibition of cancer cell proliferation compared to either 

compound alone. The results highlight the potential of integrating natural flavonoids 

with conventional pharmacological agents to improve therapeutic outcomes, reduce 
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required doses, and potentially minimize toxicity. Such synergistic combinations 

could represent a promising approach for anticancer treatment strategies targeting cell 

proliferation mechanisms. 

Table 14: Inhibitory concentration (IC50) values of best flavonoids and NSAIDs 

in MTT assay 

S. No. Sample Name Inhibitory Concentration 

(IC50) Value (μM) 

1 Quercetin 1458 ± 0.107 

2 Luteolin 198.3 ± 0.088 

3 Genistein 524.5 ± 0.103 

4 Ketorol 1306 ± 0.058 

5 Piroxicam 175.5 ± 0.129 

6 Luteolin and Piroxicam 73.3 ± 0.25 

 

 

Graph 2: IC50 values of all considered compounds (Flavonoids and NSAIDs) in 

MTT assay  
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Fig 16: MTT Assay for (A) Luteolin (B) Piroxicam 

 

Fig 17: Luteolin-Piroxicam Combination MTT Assay 

 

5.3.4 ROS Assay 

 

The intracellular ROS levels were estimated in the absence and presence of best 

flavonoids and NSAIDs, and also in the presence of the best combination of luteolin 

and piroxicam. The percentage reduction in ROS levels compared to control were 

A B 
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evaluated based on the fluorescence recorded (Table 15). Effective reduction in ROS 

was observed in luteolin and piroxicam individually. This reduction was observed to 

be amplified on the combination of compounds. 

Table 15: ROS reduction efficiency analysis of best flavonoids and NSAID 

 

 

 

 

 

 

 

 

             

Graph 3: ROS reduction by considered compounds (Flavonoids and NSAIDs) 

S. No. Sample Name ROS reduction (%) 

 

1 Quercetin 20 

2 Luteolin 58 

3 Genistein 21 

4 Ketorol 36 

5 Piroxicam 48 

6 Luteolin and Piroxicam 73 
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Fig 18: - Comparative evaluation of luteolin and piroxicam, treated individually and 

in combination, on MCF-7 cells, revealing enhanced reduction in cell population with 

the combination treatment in comparison with control. 

5.4 Conclusion 

The present investigation demonstrates that the combination of luteolin, a natural 

flavonoid, and piroxicam, a widely used NSAID, exerts synergistic antioxidant and 

cytotoxic effects against cancer cell lines. Molecular docking confirmed favorable 

binding interactions of the luteolin–piroxicam complex with key residues, supporting 

their strong binding affinity. In vitro assays studies further confirmed that while both 

compounds individually exhibited significant antioxidant and cytotoxic activities, 

their combination markedly reduced IC₅₀ values, thereby enhancing their overall 

efficacy. The synergistic reduction in intracellular ROS levels further highlights their 

ability to modulate oxidative stress, a critical factor in cancer progression. 

Collectively, these results suggest that the luteolin–piroxicam combination holds 

considerable promise as a safe, natural, and effective anticancer strategy. However, as 

this study was limited to in vitro analysis, further in vivo validation and mechanistic 

studies are essential to fully establish its therapeutic potential and clinical applicability 

in cancer treatment. 
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CHAPTER – 6 

CONCLUSION 

Cancer remains one of the most devastating health challenges globally, with high 

morbidity and mortality rates driven by its aggressive proliferation and metastatic 

capabilities. Among molecular targets, matrix metalloproteinase-9 (MMP-9) has 

gained significant attention due to its central role in extracellular matrix degradation, 

angiogenesis, and tumor invasion. This study explored the inhibitory potential of 

natural flavonoids and nonsteroidal anti-inflammatory drugs (NSAIDs) against MMP-

9, both individually and in combination. In-silico screening identified luteolin and 

quercetin as the most promising flavonoids, while oxaprozin and piroxicam emerged 

as the top NSAIDs. Molecular docking revealed that certain flavonoid–flavonoid and 

