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ABSTRACT

Cancer ranks as the world’s second most common cause of death, is characterized by
uncontrolled cell proliferation and metastasis alteration in genetic level that activate
oncogenes and deactivate tumor suppressor genes. Matrix metalloproteinase-9
(MMP-9), or gelatinase B, contributes significantly to extracellular matrix
degradation and the remodeling of tissues, angiogenesis, and tumor microenvironment
formation, with its overexpression documented in nearly all cancer types. Targeting
MMP-9 has thus emerged as a promising therapeutic strategy. In this study, we
employed an in-silico and in-vitro approach to investigate potential MMP-9 inhibitors
from two distinct chemical classes—natural flavonoids and Non-Steroidal Anti-
Inflammatory Drugs (NSAIDs)—both individually and in synergistic combinations.
ADMET and bioactivity profiling of selected flavonoids identified luteolin and
quercetin as the most promising candidates, with molecular docking revealing luteolin
as the strongest individual inhibitor. Combination docking identified quercetin—
genistein and luteolin—genistein pairs with binding energies of —15.48 and —15.31
kcal/mol, respectively, surpassing the affinities of individual ligands. Similarly,
among NSAIDs, oxaprozin and piroxicam demonstrated the highest individual
binding affinities, with their combination yielding a binding energy of —12.98
kcal/mol. Further cross-class docking of the top candidates luteolin and piroxicam
showed substantial inhibitory potential. Experimental validation using DPPH
scavenging and MTT assays confirmed the combination’s strong antioxidant capacity
and cytotoxicity, with favourable ICso values, suggesting its efficacy in combating
oxidative stress and MMP-9-mediated cancer progression. Overall, our findings
highlight the potential of synergistic flavonoid-NSAID combinations as a novel
strategy for MMP-9 inhibition, warranting further in vitro and in vivo evaluation for

high-efficacy cancer therapy.
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Chapter - 1 Introduction

CHAPTER -1
INTRODUCTION

1.1. Cancer and Its Pathologies

Cancer is a brought disease, encompassing a vast spectrum of disorders
characterized by abnormal and uncontrolled cell growth, with the potential to
invade adjacent tissues and metastasize to distant organs. Globally, it is a leading
cause of mortality, accounting for millions of deaths annually, and its incidence is
expected to rise in the coming decades due to aging populations, lifestyle factors,
and environmental exposures (Sung et al., 2021). At the molecular level, cancer
develops through a multistep process involving the accumulation of genetic
mutations and epigenetic alterations (Hanahan & Weinberg, 2011) This process is
fueled by genomic instability, which facilitates the acquisition of additional
mutations that drive tumor progression. In cancer research, the concept known as
the “hallmarks of cancer” serves as a core model for understanding the disease,
which describe the common capabilities acquired by most malignant cells,
including ongoing proliferative cues, suppression-evading mechanisms, induction
of angiogenesis, invasion activation and metastasis, reprogramming of energy
metabolism, and evasion of immune destruction (Hanahan, 2022). These hallmarks
are not isolated traits but interact dynamically within the tumor and its

microenvironment, making cancer a highly adaptive and resilient disease.

The tumor microenvironment is crucial in driving cancer initiation and progression.
It comprises a heterogeneous mixture of cancer cells, fibroblasts, and the
extracellular matrix, all of which engage in complex signaling networks (Quail &
Joyce, 2013). Contextually, these interactions have the potential to suppress tumors
or enhance malignant advancement. Chronic inflammation within the TME, often
driven by infection, autoimmune disorders, or environmental factors, acts as a
tumor-promoting force by generating reactive oxygen and nitrogen species,
enhancing DNA damage, and stimulating angiogenesis and tissue remodeling
(Greten & Grivennikov, 2019). Moreover, cancer cells can reprogram surrounding

stromal cells to create an immunosuppressive, niche that enables evasion of
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immune system surveillance. Tumor-associated macrophages, for instance, often
adopt a pro-tumoral phenotype that supports angiogenesis, extracellular matrix
degradation, and metastasis (Mantovani et al., 2017). Metabolic reprogramming,
the Warburg effect — A state in which cancer cells preferentially depend on aerobic
glycolysis — provides both energy and biologically synthesised precursors
required for accelerated proliferation, while also influencing the epigenetic
landscape and gene expression patterns of tumor cells (Pavlova & Thompson,

2016). These adaptive features make targeting the TME for cancer therapy.

Metastasis remains the most lethal attribute of malignant tumors, accounting for the
vast majority of cancer-related deaths (Steeg, 2016). The metastatic cascade
consists of multiple stages, including local invasion of nearby tissues, entry into
blood or lymphatic vessels (intravasation), survival within the circulation, exit into
distant tissues (extravasation), and eventual colonization of secondary sites. Each
of these steps requires distinct molecular and cellular adaptations, including loss of
cell—cell adhesion through downregulation of E-cadherin, acquisition of motility
through epithelial-mesenchymal transition (EMT), and resistance for anoikis,
triggered by detachment from the ECM (Lambert et al., 2017). Organ-specific
metastasis patterns reflect both anatomical factors, like vascular drainage routes.
Like breast cancer often metastasizes to bone, while colorectal cancer frequently
spreads to the liver. Understanding these organotropisms is essential for developing
strategies to prevent or treat metastatic disease. Despite advances in surgery,
radiotherapy, chemotherapy, and targeted therapy, metastasis remains a formidable
clinical challenge due to its heterogeneity and with therapy-resistant tumor cell

subpopulations.

Cancer is also a systemic disease, with widespread effects beyond the primary
tumor site. Tumor-induced cachexia, a multifactorial syndrome Characterized by
unintended weight loss and degeneration of muscle tissue and metabolic
disturbances, significantly reduces patient quality of life and response to therapy
(Fearon et al., 2011). This syndrome is driven by systemic inflammation, altered
metabolism, and the factor that derive tumor such as pro-inflammatory cytokines

and proteolysis-inducing  factors. Anaemia, immunosuppression, and
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thromboembolic events are other frequent systemic manifestations of malignancy,
reflecting the profound physiological disruptions caused by tumor growth.
Addressing these systemic effects is critical in comprehensive cancer care, as
supportive therapies can improve both survival and life style quality. Therefore,
cancer pathologies are the result of intricate and dynamic interactions between
genetic mutations, epigenetic reprogramming, metabolic changes, and
microenvironmental influences. The hallmarks of cancer provide a fundamental
framework for the study of these processes, while advances in molecular biology,
pathology, and systems medicine continue to refine our knowledge. Future progress
will depend on integrating these insights into early detection strategies, targeted
interventions, and approaches that address both tumor-intrinsic and systemic
aspects of the disease. By doing so, oncology can move closer to the goal of
transforming cancer into a manageable chronic condition or achieving durable

cures for an increasing number of patients.

1.2. Matrix metalloproteinases (MMPs) and Cancer

Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases
that play a main function in extracellular matrix remodeling, a process that is
critical for both physiological tissue homeostasis and pathological conditions such
as cancer. In normal tissues, MMP activity is tightly regulated at the transcriptional
level, by proenzyme activation, and through inhibition by tissue inhibitors of
metalloproteinases (TIMPs) (Nagase et al., 2006). This process happens through
the breakdown of ECM components, which facilitates cancer cell invasion,
migration, and metastasis, and through the release of ECM-associated growth

factors that upregulate angiogenesis (Egeblad & Werb, 2002).

MMPs have been involve in modulating the tumor microenvironment by
influencing immune cell infiltration, inflammation, and signaling cascades that
elicit tumor survival. As per earlier investigation reported that oxidative stress—a
hallmark of many cancers—can modulate MMP expression via redox-sensitive
transcription factors such as NF-kB and AP-1, thereby creating a feedback loop
where MMP activity exacerbates oxidative damage, and oxidative stress further

amplifies MMP expression (Karin & Greten, 2005). This correlation between

3
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oxidative stress and MMP activation not only accelerates tumor progression but

also confers resistance to apoptosis, making MMPs potential therapeutic targets.

The MMPs and oxidative stress relationship in cancer is multifaceted. Free oxygen
species generated through mitochondrial dysfunction, oncogene activation, or
inflammatory processes, can directly activate latent proMMPs via oxidation of
cysteine residues in their propeptide domains (Rajagopalan et al., 1996).
Furthermore, ROS-mediated activation of mitogen-activated protein kinases
(MAPKs) enhances MMP gene transcription, leading to increased proteolytic
activity in the tumor microenvironment. In turn, excessive MMP activity promotes
ECM breakdown, which releases bioactive fragments known as matrikines that can
further initiate oxidants production like ROS by both cancer and stromal cells
(Overall & Kleifeld, 2006). This bidirectional amplification contributes to tumor
invasion, metastatic niche formation, and angiogenesis, all of which are essential
for malignant progression. The elevated circulating levels of certain MMPs
correlate with tumor aggressiveness and poor prognosis in number of cancers, such
as breast, colorectal, lung, and pancreatic carcinomas (Kessenbrock et al., 2010).
Importantly, the oxidative stress-MMP have been connected to therapy resistance,
where chemotherapeutic agents inadvertently enhance ROS generation, triggering
compensatory MMP upregulation that facilitates tumor relapse. These findings
underscore the need to understand MMP regulation in the oxidative context for the

development of more effective anti-cancer strategies.

Within the MMP family, MMP-9 (gelatinase B) has been widely investigated due
to its significant involvement in cancer progression and its responsiveness to
oxidative regulation. MMP9 specifically degrades collagen type IV, a major
structural constituent of basement membranes, that support tumor cell intravasation
and extravasation during metastasis (Vu & Werb, 2000). Elevated MMP9
expression has been identified in a wide range of malignancies, including breast,
prostate, gastric, and glioblastomas, often correlating with advanced disease stage

and poor patient survival (Deryugina & Quigley, 2006).

Oxidative stress plays a important role in MMP-9 activation; ROS-mediated

pathways activate transcription factors like NF-xB, which in turn upregulate MMP-

4
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9 transcription (Bond et al., 1998). Additionally, ROS can directly cleave and
activate pro-MMP-9, amplifying its proteolytic capacity in the tumor milieu. This
ROS-MMP9 synergy promotes not only ECM degradation but also enhancing
angiogenesis and supporting tumor expansion. MMP-9 also shown to modulate
immune surveillance by regulating cytokine and chemokine availability, thereby
influencing tumor-associated inflammation (Parks et al., 2004). Considering its
multifactorial role, MMP-9 is also actively examine as a biomarker for cancer
diagnosis and prognosis, along with a therapeutic target. Inhibiting MMP-9
activity—either directly through small molecule inhibitors or indirectly by
targeting upstream oxidative pathways—has been shown significant preclinical
results, though applying this clinically is still difficult because of the complexity of

MMP regulation in vivo.

1.3. MMP-9 and its inhibitors against cancers

Matrix metalloproteinase-9 (MMP-9), a member of the gelatinase subgroup of
MMPs, plays a crucial function in extracellular matrix (ECM) degradation,
facilitating processes such as tumor invasion, angiogenesis, and metastasis.
Overexpression of MMP-9 has been identified in a wide range of malignancies, as
in breast, gastric, pancreatic, and lung cancers, where its activity linked with poor
prognosis and advanced tumor stage (Vandooren et al., 2013); (Gialeli et al.,

2011)).