NSAID–NSAID combinations displayed stronger binding affinities than individual 

compounds, with cross-class pairing of luteolin and piroxicam also demonstrating 

high inhibitory potential. These computational results were complemented by 

experimental validation, where DPPH radical scavenging, ROS reduction and MTT 

assays confirmed strong antioxidant activity and cancer cell cytotoxicity. Collectively, 

the findings suggest that the flavonoids and NSAIDs combination could effectively 

target MMP-9 and reduce oxidative stress–mediated cancer progression. 
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CHAPTER – 7         

SIGNIFICANCE OF INVESTIGATION 

Cancer progression is a multifactorial process involving uncontrolled cell 

proliferation, evasion of apoptosis, angiogenesis, and metastasis. Among the 

numerous molecular mediators implicated in tumor aggressiveness, matrix 

metalloproteinase-9 (MMP-9) has emerged as a pivotal enzyme responsible for 

extracellular matrix (ECM) degradation, facilitating tumor invasion and metastasis. 

Overexpression of MMP-9 has been reported in diverse cancer forms, namely breast, 

colorectal, lung, and pancreatic and other cancers, and is aligned with decreased 

survival rates, high metastatic potential, and chemoresistance. The oxidative stress has 

been exhibiting to upregulate MMP-9 expression through activation of transcription 

factors such as NF-κB and AP-1, thereby linking redox imbalance to cancer 

progression. Therefore, MMP-9 is therapeutic target for cancer intervention. 

Natural compounds, particularly flavonoids such as luteolin and quercetin, have 

drawn significant interest due to their pleiotropic anticancer effects, including 

antioxidant, anti-inflammatory, and anti-metastatic activities. These phytochemicals 

shown to suppress MMP-9 expression at both transcriptional and post-translational 

levels, inhibit cancer cell invasion, and modulate multiple oncogenic pathways with 

minimal toxicity to normal cells. Similarly, nonsteroidal anti-inflammatory drugs 

(NSAIDs), including piroxicam and oxaprozin, exert anticancer activity through 

cyclooxygenase (COX) inhibition, suppression of prostaglandin synthesis, and 

modulation of MMP expression. Notably, NSAIDs can downregulate MMP-9, reduce 

inflammation-driven tumor progression, and synergize with other chemopreventive 

agents. 

Despite the individual benefits of flavonoids and NSAIDs, combination therapy 

targeting MMP-9 has been underexplored. Rationally designed drug combinations can 

enhance therapeutic efficacy, and minimizing toxicity. In the context of MMP-9 

inhibition, combining antioxidant-rich natural molecules with anti-inflammatory 

NSAIDs offers the potential to address both oxidative stress–mediated and 

inflammation-mediated upregulation of MMP-9. Such a dual approach may achieve 
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superior inhibition of tumor invasion, angiogenesis, and metastasis compared to 

monotherapy. 

This investigation is significant for several reasons. First, it integrates computational 

and experimental strategies to identify potent MMP-9 inhibitors from two distinct 

drug classes. Molecular docking provides a structural basis for understanding binding 

interactions. Second, it evaluates both individual and combination effects, 

highlighting synergistic interactions that may be more effective. Third, it incorporates 

antioxidant (DPPH assay), ROS reduction and cytotoxic (MTT assay) evaluations, 

linking MMP-9 inhibition to oxidative stress reduction and direct cancer cell growth 

suppression. 

From a translational perspective, this study opens new doors for the development of 

multi-targeted, low-toxicity anticancer regimens. Since both flavonoids and many 

NSAIDs are already well-characterized for safety, their repurposing in combination 

therapies could significantly reduce the time and cost required for clinical 

implementation. Furthermore, the results provide a foundation for in vivo studies and 

clinical trials aimed at validating efficacy, determining optimal dosage ratios, and 

assessing pharmacokinetic compatibility. 

In conclusion, the significance of this work lies in its innovative approach to tackling 

MMP-9–driven cancer progression by combining natural antioxidants with 

established anti-inflammatory drugs. This dual-targeted strategy not only addresses 

the multifaceted regulation of MMP-9 but also offers a promising pathway toward 

more effective, safer, and accessible anticancer therapies. 
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