The proteolytic activity of MMP-9 not only enables the breaking of ECM
constituents, but also regulates the bioavailability of growth factor like VEGF,
thereby promoting angiogenesis and cancer cell survival (Jablonska-Trypu¢ et al.,
2016). MMP-9 is also implicated in oxidative stress—driven tumorigenesis, as
reactive oxygen species (ROS) can upregulate MMP-9 transcription through redox-
sensitive transcription factors namely NF-«xB and AP-1 (Siwik et al., 2001). In
tumor microenvironment, oxidative stress triggers a feed-forward mechanism
where elevated MMP-9 levels enhance inflammation, further driving ROS
production and cellular damage. Given its multifaceted role in cancer progression,
MMP-9 is considered a critical biomarker and therapeutic target for both diagnostic

and interventional strategies.
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Most of the natural compounds may acts as inhibitors of MMP-9 because of their
relatively low toxicity and ability to modulate multiple signaling pathways.
Polyphenols such as epigallocatechin gallate (EGCG) from green tea and curcumin
from turmeric reduce MMP-9 expression by interfering with MAPK and other
signals (Annabi et al., 2002); (Aggarwal & Harikumar, 2009).

Flavonoids like quercetin and luteolin similarly downregulate MMP-9 activity and
suppress tumor cell migration in vitro and in vivo (Liu et al., 2015). These natural
compounds function via multiple pathways, such as suppressing transcription,
blocking pro-MMP-9 activation, and neutralizing ROS, thereby mitigating
oxidative stress—driven MMP-9 upregulation. While promising, the clinical
translation of natural MMP-9 inhibitors faces limitations such as poor
bioavailability, rapid metabolism, and inconsistent potency in human studies.
Consequently, their therapeutic potential is often considered complementary to

conventional anticancer treatments rather than as standalone interventions.

In addition to natural molecules, non-steroidal anti-inflammatory drugs (NSAIDs)
have emerged as pharmacological inhibitors of MMP-9 with significant
implications in oncology. NSAIDs, including aspirin, indomethacin, and celecoxib,
have been reported to suppress MMP-9 expression by inhibiting COX-2—mediated
prostaglandin E2 (PGE2) production, that downregulates MMP-9 transcription
(Tsujii et al., 1998); Hwang et al., 2006). Selective COX-2 inhibitors such as
celecoxib have demonstrated additional MMP-9 inhibitory effects independent of
COX-2 blockade, including direct interference with Akt and ERK signaling
cascades (Krysan et al., 2004). In preclinical models, NSAID treatment are
connected with reduced tumor invasion, angiogenesis, and metastasis, correlating
with decreased MMP-9 levels in both tumor tissue and serum (Jung et al., 2010).
These findings underscore the potential of NSAID-based strategies as adjunctive
therapies targeting MMP-9, particularly in cancers characterized by high MMP-9
activity. However, the risks of gastrointestinal and cardiovascular side effects

necessitate careful dosing and patient selection in clinical applications.

Combination strategies that pair bioactive natural compounds with non-steroidal

anti-inflammatory drugs (NSAIDs) are gaining attention as a means to suppress
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matrix metalloproteinase-9 (MMP-9)—driven invasion and metastasis while
potentially lowering doses and side effects of each agent. Natural products such as
epigallocatechin-3-gallate (EGCG), curcumin, and various polyphenols
downregulate MMP-9 transcription and activity through inhibition of NF-kB, AP-
1 or MAPK signaling, and by Detoxifying free radical oxygen that otherwise induce
MMP expression ((Annabi et al., 2002); Aggarwal & Harikumar, 2009). NSAIDs,
particularly selective COX-2 inhibitors like celecoxib, reduce prostaglandin E-
(PGE-) signaling that feeds NF-kB—dependent MMP-9 expression and can also
affect Akt/ERK pathways in a COX-independent manner (Tsujii et al., 1998;
Krysan et al., 2004). Preclinical studies show that co-treatment with EGCG and
celecoxib produces synergistic reductions in tumor cell viability, VEGF release and
MMP family activity, indicating additive or synergistic blockade of both
inflammatory (COX-2/PGE:) and redox/transcriptional mechanisms that drive
MMP-9 (Noda et al. and Zhang et al.; PC-9 and Colo357 cell studies). Such dual
targeting can blunt ECM degradation, restrict angiogenesis, and reduce invasive

phenotypes are more effective (Khan et al.;)

Mechanistically, combinations capitalize on complementary actions: natural
compounds often act upstream by lowering oxidative stress and inhibiting
transcription factors that induce MMP-9, whereas NSAIDs suppress prostanoid-
mediated pro-MMP signaling and downstream kinase cascades. For example,
curcumin reduces MMP-9 via AMPK activation and NF-kB inhibition in colon
cancer models, and when paired with agents that suppress COX-2 signaling the net
effect on MMP-9 expression and invasion is amplified (curcumin studies). EGCG
similarly downregulates MMP-9 and synergizes with celecoxib to enhance
apoptosis and reduce invasiveness in lung and pancreatic cancer cell lines (EGCG
+ celecoxib). Importantly, other combined treatment have been examined in diverse
tumor types (breast, colon, pancreatic, lung) and reported consistent trends:
decreased MMP-9 expression/activity, reduced migration/invasion in vitro, and
attenuated tumor growth or metastasis in vivo, supporting the translational rationale

for combined nutraceutical -NSAID therapy.
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Though analysis of natural compounds and NSAIDs for reducing the expression
was investigated previously but studies on structural inhibition of MMP-9 by these

compounds are limited.

1.4. Molecular Docking

Molecular docking is a widely used computational approach in structure-based drug
design to predict the preferred orientation of a ligand when bound to its target
protein, thereby estimating binding affinity and interaction modes. Molecular
docking method has significant role in identifying potential inhibitors against
specific targets such as matrix metalloproteinase-9 (MMP-9), which is implicated
in tumor invasion, metastasis, and angiogenesis (Vihinen et al., 2005). Docking
studies typically involve the preparation of the protein structure, retrieval or
modeling of ligands, and applying an algorithm such as Autodock or Glide to
predict ligand—protein interactions ((Morris et al., 2009); (Friesner et al., 2004)).
Computational docking accelerates drug discovery by allowing in silico screening
of large compound libraries, reducing time and cost before wet-lab testing. For
MMP-9 inhibitors, both natural compounds and non-steroidal anti-inflammatory
drugs (NSAIDs) have been assessed for binding potential, supporting their

therapeutic relevance in oncology (Rashid et al., 2023).

1.5. MTT Assay

The MTT assay is a colorimetric method widely used to evaluate cell viability,
proliferation, and cytotoxicity of compounds in cancer research. Its principle is
based on the reduction of yellow tetrazolium salt (MTT) to insoluble purple
formazan crystals by mitochondrial dehydrogenases in metabolically active cells
((Mosmann, 1983). In the context of MMP-9 inhibitor research, the MTT assay
provides crucial in vitro data on the anti-proliferative effects of natural compounds,
NSAIDs, or their combinations on cancer cell lines that exhibit elevated MMP-9
activity (Liang et al., 2007); (Li et al., 2023). The assay is typically performed by
treating cancer cells culture at different concentrations of the test compound,
incubating for a defined period, adding MTT reagent, and solubilizing the formed

crystals before absorbance measurement at 570 nm. Reduction in cell viability
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correlates with compound potency, and ICso values are calculated. MTT results are
often complemented assays to establish a broader picture of anti-metastatic

potential, particularly when MMP-9 downregulation is targeted (Shen et al., 2012).

1.6. DPPH Assay

The 2,2-diphenyl-1-picrylhydrazyl (DPPH) is a fast assay, simple method to
evaluate the antioxidant capacity of natural and synthetic compounds. The DPPH
display a deep violet colour, which fades upon reduction by an antioxidant (Blois,
1958). Absorbance decrease at 517 nm quantitatively reflects radical scavenging
activity. In MMP-9-related cancer studies, DPPH assays are used to find test
compounds with antioxidant properties that can mitigate oxidative stress—mediated
upregulation of MMP-9 expression, a key process in tumor progression (Wang et
al., 2016; (Kessenbrock et al., 2010). Antioxidants from plant sources, such as
flavonoids and polyphenols, have been shown to exert dual actions by scavenging
ROS and directly inhibiting MMP-9 activity (Chou et al., 2010). NSAIDs with
antioxidant-like properties, when combined with natural compounds, can offer
synergistic effects in suppressing oxidative stress and MMP-9—driven metastatic
pathways. The DPPH assay thus serves as an initial screening step to select
candidates for further docking studies, cellular assays, and in vivo testing in cancer

models (Ryou et al., 2011).



Aim and Objectives

AIM

The aim of this study is to identify promising combinations of a natural molecule
and an NSAID that synergistically inhibit MMP-9 activity by structural inhibition,
specifically tailored to counter oxidative stress—mediated upregulation of MMP-
9 in cancer. By focusing on agents with complementary mechanisms—natural
antioxidants and NSAID-mediated anti-inflammatory action—this research seeks
to develop a targeted, dual-action therapeutic strategy to mitigate MMP-9—driven

tumor progression under oxidative conditions.

OBJECTIVES

The objective of this study is to explore the combination therapy of NSAID and

nutraceuticals in mediating MMP9 inhibition against cancer.

1.  Molecular modelling of MMP-9 and Protein-drug interaction in-silico studies
of nutraceutical combinations for MMP-9 inhibition

2. Screening of NSAID and plant nutraceutical combinations from medicinal
plants to identify potential combination drug therapy against cancer.

3.  Exploration of bioactivity of NSAID and nutraceuticals individually and in

combination (MTT assays, antioxidant assay, ROS etc.) on cancer cell lines.
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CHAPTER -2
REVIEW OF LITERATURE

2.1 Background on Matrix Metalloproteinase (MMPs)

The Matrix Metalloproteinase (MMP) belongs to the zinc-dependent proteolytic
enzyme, extensively studied since 1962, covering an enzyme in the mammalian uterus
that degrades collagen in various animal and tissue models (Woessner, 1962). MMPs
have been researched across disciplines like biochemistry, cell biology, pathology,
immunology, physiology, and computational biology, focusing on diseases like
arthritis, cancer, periodontal diseases, and cardiovascular diseases. In the late 1980s,
additional MMPs were discovered and given the name MMPs (Okada et al., 1990).
The MMP family has 25 members (Table 1). The family classification is based on
sequence homology and substrate characteristics into collagenases, gelatinases,
matrilysins, stromelysins, and membrane-type MMPs (Iyer et al., 2012). These all are
capable of degrading constituents of the ECM including collagen, fibronectin,

laminin, and proteoglycan protein core (Cabral-Pacheco et al., 2020).

They are accountable for the deterioration and modification of the proteins that form
the ECM. They have a proteolytic activity that have a significant role in different
pathological and physiological processes, like as tissue remodeling, organ
development, control of inflammatory functions, and cancer progression. The
different classes of MMPs perform different functions, such as collagenase mediates
the degeneration of triple-helical fibrillar collagen. Gelatinases are important in
various physiological and cellular processes like wound healing, cell migration, and
angiogenesis. Stromelysins have the potential to degrade laminin, fibronectin, gelatin,
and collagen. Matrilysinsdegrade components of ECM. MT-MMPs are cell surface
active enzymes and have collagenolytic and proteolytic activity towards ECM
components. All MMPs have a protease domain and a conserved sequence
HEXGHXXGXXHS/T with three histidine residues making a complex with a
catalytic Zn atom and a regulatory conserved sequence domain PRCGXPD important
for binding of cysteine to the Zn at active site found in the protease domain of MMPs

(Fig.1) (Nagase et al., 2006).
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Table 1: - Classification of MMPs

MMPs Cancer progression Action Results
stages
MMP-2, MMP-9, MT1- | Invasion Proteolytic ECM
MMP macromolecules
degradation
MMP-1, MMP-2, Insulin-like growth factor (IGF)-binding protein cleavage | Proliferation
MMP-3, MMP-7,
MMP-9, MMP-11,
MMP-19
MMP-3, MMP-7 Release the cell membrane precursors of several growth Proliferation
factors, (HB-EGF, TGF-a, and amphiregulin)
MMP-9, MMP-2, Proliferation TGF-p proteolytic activation Proliferation
MMP-14
MMP-7 cleavage of HB-EGF Proliferation
MMP-7 Fas ligand cleavage Resistance to
Apoptosis apoptosis and
chemoresistance
to the cancer
cells
MMP-2, MMP-9, Extracellular constituents’ degradation, such as collagen Angiogenesis
MMP-14, MMP-1, Angiogenesis and type IV, XVIII by secret of VEGF and basic fibroblast regulation
MMP-7 Vasculogenesis growth factor (bFGF)
MMP-2 Cell adhesion, Degradation of ECM molecule causes the generation of Facilitates

migration, and

cryptic peptides

cancer cell
migration

T - 193dey)

9.N3eJ3317 JO MIIADY
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MMP-2, MMP-3,
MMP-9, MMP-13,

epithelial to
mesenchymal transition

Excessive expression associated with epithelial-to-
mesenchymal transition (EMT)

Morphological
transition and

MMP14 migration
MMP-1, MMP-7 Cleavage of E-cadherin Disrupted cell
adhesion and
induction of
EMT causes
morphological
transition
MMP-28 Proteolytic activation of TGF-f3 EMT inducer
MMP-9 Shed interleukin-2 receptor-a by the cell surface of T- Suppressing
lymphocytes proliferation
MMP-9, MMP-2, TGF-p release Suppressor of T-
MMP-14 Immune surveillance lymphocyte
reaction
MMP-7, MMP-11, Generation of a bioactive fragment from al-proteinase Suppresses
MMP-1, MMP-8, inhibitor cancer-cell
MMP-3 sensitivity to NK
cells
MMP-7, MMP-8 Cleavage of the CC (B-chemokine) and CXC (a- Regulate
chemokine) chemokine subfamilies mobilization,
leukocyte

infiltration and
migration

T - 193dey)

21N3e13]17 JO MIIADY
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MMP-7, MMP-26 m— Propeptide domain

MMP-1, | Propeptide |
38,12,13,18,19.20 | domin |
nn
MMP-2, MMP-9 m— Propeptide
[ domain ‘
MVP-11, MMP-28 w Prpepide
domain
MMP-14, Pmpeptnk Br MG
15,16,24.17,25 Lirker peptice

Fig. 1 Structure of MMPs

2.2 Importance of MMPs in Cancer Progression and Metastasis

Cancer is a group of diseases that are primary contributor of deaths globally. Many of
the studies have shown that ECM remodeling proteases-Metrix metalloproteinases
(MMPs) play a valuable role in the changes seen in the microenvironment during
cancer advancement. (Page-McCaw et al., 2007). During the development of cancer,
tumor cells communicate with the tumor microenvironment, including the growth
factors, cytokines, and extracellular matrix and surrounding cells as macrophages,
neutrophils and mast cells (Murphy, 2008), (Deryugina & Quigley, 2006). The four
processes of cancer — migration, invasion, metastasis, and angiogenesis depend on this
microenvironment. The MMPs expression in tumor microenvironment depends on
cancer and stromal cells. MMPs have proteolytic activity and degenerate ECM
physical barriers causing angiogenesis, invasion, and metastasis. The growth factors
and cytokines signaling molecules cause tumor development. These factors are easily

accessed by MMPs cancer microenvironment. This involves the cells acquiring
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specific traits to escape the primary tumor, travel through the bloodstream, and form
new tumors in distant organs. The process requires survival and communication skills
from tumor cells. Overcoming physiological barriers is crucial for successful
metastasis (Chambers et al., 2002, Pantel & Brakenhoff, 2004, Geho et al., 2005). At
the stage of metastasis, tumor cells connect with various components like extracellular
matrix, protein growth factors, and cytokines during metastasis. These interactions
occur with different structures such as the basement membrane, blood vessels, and the
microenvironment of secondary sites. These interactions contribute to the

displacement of normal tissue and the metastatic foci formation.

MMPs have significant function in metastasis (Deryugina & Quigley, 2006,Quintero-
Fabian et al., 2019). Regulation and dysregulation of MMPs in cancer involves various
mechanisms that alter their expression, activation, and function. In many cancers,
MMPs are often overexpressed, leading to increased degradation of ECM, which
facilitates tumor invasion and metastasis. This upregulation can be mediated by
various factors such as growth factors (e.g., TGF-B, EGF), cytokines (e.g., TNF-a),
and oncogenic signaling pathways (e.g., MAPK, PI3K-Akt), cytokines and growth
factors present in the microenvironment of tumor (Egeblad & Werb, 2002). DNA
methylation and histone modifications can influence MMP expression patterns in
cancer cells. For example, hypermethylation of promoter regions of certain MMP
genes can lead to their silencing, while hypomethylation can contribute to their
overexpression (Nagaset & Woessner, 1999). MMP activity can be modulated by post-
translational modifications such as glycosylation, phosphorylation, and proteolytic
processing. These modifications affect MMP activation, stability, and cell and ECM
microenvironment localization. MicroRNAs (miRNAs) regulating MMP expression
post-transcriptionally. Certain miRNAs can target MMP mRNAs for degradation or
inhibit their translation, thereby modulating MMP levels in cancer cells, (Fabbri et al.,
2007). TIMPs are endogenous inhibitors of MMPs that maintain the balance between
MMP activity and ECM integrity. Dysregulation of TIMPs, either through reduced
expression or increased degradation, can lead to excessive MMP activity and ECM
degradation in cancer (Mustafa et al., 2022). The tumor microenvironment,
characterized by hypoxia, inflammation, and interactions with stromal cells,

influences MMP expression and activity. Hypoxia-inducible factors (HIFs) and
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cytokines released by tumor-associated immune cells can upregulate MMP

production, promoting tumor invasion and metastasis. (Sun, 2010).

2.3 Extracellular Matrix Remodeling by MMPs

The ECM is commonly composed of structural proteins (collagen and elastin),
glycosaminoglycan, proteoglycan, and connecting proteins (fibronectin and laminin)
(Yuan et al., 2023). The most common functions performed by the ECM are cell
proliferation, differentiation, and maintenance of tissue homeostasis (Chakraborty &

Edkins, 2021).

MMPs bind with the various ECM proteins involved in connective tissue remodeling
(Laghezza et al., 2020). The remodeling of the ECM in many tumors has been
connected with elevated expression of MMP-2, MMP-3, MMP-9, and MMP-14 (L.
Luo et al., 2021). The degradation of collagen IV is responsible for the invasion of
tumor cells into the basement membrane mediated by MMP-2 and MMP-9. It causes
tumor metastasis and diffusion (Taleb et al., 2006). The collagen degradation also
causes the remodeling of ECM biomechanical properties. The collagen dissolution
around tumor cells is induced by MMP-14. It is a key contributor for cell invasion and

migration (N. Chen et al., 2020).

2.4 MMP-Mediated Angiogenesis and Vasculogenesis

Angiogenesis and vasculogenesis are two common processes in cancer. Angiogenesis
is the generation of new blood vessels from pre-existing ones (Bajbouj et al., 2021).
Vasculogenesis is the process for the formation of new blood vessels through
endothelial progenitor cells during embryonic development or in postnatal tissues
under certain pathological conditions (Kovacic & Boehm, 2009). However, in cancer,
it contributes to growth of tumor and metastasis by supplying vital substances and

oxygen (Lugano et al., 2020).
MMPs are central to both angiogenesis and vasculogenesis, as they facilitate the

remodeling of the ECM, which is important for the movement of endothelial cell,

proliferation, and differentiation (Kubis & Levy, 2003). MMPs also modulate the
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growth factor bioavailability and cytokines, thereby regulating the angiogenesis and
Vasculogenesis (Mott & Werb, 2004).

MMP-2 and MMP-9 are important in angiogenesis and Vasculogenesis because of
their ability to degrade type IV collagen, a basement membrane component. The
basement membrane behaves as a barrier to cell migration, and its degradation by
MMP-2 and MMP-9 is a key step for the new blood vessels formation (Shoari, 2024).
The expression of these MMPs is frequently elevated when stimulated by pro-
angiogenic signals, including VEGF and FGF, and transforming growth factor-beta
(TGF-P) (Pathak et al., 2024). VEGF is a potent pro-angiogenic factor that stimulates
EC proliferation, migration, and survival. MMP-9 has been shown to release VEGF
from the ECM, increasing its bioavailability and enhancing its angiogenic effects. This
interaction is crucial for the initiation of both angiogenesis and vasculogenesis, and
for the formation of new vascular branches in the course of angiogenesis (Ghalehbandi

etal., 2023).

TGF- plays a bifunctional role in angiogenesis and vasculogenesis, pro-angiogenic
and anti-angiogenic factor. TGF-B is secreted in a latent form bound to latency-
associated peptide (LAP), which keeps it inactive. MMPs, particularly MMP-2 and
MMP-9, can cleave LAP, releasing active TGF-f. The initiation of TGF- by MMPs
is for the regulation of angiogenesis by influencing EC proliferation and

differentiation (Neel et al., 2012).

MMPs influence angiogenesis and vasculogenesis by modulating signaling pathways
through the proteolytic processing of signaling molecules and receptors. Thus, MMPs
can either activate or inactivate signaling pathways, for fine-tuning the angiogenic and
vasculogenic response. It activates pro-MMP-2 by cleaving its Propeptide, converting
it into the active enzyme that degrades type IV collagen and other ECM components

(J. H. Chang et al., 2016).

MMPs can cleave VEGFR-2, modulating its activity and the downstream signaling
pathways involved in EC proliferation and migration. This cleavage can result in
either the activation of VEGFR-2 signaling or its inhibition, depending on the specific
MMP involved. The regulation of VEGFR-2 by MMPs is critical for maintaining the
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balance between angiogenesis and vasculogenesis, (X. Wang & Khalil, 2018), (Ceci
et al., 2020).
2.5 MMP Inhibition Strategies

Strategies for MMP inhibition focus on designing and employing approaches that
block or diminish MMP activity in order to manage or treat various diseases. MMP
activity can be crucial in treating diseases where MMPs contribute to tissue damage,

such as cancer, arthritis, and cardiovascular diseases.

2.5.1 Small Molecule Inhibitors of MMP Activity

Batimastat (BB-94) is a synthetic broad-spectrum small molecule that supresses the
MMP activity including MMP-9. The Batimastat structure has a hydroxamate group
that binds to the zinc ion at MMPs active site. This interaction is critical for the
restriction of the enzyme proteolytic activity (Hernandez-Pando et al., 2000).
Batimastat was administered in oral and intravenous routes. It interferes with ECM
remodeling by attaching to the active site of MMPs, sequestering the zinc ion required
for their function, and thereby blocking the breakdown of extracellular matrix
components (Brew & Nagase, 2010).

Marimastat (BB-2516) is a next-generation oral broad-spectrum inhibitor, it inhibits
MMP-1, MMP-2, MMP-3, MMP-7, and MMP-9 activity. The structure of Marimastat
has a Hydroxymate, that function as a zinc chelator at the MMPs active site.
Marimastat was studied in pancreatic, non-small cell lung, breast, colorectal, gastric,

glioblastoma brain, and prostate cancer (Bramhall et al., 2002).

Other inhibitors including tanomastat Carboxylate zinc chelator, inhibits MMP-2,
MMP-3, MMP-8, MMP-9, and MMP-13, prinomastat Hydroxymate zinc chelator
inhibitor, inhibits MMP-2, MMP-3, MMP-9, MMP-13, and MMP-14, and rebimastat
(Winer et al., 2018), all these inhibitors were investigated in ovarian, pancreatic, lung,
breast, and prostate carcinomas. These inhibitors demonstrated small inhibitory

activity and failed in clinical trials for the positive effect on survival.
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2.5.2 Antibody-Based Therapies Targeting MMPs

Antibody-based therapies targeting MMPs represent a promising approach to treating
many diseases where MMP dysregulation is critical. Monoclonal antibodies (mAbs)
are engineered proteins that can bind to specific antigens, such as MMPs, it is designed
to selectively inhibit a single MMP with high affinity, greater specificity, reduced side
effects (Alaseem et al., 2019).

The antib REGA-3G12 and REGA-2D9 are target MMPs (Liu & Khalil, 2017),
(Fields, 2019). The REGA3G12 inhibits MMP-9 by affecting the catalytic domain and
the N-terminal region, rather than the catalytic zinc ion of the fibronectin region (K.
Li et al., 2020). Additionally, monoclonal antibodies AB0041 (Andecaliximab-GS-
5745 humanized version with clinical trails) and AB0044 also target MMP-9 and have
demonstrated the ability to inhibit tumor growth and metastasis through pro-MMP-9
activation and non-completely inhibits MMP-9 activity in colorectal carcinoma

models.

2.6 Natural Compounds as MMP Inhibitors

Natural products are an important source of bioactive molecules for developing
therapeutic applications. In some cases, it becomes approved as a drug (Newman &
Cragg, 2012). Many numbers of the metabolites and small natural compounds are
known for the inhibition of MMPs expression including MMP-2 and MMP-9 (Mudit
& El Sayed, 2016), (Gentile & Liuzzi, 2017), (Eun Lee et al., 2019) including the

flavonoids and polyphenols.

Kaempferol a polyphenol has anticancer, antidiabetic, anti-inflammatory, antiaging,
and antiallergic properties (Imran et al., 2019). It prevents the nuclear translocation of
the AP-1 transcription factor to the MMP-2 promoter, which suppresses the production
of MMP-2 in human tongue carcinoma (SCC4 cells) and stops propagation and
invasion (Lin et al., 2013). Thus, reducing cancer development and carcinogenesis
(Lee et al., 2017). Naringenin has anti-inflammatory and anticancer activity extracted
from fruits. It reduces the nuclear translocation of NF-«xB transcription factor in MMP-

2 and MMP-9 and controls inflammation and cancer metastasis (H. L. Chang et al.,
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2017). Luteolin has been found to inhibit cell proliferation, metastasis, and
angiogenesis and can sensitize cancer cells to therapeutic-induced cytotoxicity by
suppressing phosphatidylinositol 3'-kinase (PI3K)/Akt and nuclear factor kappa B
(NF-xB) and suppresses MMP-2 and MMP-9 expression in A375 human melanoma
cells (Yao et al., 2019). Myricetin regulates MMP-2 and MMP-9 activity and reduces
the MMP-2 production and expression in colorectal cancer cells (COLO 205). It
reduces and inhibits metastasis in breast cancer cells (MDA-Mb-231) by reducing the
expression of MMP-2 and MMP-9 activity (Ci et al., 2018). it also reduces the growth
and propagation of lung cancer cells (A549-IR) by reducing MMP-2 and MMP-9

expression and stops the growth and movement of cancer (Kang et al., 2020).

Research conducted on quercetin flavonoids for its anti-inflammatory and anticancer
activities which reduce propagation and invasion in human hepatocarcinoma cell lines
(HCCLM3 cells). It suppresses MMP-2 and MMP-9 expression (Lu et al., 2018) in
human oral cancer cells (HSC-6 and SCC-9) (Zhao et al., 2019). Genistein has
antitumor, antibacterial, and antioxidant, properties. It inhibits angiogenesis and tumor
cell programmed death. Silibinin stops skin cancer and affects metastasis in breast
cancer by inhibiting the expression of MMP-9 in mice through suppression of the
MEK/ERK cascade. It protects ECM by the control of MMP-9 expression in thyroid
and breast cancer cell migration (Kim et al., 2009). Caffeic acid is an active
transcription inhibitor and MMP-9 activity inhibitor were obtained from a plant
Euonymus alatus (Kuo et al.,, 2015). Pterostilbene has antiproliferative, anti-
inflammatory, anticancer, and antioxidant activities similar to Resveratrol, obtained
from blueberries and other grape varieties (Rimando et al., 2002), (McCormack &
McFadden, 2012).

2.7  Clinical Trials Assessing MMP Inhibition in Cancer Therapy

Matrix metalloproteinase inhibitors (MMPIs) ranged from normal, natural, and
synthetic chelating agents. Many experiments and clinical trials support that MMPs
participate in tumor invasion, angiogenesis, and metastasis, thus MMP acts as
potential targets for cancer therapy. These experimental and therapeutic trials have
been examined in several experimental models. The results of experiments and trials

give the possibilities as classes of anticancer drugs.
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Batimastat (BB-94) - Batimastat is a Hydroxymate (zinc chelator) type of inhibitor
and explored MMPs (MMP-1, MMP-2, MMP-3, MMP-7, MMP-9 and MMP-13)
inhibitors as preclinical models (Chirvi et al., 1994). Batimastat inhibits the regrowth
of human breast cancer (MDA-MB-435) in the mammary fat pads, metastasis of the
lung (Sledge et al., 1995), growth of colon tumors, organ invasion, and metastasis.
Batimastat has been tested on ovarian carcinomas, both alone and with traditional
chemotherapy drugs (BROWN, 1994). Batimastat was the first explored MMP
inhibitor, tested in an I-phase clinical trial and canceled in a Phase III clinical trial,
due to low solubility and local toxicity. All the trials were stopped due to some general

tissue reactions.

Marimastat (BB-2516) - Marimastat is a low-molecular-weight MMP including
(MMP-1, MMP-2, MMP-7, and MMP-9) Peptidomimetic inhibitor that, has a similar
action mechanism as Batimastat, with a 20% to 50 % oral bioavailability. The
preclinical trial of Marimastat reached phases II and III in pancreatic, lung, breast,

colorectal, brain, and prostate cancer (Levin et al., 2006), (Rosenbaum et al., 2005).

Prinomastat (AG 3340) - Prinomastat (AG 3340) is a Nonpeptidomimetic hydroxamic
acid derivative MMP inhibitor that targets MMP-2, MMP-3, MMP-9, MMP-13, and
MMP-14 and participates in tumor invasion and metastasis (Shalinsky et al., 1999).
In advanced prostate cancer patients, the Phase I drug trial of Prinomastat (AG 3340)
in association with mitoxantrone and prednisone is underway (Hidalgo & Eckhardt,

2001).

Rebimastat (BMS-275291) - Rebimastat (BMS-275291) is a broad-spectrum
sulfthydryl-based mercaptoacyl (zinc chelator) targets MMP-1, MMP-2, MMP-3,
MMP-8, MMP-9, MMP-13, and MMP -14 in Phase I clinical research studies (Sikic,
1999). Rebimastat (BMS-275291) strong supress MMP-2 and MMP-9 activity.

Tetracycline Derivatives- The tetracycline derivatives can hamper the activity by
binding with zinc and calcium ions of MMP (J. F. Fisher & Mobashery, 2006). The
chemically modified tetracycline-like Doxycycline is the only FDA-approved MMP
inhibitor that targets MMP-7 and MMP-8 (Kiveld-Rajaméki et al., 2003)

Doxycycline - Doxycycline act as an anticancer agent that can restrict the activity and

production of several MMPs. It inhibits the secretion and activity of MMP-2 and
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MMP-9 in MDA-MB-435 cancer cell lines culture. In in-vitro studies, it inhibits the
growth and development of the U20S osteosarcoma, PC-3 prostate, and MDA-MB-
435 breast cancer cell lines. it also starts apoptosis and suppresses the invasion and
metastatic of the MDA-MB-435 breast cancer and B16F10 melanoma cell lines, (Fife
et al.,, 1998). In phase I medical studies on cancer patients, oral doses of 400 mg
administered twice a day resulted consisted of fatigue, confusion, nausea, and

vomiting as in dose-limiting toxicity (Nanda et al., 2016).
2.8 Natural MMP inhibition compounds

Neovastat (AE-941) - Neovastat (AE-941) orally administrated compound, has anti-
angiogenic and anti-metastatic activity, and is isolated from shark cartilage. Many of
the studies identified his effect on the inhibition of vascular endothelial growth factor
(VEGF) and enzymatic activity of MMPs (FALARDEAU, 2001). The high-dose
administration of neovastat in Phase I and Phase II clinical trials shows their survival
benefit in cancer patients (F. E. Mott et al., 2003). The toxicity effects of neovastat

are nausea, flatulence, diarrhea, vomiting, constipation, and rash.

Genistein is an isoflavonoid (polyphenol) that has anti-tumor, anti-inflammatory, and
anticancer activity. It inhibits the activity of MMPs (MMP-2 and MMP-9) and tumor
growth (X. Huang et al., 2005). In the case of breast and prostate cancers, there are
several studies explaining that genistein has expressed a lower risk of cancer

development and cancer patient death (Gu et al., 2005).
2.9 Conclusion

The creation of MMP inhibitors has number of challenges, like issues of selectivity,
toxicity, lack of efficacy, pharmacokinetics, and biomarker identification. MMPs may
have overlaying substrates and biological functions, thus inhibiting one MMP may not
fully block the pathological process. This redundancy can reduce the potency of MMP
inhibitors as therapeutic agents, in diseases like cancer, where multiple MMPs are
involved in tumor progression and metastasis. Clinical trials of early MMP inhibitors,
such as Marimastat, showed promising results. Advanced drug designing, targeted
delivery systems, and biomarker discovery may eventually overcome these challenges

and limitations, leading to more effective MMP-based therapies.
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CHAPTER -3
Synergistic Structural Inhibition of MMP-9 by Natural

Flavonoids: A Natural Combinatorial Therapy against Cancer

3.1 Introduction

Cancers are a group of diseases connected with uncontrolled growth and rapid rise
of unusual cells in the body. According to the W.H.O in 2022, there were an
estimated 200 lakhs registered cancer and around 97 lakhs deaths due to cancer.
Within in last five years, about a total of 53.5 million people received a cancer
diagnosis. Globally, about 1 in 5 people develop cancer and approximately 1 in 9
men and 1 in 12 women die from the disease. Among cancers, the most widespread
are lung cancer, breast cancer, and colorectum cancer. Lung cancer is a common
death cause in men while in women, breast cancer is the most common cancer

type (https://www. who.int/).

As per, National Cancer Registry Programme Report 2022, India, there were
approximately 14,61,427 cancer cases, at the rate of 100.4 per 100,000. However,
in children of age between 0 to 14 years, the most common cancer is lymphoid
leukemia. In 2022, India recorded 1.4 million new cancer cases and 900,000
deaths due to cancers. Further, breast and cervix cancers were the most common
female cancers accounting for 27% and 18% of new cases, respectively. Among
males, lip and oral cavity cancers and lung cancers were the leading types, making
up 15.6% and 8.5% of new cases, respectively (Sathishkumar et al., 2022). The
WHO predicts a significant increase in new cancer cases, with a projected surge
of 77% to over 35 million by 2050 (https://www.who.int/). This increase is
attributed to lifestyle factors such as tobacco and alcohol use, obesity, population

aging, and growth.

Matrix metalloproteinase-9 (MMP-9) is a Gelatinase B enzyme (Mondal et al.,
2020). It is mainly secreted in the cerebellum, hippocampus, and cerebral cortex
(Xiao et al., 2024a). The synthesis and secretion of MMP-9 occur in the form of
inactive enzymes or as zymogens by endothelial cells, neutrophils, fibroblasts, and

macrophages (Rashid & Bardaweel, 2023). At the time of granulocyte
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differentiation, the bone marrow is the main site of its synthesis (Mondal et al.,
2020). MMP-9 is connected with ECM degradation, tissue remodeling, and nor-
mal tissue turnover. The proteolytic activity of MMP-9 is in- volved in the
alternation of cell-cell and cell-ECM interaction (Hsu et al., 2016). MMP-9
performs remodeling the basement membrane which is made by collagen type IV.
Overexpression of MMP-9 has contributed to the progression of many diseases
such as extracranial arteriovenous mal- formation (AVMs) (Rashid & Bardaweel,
2023), neurological diseases, and inflammatory processes [(Vafadari et al., 2016),
(Hannocks et al., 2019), and cancers (H. Huang, 2018), (Li et al., 2017),(Akter et
al., 2015). Enhanced expression of MMP-9 has been identified by various studies
as a critical element in tumor development and progression (H. Huang, 2018), (L1
et al., 2017),(Akter et al., 2015), (Amin et al., 2017). Tumor cells activate the
neighboring cells that increase the production of MMPs by increasing the
secretion of interferons, interleukins, and growth factors (Jabtonska-Trypu¢ et al.,
2016). As a result, overexpression of MMP9 in cancer conditions results in
basement mem- brane destruction (Hou et al., 2014), (Misko et al., 2002) and
hence promotes tumor invasion, metastasis, angiogenesis, and intervening tumor

microenvironment (Akter et al., 2015).

A past study showed that the MMP-9 polymorphism plays a essential role in
breast cancer and also helps in the identification of individuals with high risk
(Rashid & Bardaweel, 2023). In colon cancer, overexpression of avb6 integrin was
found, that increases MMP-9 secretion, followed by protein-kinase pathway
activation (Niu et al., 1998). VEGF stimulates the expression of MMP-9 in lung
cancer, which contributes to enhanced metastatic potential (Hiratsuka et al., 2002).
The suppression of MMP-9 by matrix metalloproteinase inhibitors (MMPIs) at the
catalytic site can ameliorate the dreaded consequences of MMP9 over- expression
(Amin et al., 2017). Inhibition of MMP9 suppresses cell proliferation by inducing
apoptosis through the release of ligands, such as TNFa and TRAIL (Tumor
necrosis factor-related apoptosis-inducing ligand), from their membrane-bound in-

active form (Nyormoi et al., 2003).

Therefore, overexpression of MMP-9 has a strong association with a wide range of

cancers and their progression, so MMP-9 can be considered as a potential target to
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develop effective therapies against cancer.

Flavonoids, is a polyphenolic compound widely distributed in fruits, vegetables,
and herbs, have antioxidant and anti-inflammatory properties, their potential to
support health, and their relatively low toxicity. Several studies have been done to
evaluate the structural inhibition potential of flavonoids against different targets of

cancers.

Rathod ef al. in their in-silico investigation of natural anti-cancer agents, identified
Gancaonin Q as a potential anticancer agent (Rathod et al., 2023). Rajiv Gandhi et
al. identified chlorogenic acid as an effective inhibitor of MMP-9 (Rajiv Gandhi
et al., 2024). Kumari & Kumar, in their study on glioblastomas identified 7,4'-
dihydroxyflavan, 4'-hydroxy-7-methoxyflavan, and (3R)-3-(4-hydroxybenzyl)-6-
hydroxy-8-methoxy-3,4-di- hydro-2H-1-benzopyran flavonoids as significant
inhibitors of MMP-9 (Kumari & Kumar, 2023). Synergistic effects of drug
combinations have been observed to display more effective inhibition in several
infectious diseases against the target proteins but few studies on the utilization of
a synergistic combination of flavonoids have been conducted against cancer (De

Forni et al., 2022), (Gupta et al., 2022), (Wiraswati et al., 2024), (Ajji et al., 2020)

3.2 Methodology

3.2.1 ADMET Analysis
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Fig. 2: - 3D View Flavonoids: (A) Apigenin, (B) Chrysin, (C) Luteolin, (D)
Hesperetin, (E) Naringenin, (F) Taxifolin, (G) Quercetin, (H) Catechin, (I)
Cyanidin, (J) Peonidin, (K) Genistein, (L) Thymohydroquinone

Flavonoids like Apigenin, Chrysin, Luteolin, Hesperetin, Naringenin, Taxifolin,
Quercetin, Catechin, Cyanidin, Peonidin, Genistein, and Thymohydroquinone
(Table 2) were selected based on previous literature and their low toxicity profiles
for investigating their potential against cancer. The structures of the selected
Flavonoids were drawn, using ChemDraw Ultra Version 12.0 for the
stereochemistry, and converted into SMILES format. To evaluate the
physiochemical properties, toxicity, and bioactivity of the considered
compounds Swiss ADME (Daina et al., 2017), ProTox II (Banerjee et al., 2018),
and Molinspiration (https://www.molinspiration.com/) web servers were used
respectively. Further, to validate the ADME properties ADMEIlab3.0

(https://admetlab3.scbdd.- com/server/evaluationCal) server was used.

The comparative analysis is completed by a chord diagram for their different

properties using the Origin 2023b academic version (https://www.originlab.com/).
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Table 2: - Chemical structure and PubChem CID of selected Flavonoids.

S. No. Compound | PubChe Chemical Structure
Name m CID

1 Apigenin 5280443 OH
OH‘;P‘

OH 0
2 Chrysin 5281607
OH 0
HO
OH 0
3 Luteolin 5280445 O
OH 0 O
OH
OH 0

4 Hesperetin | 72281 ocH,
o : :OH

OH 0
5 Naringenin | 439246 Of
oH 0 O
oH 0
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6 Taxifolin 439533 Ot
7 Quercetin 5280343

8 Catechin 73160

9 Cyanidin 128861

10 Peonidin 441773
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11 Genistein 5280961 O 0

OH

12 Thymohydroquinone | 95779
HO

3.2.2 Principal Component Analysis (PCA)

The Principal Component Analysis (PCA) is used for the analysis of the correlation
between the physiochemical, bioactivity, and toxicity properties (including Heavy
Atom, Atom Number, Aromatic Atoms, Mol. Wt., Log P, H-Donor, H-Acceptor,
Rotatable Bonds, Molar Refractivity, TPSA, Formal charge, Rings, Toxicity class,
GPCR ligand, Ion channel modulator, Kinase Inhibitor, Nuclear Receptor Ligand,
Protease Inhibitor, Enzyme Inhibitor) of the considered flavonoids by using the

Minitab trial version 2021.
3.2.3 Molecular Docking

The 3D structure (Fig. 3) coordinate file of the MMP-9 (PDB ID-6ESM) was
procured from the Protein Data Bank (RCSB). The 3 dimensional structures of all
considered flavonoids were generated through an online smile translator tool
(https://cactus.n- ci.nih.gov/translate/). To explore the synergistic effect of
flavonoids both single ligands and combinations of ligands were docked at the
active site of MMP-9. For combination docking, both ligands in each combination
were docked simultaneously by preparing different ligand combinations in
respective files (Raghavendra et al., 2015). The addition of Kollman charges to
the protein structure were -20.664 atomic units. The used grid size for the docking
had grid center: X = -2.6087, Y = 49.4802, Z = 17.5705; grid size: X = 15.545,
Y= 16.283, Z= 22.504, and grid spacing of 0.375. Docking was performed using
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the Lamarckian genetic algorithm, with a population size set to 150, the number
of evaluations as 25,00000, and the number of generations were 27,000. The rate
of crossover and gene mutation were 0.8 and 0.02 respectively. The binding
energies of individual ligand docking were compared with the docking of
combinations of ligands and the best combinations which showed favorably high
negative binding energy compared to their counterparts were considered the most
effective synergistic flavonoid combinations that can effectively mediate
structural inhibition of MMP-9. To further validate the binding energies and
interactions, all the compounds were docked 100 times each individually. The
combination dockings of all flavonoids were then performed with the number of
iterations as 10 and then the obtained two best combinations of flavonoids were
docked 100 times independently in a site-specific manner. Average values and
standard deviations of binding energies of 100 independent dockings of all ligands
individually and the two best combinations were analyzed and the most

consistent interactions with high negative binding energies were considered.

Fig. 3: Molecular View of MMP-9 (PDBID-6ESM)

3.3 Results

The present study deals with the analysis of natural flavonoids that can potentially
inhibit MMP-9, a lead target for treating the adverse pathologies of cancer. The

present study initially analyzed the physiochemical, bioactivity, and toxicity
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properties of the flavonoids. Along with this their MMP-9 inhibition potential both
individually and in combi- nations was studied using a molecular docking
approach. All 12 selected flavonoids including Apigenin, Chrysin, Luteolin,
Hesperetin, Naringenin, Taxifolin, Quercetin, Catechin, Cyanidin, Peonidin,
Genistein, and Thymohydroquinone were docked individually and in
combinations of two against MMP-9 (PDB ID-6ESM) to find the synergistic

inhibition of the considered target of cancer.
3.3.1 ADMET Analysis

The ADMET examination of the considered 12 flavonoids (Apigenin, Chrysin,
Luteolin, Hesperetin, Naringenin, Taxifolin, Quercetin, Catechin, Cyanidin,
Peonidin, Genistein, and Thymohydroquinone) by using different tools gave
consistent results and determined the effective physiochemical properties, toxicity
values, and bioactive properties of the flavonoids. All the compounds followed
Lipinski’s rule of 5 (Lipinski et al., 2001) with no violation thus displaying high
drug-likeness of the flavonoids in concern. The LDso values of all the compounds
ranged in toxicity class 3 to 5 with most of the compounds lying in class 5 thus
proving the least toxicity (Table 3 & 4, Fig. 4). The bioactivity scores showed
negative scores for the maximum number of the flavonoids for GPCR ligands, ion
channel modulators, protease inhibitors, and kinase inhibitors proving the least off

target inhibition by these com- pounds.
3.3.2 PCA Analysis

Principal component analysis was performed to identify the correlation between
the physiochemical, bioactivity, and toxicity properties of the flavonoids. The first
two components defined the maximum variance (61.2% for the first component
and 14.5% for the second component) among the observations for the considered
variables or properties. Cumulatively the first two components define 75.6% of the
variance (Fig. 5). The scree plot displays the eigenvalues of the correlation of
different components and thus displays the amount of explained variance defined
by each component (Fig. 5). The score plot indicates that the catechins and
taxifolin have similar properties compared to others. Luteolin has similar

physiochemical and bioactive properties to that of quercetin (Fig. 5).
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Table 3: - ADMET properties of selected Flavonoids were analysed by using Swiss ADMET.

. Lipinski [Rule ILDso
S. Heavy |Atom [Aromatic [Mol. Wt. |Log P Rotatable |Molar Form Rule Ghose [Veber of 3 [Reos
No. Molecule IAtom (Number |Atoms H- H- Bonds Refract/TPSA g Rings Liolatio vi- violation violati |violati (mg/
Donor |Acceptor ivity Char N olation o viotation kg
ge
1 Apigenin 20 20 16 270.053 2.577 3 5 1 72.914 190.9 0 3 0 0 0 1 0 2500
2 Chrysin 19 19 16 254.058 2.871 2 4 1 71.25 [70.67 0 3 0 0 0 1 0 3919
3 Luteolin 21 21 16 286.048 2.282 4 6 1 74.579 |111.13 0 3 0 0 0 1 0 3919
4 Hesperetin 22 22 12 302.079 2.519 3 6 2 76.747 196.22 0 3 0 0 0 2 0 2000
5 Naringenin 20 20 12 272.068 2.51 3 5 1 70.195 (86.99 0 3 0 0 0 1 0 2000
6 Taxifolin 22 22 12 304.058 1.186 5 7 1 73.249 127.45 0 3 0 0 0 2 1 2000
7 Quercetin 22 22 16 302.043 1.988 5 7 1 76.244 1131.36 0 3 0 0 0 2 1 159
8 Catechin 21 21 12 290.079 1.546 5 6 1 72.623 (110.38 0 3 0 0 0 1 1 10000
9 Cyanidin 21 21 16 287.055 2.909 5 5 1 74.381 |112.45 1 3 0 0 0 1 1 5000
10 Peonidin 22 22 16 301.071 3.212 4 5 2 79.268 101.45 1 3 0 0 0 2 0 5000
11 Genistein 20 20 16 270.053 2.577 3 5 1 72.914 [90.6 0 3 0 0 0 1 0 2500
12 Thymohydroq 12 12 6 166.099 2.53 2 2 1 48.598 (40.46 0 1 0 0 0 0 2 1000

uinone

SplouoOAe| 4 [eanjeN Aq 6 - dWW JO Uoiiqiyu [ean3onas d1siBiauhs € - saydeyd
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Table 4: - Bioactivity scores of the selected Flavonoids estimated by the
Molinspiration online server.

S. Molecule GPCR | Ion Kinase Nuclear Protease Enzyme
No. ligand channel Inhibitor Receptor | Inhibitor | Inhibitor
modulator Ligand
1 Apigenin -0.07 -0.09 0.18 0.34 -0.25 0.26
2 Chrysin -0.12 -0.18 0.19 0.17 -0.35 0.26
3 Luteolin -0.02 -0.07 0.26 0.39 -0.22 0.28
4 Hesperetin 0.04 -0.26 -0.20 0.38 -0.13 0.16
5 Naringenin 0.03 -0.20 -0.26 0.42 -0.12 0.21
6 Taxifolin 0.09 0.03 -0.04 0.29 0.05 0.29
7 Quercetin -0.06 | -0.19 0.28 0.36 -0.25 0.28
8 Catechin 0.41 0.14 0.09 0.60 0.26 0.47
9 Cyanidin -0.13 -0.09 0.02 0.09 -0.30 0.01
10 Peonidin -0.16 | -0.18 0.01 0.03 -0.34 -0.04
11 Genistein -0.22 -0.54 -0.06 0.23 -0.68 0.13
12 | Thymohydroquinone -0.92 -0.44 -1.06 -0.54 -1.17 -0.46

The biplot contains the information from both the loading plot and the score plot. It
shows the bioactivity properties of the components. while most of the physiochemical
properties mostly have positive coefficients for the first component but less positive or

negative coefficients for the second component (Fig. 5).

3.3.3 Molecular Docking

The docking studies of individual flavonoids with MMP-9 exhibited that luteolin has
the highest negative binding energy (-10.04 kcal/mol) followed by apigenin (-9.674
kcal/mol) with MMP-9, (Table 5). The formation of hydrogen bond defines effective
interactions indicated that the majority of the flavonoids formed hydrogen bonds with
MMP-9 at the active site residues. Results indicated that luteolin, quercetin, and
catechin established four hydrogen bonds, apigenin, naringenin, taxifolin, cyanidin,
and genistein formed three hydrogen bonds, hesperetin, and peonidin resulted in two
hydrogen bonds with the active site of the target protein. (Table 5 and Figs. 7). The
residues of AAs that established hydrogen bonds with the selected ligands are
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GLN227, ALAI189, LEUI88, PR0O240, ALA242, VAL223, MET247, ARG249,
PRO246, but TYR245 amino acid residue formed a hydrogen bond with
thymohydroquinone and genistein. The binding energies of all the flavonoids ranged
from -10.04 kcal/mol for luteolin to -7.166 for naringenin and the inhibition constants
(Ki) ranged from 0.0437 to 5.5884uM (Table 5). Thus, most of these flavonoids

possess the potential to inhibit MMP-9, which has an important role in cancers.

Fig. 4: - Chord diagram showing distribution of different physiochemical,
bioactivity and toxicity properties of selected 12 flavonoids.
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Scree Plot of physiochemical, bioactivity, and Loading Plot of physiochemical, bioactivity, and
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Eigen analysis of the Correlation Matrix
Eigenvalue 11.619 2748 1574 1.408 1.036 0.338 0.163 0.074 0.036 0.003 0.000
Proportion 0.612 0.145 0.083 0.074 0.055 0.018 0.009 0.004 0.002 0.000 0.000
Cumulative  0.612 0.756 0.839 0913 0968 0.985 0.994 0.998 1.000 1.000 1.000

Eigenvalue  0.000 0.000 0.000 0.000  0.000 0.000 -0.000 -0.000
Proportion 0.000 0.000 0.000 0.000  0.000 0.000 -0.000 -0.000

Cumulative 1000  1.000 1.000  1.000 1.000 1.000 1.000 1.000

Fig. 5: - PCA analysis of physiochemical, bioactivity and toxicity properties of the

12 considered flavonoids showing A) Scree plots, B) Score plot, C) Loading plot and
D) Biplot.
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Table. 5: - Amino acids interaction, Hydrogen bond formation, and Binding

energies of MMP-9 (6ESM) — with selected Flavonoids.

Amino acids
interaction

S Ligands with

. Hydrogen
No. | 6ESM

bond
formation
with Amino
acid

Hydrogen
bond
length

Binding Ki
energies (M)
(kcal/mol)

Apigenin

LEU243(A),
ARG249(A),
HIS226(A),

LEU222(A),
GLN227(A,
VAL223(A),
ALA189(A),
GLY186(A),
LEU188(A),
PRO246(A),
TYR248(A),
MET247(A)

GLN227(A)
ALA189(A),
LEU188(A)

2.70
2.96,
2.90
2.98

-9.674

0.0811

Chrysin

VAL223(A),
TYR248(A),
LEU222(A),
LEU243(A),
THR251(A),
ALA242(A),
GLU241(A),
PRO240(A),
ARG249(A),
TYR245(A),
MET247(A),
HIS226(A),

GLN227(A),
PRO246(A)

PRO240(A)

2.71

-9.45

0.1183

Luteolin

LEU188(A),
VAL223(A),
ALAI189(A),
GLN227(A,

LEU222(A),
ARG249(A),
ALA242(A),
MET247(A),
LEU243(A),
HIS226(A),

TYR248(A),
TYR245(A),
PRO246(A)

LEU188(A),
ALA189(A),
GLN227(A)
ALA242(A)

3.11
2.95,
2.96
2.79
3.11

-10.04

0.0437

Hesperetin

GLY186(A),
ALAI189(A),
LEU188(A),
VAL223(A),
LEU222(A),
GLN227(A,
ARG249(A),
LEU243(A),
MET247(A),
TYR248(A),
TYR245(A),

ALA189(A),
GLN227(A)

2.90,
2.97
2.71

-8.23

0.9276
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HIS226(A),
PRO246(A),

Naringenin

ARG249(A),
MET247(A),
LEU222(A),
GLN227(A,
VAL223(A),
ALA189(A),
LEU187(A),
LEU188(A),
GLY186(A),
PRO246(A),
HIS226(A),

TYR248(A),
TYR245(A),
LEU243(A)

GLN227(A)
ALA189(A),
LEU188(A)

2.75
2.88,
3.10
2.80

-7.166

5.5884

Taxifolin

LEU243(A),
MET247(A),
TYR248(A),
LEU222(A),
GLN227(A,
VAL223(A),
LEU188(A),
LEUI87(A),
ALA189(A),
GLY186(A),
PRO246(A),
TYR245(A),
HIS226(A)

GLN227(A)

LEU188(A),
ALA189(A)

3.21,
2.62
2.69
3.02

-7.412

3.6895

Quercetin

TYR245(A),
LEU243(A),
LEU222(A),
HIS226(A),

PRO246(A),
GLY186(A),
LEUI87(A),
ALA189(A),
LEU188(A),
GLN227(A,

MET247(A),
TYR248(A),
VAL223(A),

ALA189(A),
ALA189(A),
LEU188(A),
GLN227(A)

3.12
2.93
2.69
321,
2.65

-7.965

1.4508

Catechin

LEU243(A),
LEU222(A),
TYR245(A),
VAL223(A),
HIS226(A),

GLN227(A),
ALAI189(A),
LEU188(A),
LEU187(A),
PRO246(A),
GLY186(A),
TYR248(A),
MET247(A,
ARG249(A)

VAL223(A),
ALA189(A),
LEU188(A),
MET247(A)

3.19
2.87,
3.11
2.80
3.13

-7.348

4.1103
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9 Cyanidin

GLN227(A),
VAL223(A),
LEU188(A),
TYR248(A),
LEU222(A),
GLU241(A),
LEU243(A),
THR251(A),
TYR245(A),
MET247(A),
ALA242(A),
PRO240(A),
ARG249(A,
PRO246(A),
HIS226(A)

PRO240(A),
ARG249(A)
PRO246(A)

2.90
3.06
2.70

-9.601

0.0917

10 Peonidin

ARG249(A,
TYR245(A),
PRO240(A),
GLU241(A),
PRO246(A),
HIS226(A),

HIS236(A),

MET247(A),
GLN227(A),
VAL223(A),
LEU222(A),
TYR248(A),
THR251(A),
LEU243(A),
ALA242(A)

ARG249(A)
PRO240(A)

3.22
2.82

-9.11

0.2101

11 Genistein

GLN227(A),
ALA189(A),
VAL223(A),
TYR248(A),
HIS226(A),

LEU222(A),
THR251(A),
ARG249(A),
LEU243(A),
ALA242(A),
TYR245(A),
MET247(A),
LEU188(A)

ALA189(A),
TYR245(A),
LEU188(A)

3.33
2.80
3.20

-9.54

0.1017

12 | Thymohydroquinone

LEU222(A),
TYR248(A),
ARG249(A)
ALA242(A)
LEU243(A)
TYR245(A)
MET244(A)
MET247(A)
HIS226(A)
VAL223(A)
PRO246(A)
LEU188(A)
GLN227(A)

TYR245(A)

3.06

8.2113
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Fig.6: - 3D Molecular docking conformations of MMP-9 (6ESM) with
Flavonoids: (A) Apigenin, (B) Chrysin, (C) Luteolin, (D) Hesperetin, (E)
Naringenin, (F) Taxifolin, (G) Quercetin, (H) Catechin, (I) Cyanidin, (J)
Peonidin, (K) Genistein and (L) Thymohydroquinone.
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selected flavonoids: (A) Apigenin, (B) Chrysin, (C) Luteolin, (D) Hesperetin, (E)
Naringenin, (F) Taxifolin, (G) Quercetin, (H) Catechin, (I) Cyanidin, (J)

A
ONERC

Pi-Donor Hydrogen Bond
Pi-Sigma

Pi-Pi Stacked

Pi-Pi T-shaped

Pi-Alkyl

A55Y

o
S

A:i8s

B PP Seacked
i 1 Mikyl

L 1 Pr-Alkys

Peonidin, (K) Genistein and (L) Thymohydroquinone.

50



Chapter - 3 Synergistic Structural Inhibition of MMP - 9 by Natural Flavonoids

3.3.4 Molecular Docking of Combinations of Flavonoids

The top 10 compounds that showed the best binding energies in individual ligand
docking were considered for combination dockings to study their synergistic inhibition
effect against MMP-9. All the combination docking conformations showed
significantly high binding energies compared to the individual dockings. The two best
combinations (Quercetin- Genistein and Luteolin and Genistein) that interacted with
the active site residues were docked 100 times independently and the highest value,
average values, and standard deviations of the binding energies are presented in (Table
6). The highest binding energy of quercetin and genistein was -15.48 kcal/mol and
luteolin and genistein was -15.31 kcal/- mol for MMP-9. The 2D and 3D docking
conformations of the two combinations in (Fig. 8). Both the combinations of flavonoids
makes many hydrogen bonds with LEU188, ALA189, HIS226, HIS230, ASP235,
TYR245, PRO246, and MET247 revealing effective inhibition of MM- P-9
synergistically.

Table 6: -Molecular docking binding energies and amino acids interaction of
the two best combinations of flavonoids with MMP-9 (6ESM).

Flavonoid Amino Acids Interaction Amino acid with Highest
Combination hydrogen bond Binding
with 6ESM interaction Energy
(Kcal/mol)
Quercetin- | HIS230, GLN227, PHE181, ALA189, ALA189, -15.48

Genistein | LEU187, PRO180, TYR179, HIS190, | PRO180, PRO246
HIS236, MET247, PRO246, HIS226

Luteolin and | PHE192, ALA191, HIS236, HIS230, ASP235, -15.31
Genistein | HIS190, HIS226, GLN227, ALA189, ALA191,
LEU188. ASP235, PRO193, ALAI189
A

Fig. 8: - 3D Molecular docking conformations of MMP-9 (6ESM) with a
combination of (A) Quercetin and Genistein and (B) Luteolin and Genistein
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3.4 Conclusion

The present combination analysis of flavonoids for structural inhibition of MMP-9
provided quercetin and luteolin in combination with genistein identified as the potent
flavonoid combinations. The PCA investigation of the physiochemical and bioactive
properties of flavonoids in turn depicted similarity in physio chemical and biological
properties of quercetin and luteolin. Genistein showed a significant binding energy of
-9.54 kcal/ mol in individual docking and in combinations with quercetin and luteolin
showed highly efficient binding energy values of greater than -15 kcal/mol revealing
the synergistic effect of the combinations of flavonoids. In both combinations, the
binding orientation of genistein was at the same position displaying its high affinity
binding at the respective site containing LEU188, ALA189, HIS226, TYR245,
PRO246, and MET247.
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CHAPTER - 4

In-Silico Combinatorial inhibition effects analysis of NSAIDs

against MMP-9 for the treatment of cancer

4.1 Introduction

Cancer refers unusual division and growth of body cells with the capability to
proliferate to distant parts of the body. It is the second major cause of death worldwide.
The International Agency for Research on Cancer gave a detailed report on global
cancer occurrence and death based on GLOBOCAN (Global Cancer Observatory)
2020 data. According to report about 19.3 million fresh cancer cases identified, and
about 10.0 million cancer patients died worldwide in the year 2020. Approximately
2.3 million (11.7 %) new breast cancer cases and 2.2 million (11.4 %) new lung cancer
cases were identified in the year 2020. Also, an increase to 28.4 million cancer

patients by the year 2040 has been proposed (Sung et al., 2021)

According to the National Cancer Registry Programme (NCRP) Report 2022, India's
estimated breast cancer occurrence and prevalence rate was 105.4 per 100000 in
females, and the lung cancer rate was 95.6 per 100000 in males. The occurrence of
cancer cases in India is known to increase by 12.8 % from the year 2022 to 2025. The
Global Cancer Observatory forecasted 2.08 million cancer cases, indicating a rise of
57.5 % from the year 2020 to 2040 for India. The most common body parts prone to
cancer are the digestive system, breast, genitals, oral cavity, and respiratory system.

Lung cancer is most prominent in males, while breast cancer is in females.

Matrix metalloproteinase 9 (MMP-9) is a component of the family of Gelatinase B,
and it is capable of degrading gelatin. It is normally present in the cerebellum,
hippocampus, and cerebral cortex (Xiao et al., 2024). The bone marrow is the main
site for the synthesis of MMP-9, which is then stored in neutrophils. Further,
macrophages are also a dominant originator of MMP-9 (Y. Wang et al., 2024).
Upregulation of MMP-9 has promoted the progression of many diseases, such as
emphysema in Smad3-null mice. MMP9 overexpression also enhances the

invasiveness of the LNCaP cell line of prostate tumor.
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MMP-9 (Gelatinase B) has been reported to promote cancers. In lung cancer, MMP-9
is induced by Skp2, a constituent of the E3 ubiquitin ligase. Skp2 has significant
function in the induction of p27 degradation; thus, overexpression of Skp2 may cause
an increase in p27 proteolysis and encourage cell and tumor invasion and metastasis
(Hung et al., 2010). In breast cancer, the overexpression of MMP-9 relates to the
expression of transcription factor activator proteins AP-2 and HER2. The
overexpression of HER2 and AP-2 is responsible for MMP induction and gelatinase
regulation (Pellikainen et al., 2004). Overexpression of MMP-9, therefore, has a
strong connection with the extensive range of cancers and their progression, so MMP-

9 can be considered as a potential target to develop effective therapies against cancer.

Nonsteroidal anti-inflammatory drugs are frequently used drugs for the treatment of
pain, fever, stiffness, and inflammation. Globally, over 300 lakhs people use NSAID
per day. Asprin has been used for the last 120 years and is considered the procreator
of all NSAIDs. Based on chemical structures, COX inhibitory properties, and
selectivity, the NSAIDs are classified as non-selective and selective NSAIDs. The
non-selective  NSAIDs include NSAIDs-carboxylic acid (Asprin, Naproxen,
Diclofenac, Ibuprofen, Indomethacin, Ketoprofen, and Flurbiprofen), Oxicams
(Piroxicam), preferential COX-2  inhibitors-Carboxamides  (Meloxicam),
Sulphonanilides (Nimesulide), and Naphthalenes (Nabumetone), while the selective
COX-2 inhibitors include diaryl-substituted Pyrazoles/Furanones (Celecoxib,
Rofecoxib, Valdecoxib) (Ozleyen et al., 2023). The major mode of action of NSAIDs
is inhibition of cyclooxygenase (COX-1 and COX-2)

Wang et al., 2020, studied that flurbiprofen inhibits inflammatory factor expression,
multiplication, invasion, and migration of colorectal cancer cells by suppressing the
expression of COX2 and MMP-9. The inflammatory factor inhibition is measured by
TNF-a, IL-B, and IL-6 levels through ELISA. These factors are decreased in
flurbiprofen-treated cells. Moreover, multiplication, invasion, and migration were
measured by transwell and wound healing assay with SW620 cells. The western
blotting method showed the inhibited expression of MMP-9 in the samples treated
with Flurbiprofen (X. Wang et al., 2020). Prasad et al., 2024 studied the protective
effects of NSAIDs (Aspirin and Naproxen) in TMPSS2-ERG fusion-driven prostrate

tumorigenesis as inhibitory effects in proliferation and inflammation. The effect of
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NSAIDs was concerned with the inhibited expression of M-CSF, 1L-33, CCL22,
CCLI12, and CD93, which are tumor-promoting factors; chemerin, Fit-3 ligand, and
IGFBP-5, which are growth signaling molecules, and MMP-9, which are stromal
alternation proteins (Prasad et al., 2024). Syggelos et al., 2007 investigated the
inhibitory effects of NSAIDs on both MMP-2 and MMP-9 by gelatin zymography
(Syggelos et al., 2007). Fisher & Demel, 2019 discussed NSAIDs as potential
therapeutic agents in overcoming inflammation in intracranial aneurysms (IA)
progression. They effectively suppress many inflammatory factors, including nuclear
factor-kB and MMPs (MMP-9) which are involved in IA. Various studies have been
focused on the downregulation of MMP-9 through NSAIDs for treating cancer and
other inflammatory responses (Fisher & Demel, 2019).

Therefore, the effective role of MMP-9 in the development and progression of
carcinogenic conditions and the efficient anti-inflammatory properties of the Non-
Steroidal Anti-inflammatory drugs (NSAIDs), provide a foundation to the present
study for the identification of potential NSAID combinations that display synergistic
effects and can inhibit the MMP-9 structurally, using an in-silico approach, to provide

a high potential treatment against cancers.

4.2 Methodology

4.2.1 ADMET Analysis and Principal Component Analysis (PCA)

Previous studies and anti-inflammatory properties of non-steroidal anti-inflammatory
drugs (NSAIDs) focused on the selection of Diflunisal, Fenoprofen, Flurbiprofen,
Ketoprofen, Ketorolac, Nabumetone, Naproxen, Oxaprozin, Piroxicam, and
Celecoxib (Table 7 and Fig 9) for identification of their possibilities as MMP-9
inhibitor. The structures of the all 10 selected NSAIDs were drawn, using ChemDraw
Ultra Version 12.0 for the stereochemistry, and converted into SMILES format. The
physiochemical properties of these NSAIDs were evaluated using SwissADME
(Daina et al., 2017).

The analysis of toxicity was performed using Pro Tox II while the bioactivity was

analyzed in-silico by Molinspiration (https://www.molinspiration.com/) web servers
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respectively (Banerjee et al., 2018). The Origin 2023b was used for generating a chord
diagram for comparison of different NSAID properties.

The Minitab trial version 2021 was utilized for conducting the PCA which evaluates
the connection between the bioactivity, physiochemical properties, and toxicity of the

selected NSAIDs.
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Fig. 9: - 3D View NSAIDs: (A) Celecoxib, (B) Diflunisal, (C) Fenoprofen, (D)
Flurbiproxen, (E) Ketoprofen, (F) Ketorolac, (G) Nabumetone, (H) Naproxen,
(I) Oxaprozin, (J) Piroxicam

4.2.2 Molecular Docking

The crystal structure of MMP-9 was downloaded from RCSB-PDB, which had PDB
ID 6ESM. The structures of selected non-steroidal anti-inflammatory drugs (NSAIDs)
in  3D-conformations were generated by online smile translator tool

(https://cactus.nci.nih.gov/translate/). Molecular docking was performed by
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AutoDock Tools 1.5.6 (https://autodock.scripps.edu/), individually and in
combinations at the active site having coordination of 3 histidine (His 226, His 230,
His 236, and Zn. For combination docking, two NSAIDs were considered together in
pdbqt format to perform docking. The Kollman charges of -75.265 atomic units were
added to the MMP-9. The grid size X =12.165, Y= 15.184, Z= 18.128, grid center: X
=1.582,Y =50.36, Z = 19.54; and grid spacing of 0.33 A was used for docking. The
population size =150, the number of evaluations =25,00000, and the number of
generations =27,000 were used in the Lamarckian Genetic Algorithm in docking. The
crossover and gene mutation rates were 0.8 and 0.02 respectively. The docking
binding energies and docking interactions of both individual and combination
dockings were analyzed to study the individual and synergistic effect of molecules
and the images of best conformations were generated using PyMol

(https://www.pymol.org/).

Table 7: - Chemical structure and Pub Chem CID of considered NSAIDs.

S. No. | NSAIDs Name | Pub Chemical Structure
Chem
CID
1 R a3
N
~

T\
Z_(‘/‘J
0

\

CELECOXIB 2662 H ~u

OH

DIFLUNISAL 3059 OH
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FLURBIPROFEN | 3394

0
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0
HO
HO
0
KETOPROFEN 3825

3
0
FENOPROFEN 3342
F
0
o

OH
OH

KETOROLAC 3826

os

NABUMETONE | 4409 0
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4.3 Results

MMP-9 has been established as an effective cancer target due to its overexpression in
different types of cancers. In this study, different NSAIDs have been selected based
on their chemical and drug-like properties and that have potential to inhibit MMP-9
using molecular docking. The 10 selected NSAIDs effective candidates are Celecoxib,
Diflunisal, Fenoprofen, Flurbiprofen, Ketoprofen, Ketorolac, Nabumetone,
Naproxen, Oxaprozin, and Piroxicam (Table 7) and the PDB ID of 6ESM was used
for 3D structure of MMP-9.
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4.3.1 ADMET and PCA analysis

The ADMET analysis was done by Swiss ADME for all the selected NSAIDs. The
predicted LD50 values present the lethal median dose of substance required to kill
50% of the test animals. These values ranged from 49mg/kg to 3880mg/kg for the
considered NSAIDs, and showed the diverse nature of the selected NSAIDs (Table 9).
Lipinski’s rule of 5 is considered to assess the drug-likeness of molecules, and
molecules having molecular weight < 500 Daltons, LogP < 5, hydrogen bond donors
<5, and hydrogen bond acceptors < 10 are considered to have effective drug-like
properties. The analysis based on Lipinski’s rule of 5 to evaluate drug-likeness proved
that all the ligands follow these rules with no violation, proving that all NSAIDs have
high drug-like properties (Table 9). Bioactivity scores showed negative score values
for the ability of the considered NSAIDs to convey inhibition of common off-targets
or toxic targets (Table 8).

Table 8: - Bioactivity scores of the considered NSAIDs estimated by the

Molinspiration online server.

S. Ligands GPCR | Ion Kinase Nuclear | Protease | Enzyme
No. ligand | channel Inhibitor | Receptor | Inhibitor | Inhibitor
modulator Ligand

1 -0.06 | -0.27 0.01 0.28 -0.06 0.17
CELECOXIB

2 0.01 |0.15 0.05 0.26 -0.14 0.22
DIFLUNISAL

3 -0.02 | 0.02 -0.26 0.29 -0.27 0.20
FENOPROFEN

4 0.09 |0.20 -0.12 0.30 -0.03 0.28
FLURBIPROFEN

5 0.09 |0.07 -0.15 0.39 -0.09 0.27
KETOPROFEN

6 0.29 |-0.04 -0.09 -0.03 -0.29 0.62
KETOROLAC

7 -0.26 |-0.09 -0.70 -0.25 -0.33 0.08
NABUMETONE

8 -0.11 | -0.06 -0.38 0.14 -0.26 0.15
NAPROXEN

9 0.27 |0.05 0.06 0.40 -0.16 0.32
OXAPROZIN

10 -0.42 | -0.57 -0.50 -0.73 -0.04 0.18
PIROXICAM
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Principal Component Analysis is a multivariate technique that correlate information
from a number of observed variables related to a subject into a smaller number of
variables. It reduces a large dataset of variable to extract essential features known as
principal components. Variance indicates the amount of variability of the variables
(Greenacre et al., 2022). PCA was performed for the compounds to study the variance
and the association among the compounds based on their ADMET properties. The first
two components generated by the analysis define the 80.8% variance of the data. The
contribution of the top ten principal components in defining explained variance is
presented in the Scree Plot (Figure 10). Close association among naproxen,
flurbiprofen, ketorolac, and ketoprofen was observed on the basis of ADMET
properties in the score plot, where the scores of these molecules lie in the same
quadrant and are closely linked to each other (Figure 10). The loading plot displays
the association among the variables or the ADMET properties selected for analysis
(Figure 10). Among the physicochemical properties of the NSAIDs, molecular
refractivity, aromatic heavy atoms, heavy atoms, molecular weight, hydrogen bond
acceptors, and total polar surface area (TPSA) were found to be associated with the
first principal component, while the number of rotatable bonds was associated with
the second component. The LD50 values were positively associated with the second
component. The association was observed between the number of rotatable bonds and
LD50 values. The biplot compiles both score and loading plots and defines the
association of compounds with different properties as well as with first and second
components (Figure 10). The compounds fenoprofen, ketoprofen, ketorolac,
flurbiprofen, and naproxen were observed to have similar bioavailability scores and
thus were closely arranged in the biplot. Nabumetone, with the least TPSA, significant
bioavailability, and extremely high LD50 of 3880mg/kg was observed to be different
among all the selected NSAIDs. Oxaprozin and piroxicam were distantly associated
to the each other on the basis of bioavailability. Still, they were found to have a
positive association with the first component due to mild similarity in
physicochemical properties. This analysis proves that a diverse variety of NSAIDs

have been selected to examine the for identification potential compounds.
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Table 9: - ADMET Properties of selected NSAIDs were analyzed by using Swiss ADMET

LD50
Aromatic H- H- Bio Lead (mg/
Heavy | heavy Rotatable bond bond Lipinski Ghose Veber availability | Likeness Kg)
Molecule MW atoms atoms bonds acceptor | donor MR TPSA Log P violations violations violations Score violations
1400
Celecoxib 381.37 26 17 7 1 | 89.96 86.36 3.4 0 1 0 0.55 1
392
Diflunisal 250.2 18 12 5 2 | 60.78 57.53 3.27 0 0 0 0.85 1
800
Fenoprofen 242.27 18 12 3 1 | 6931 46.53 3 0 0 0 0.85 1
117
Flurbiprofen | 244.26 18 12 3 1| 68.19 373 3.59 0 0 0 0.85 2
49
Ketoprofen 254.28 19 12 3 1| 72.67 54.37 2.84 0 0 0 0.85 0
189
Ketorolac 255.27 19 11 3 1] 69.81 59.3 2.05 0 0 0 0.85 0
388
Nabumetone | 228.29 17 10 2 0] 70.03 26.3 3.23 0 0 0 0.55 1
248
Naproxen 230.26 17 10 3 1| 66.79 46.53 2.76 0 0 0 0.85 1
1210
Oxaprozin 293.32 22 17 4 1| 83.73 63.33 3.4 0 0 0 0.85 1
216
Piroxicam 331.35 23 12 5 2 | 87.52 107.98 1.38 0 0 0 0.56 0
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Fig.10: - (A). Chord Diagram showing ADMET properties of the selected 10 NSAIDs
(B). Principle Component Analysis Eigen Value Correlation Matix, Scree Plots,
Loading Plots. and Biplots.

64



Chapter - 4 In-Silico Combinatorial inhibition effects analysis of NSAIDs against MMP - 9

4.3.2 Molecular Docking of Individual NSAIDs

The docking of MMP-9 with the selected NSAIDs was completed to examine the
high-affinity inhibitor. The highest negative binding energies of -12.98 and -12.98
kcal/mol were obtained for Oxaprozin and Piroxicam with MMP-9. The binding
energies of other NSAIDs were significant ranging from -12.42 to -11.31 kcal/mol
(Table 10). The interaction analysis showed that all the NSAIDs formed significant
hydrogen bonding with MMP-9, containing the three histidine-Zn coordination
complexes, which mediates the catalysis (Fig. 12 and 13). Flurbiprofen having a
binding energy of -12.56 kcal/mol, was observed to form a hydrogen bond with
His226 of this coordination complex. The sulfonamide group celecoxib formed four
hydrogen bonds at the MMP-9 active site residues with backbone atoms of Val223,
Leu243, Tyr248 and Leu222. The diflunisal formed 6 hydrogen bonds with the
Met247, Pro246, Tyr245, Leu243, Ala242, and Arg249. Oxaprozin and Piroxicam
with the highest binding affinities formed 3 and 5 hydrogen bonds with Gln227,
Alal91, and His190 and, Met247, Tyr248, Pro246, His190, and Leul87, respectively.
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Fig. 11: - 3-D Molecular Docking View of NSAID with MMP-9 (6ESM)-(A)
Celecoxib, (B) Diflunisal, (C) Fenoprofen, (D) Flurbiprofen (E) Ketoprofen (F)
Ketorolac, (G) Nabumetone, (H) Naproxen, (I) Oxaprozin (J) Piroxicam.
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Fig. 12: - 2-D Molecular Docking View of NSAID with MMP-9 (6ESM) - (A)
Celecoxib, (B) Diflunisal, (C) Fenoprofen, (D) Flurbiprofen (E) Ketoprofen (F)
Ketorolac, (G) Nabumetone, (H) Naproxen, (I) Oxaprozin (J) Piroxicam.

Table 10: - Amino acids interaction, Hydrogen bond formation, and Binding
energies of MMP-9 (6ESM) with 10 Selected NSAIDs.

S. Ligands Amino acids Amino acid | Hydrogen | Binding Ki
No. interaction with bond energies (nM)
hydrogen length (kcal/mol)
bond
interaction
1 GLY186, PRO246, ARG249, 291, -12.42 0.0008
VAL223, TYR248, | MET247, 2.96,
LEU243, ARG249, GLN227 3.03
MET247, LEU222,
TYR245, HIS226,
HIS236, HIS230,
ALA189, ALA191,
GLN227, HIS190,
CELECOXIB LEU187, LEU188
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2

DIFLUNISAL

LEU222,
GLN227,
HIS226,

TYR248,
PRO246,
ALA242,
GLU241,
PRO255,
THR251

LEU243,
LEUI18S,
VAL223,
MET247,
TYR245,
PRO240,
ARG249,
PHE250,

ARG249

3.03

-12.42

0.0008

FENOPROFEN

PRO240,
MET247,
TYR248,
VAL223,
MET244,
LEU222,
PRO255,
ARG249,

ALA242,
PRO246,
LEU18S,
TYR245,

HIS226,
LEU243,
THR251,

PHE250

ARG249,
HIS226

2.94,
2.56

-11.31

0.0051

FLURBIPROFEN

GLU241,

ALA242,

TYR245,MET247,

PRO246,
VAL223,
GLN227,
LEU222,

ARG249,

THR251

HIS226,
LEUI18S,
TYR248,
LEU243,
PHE250,

ARG249

2.77

-12.56

0.0006

KETOPROFEN

PRO246,
TYR245,
LEU243,
TYR248,
VAL223,
ALA189,
LEU18S,

MET247,
HIS226,
LEU222,
ARG249,
GLN227,
LEU187,
GLY186

LEUI1SS,
GLN227,
ALA189

2.75,
3.11,
2.92,
3.05

-12.56

0.0006

KETOROLAC

ARG249,
GLN227,
HIS226,

VAL223,
TYR245,
ALA242,
PRO255,
THR251,

TYR248,
LEU18S,
PRO246,
MET247,
LEU243,
GLU241,
LEU256,
LEU222

PRO255

3.04

-12.12

0.0013
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7

NABUMETONE

TYR245,
LEU243,
GLU241,
ARG249,
HIS226,

GLN227,
ALA189,
MET247

ALA242,
THR251,
PRO255,
LEU222,
TYR248,
VAL223,
LEU188,

ARG249,
GLN227

2.89,
3.18,
3.18

-11.54

0.0035

NAPROXEN

MET247,
PRO240,
THR251,
PRO255,
ARG249,
LEU222,
TYR248,
VAL223,

TYR245,
ALA242,
PHE250,
GLU241,
LEU243,

HIS226,
LEU1SS,
GLN227

ARG249

2.94

-11.6

0.0031

OXAPROZIN

LEU222,
TYR248,
MET247,
GLY186,
HIS236,

HIS230,

ALA189,
VAL223,

LEU243,
LEU188,
PRO246,
LEU187,
GLN227,

HIS190,

HIS226,
ARG249

ARG249

2.74

-12.98

0.0003

10

PIROXICAM

GLU241,
LEU243,
MET247,
PRO246,
ALA189,
LEU18S,
TYR248,
THR251

ALA242,
TYR245,

HIS226,
VAL223,
GLN227,
LEU222,
ARG249,

ARG249,
TYR245

2.64,
2.44

-12.98

0.0003

4.3.3 Molecular docking of combination of NSAIDs

The synergistic effect of these compounds for inhibition of MMP-9 was observed by

combination docking of the selected compounds into the active site of the MMP-9.

The two compounds that exhibited high negative binding affinities in individual
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molecular docking were considered for evaluation of the synergistic inhibition effect.
The binding energy of the combination docking was the same as that of the dockings
performed individually. The Oxaprozin-Piroxicam combination gave the binding
energy of -12.98 kcal/mol with MMP-9 showing consistency of interactions of the two
compounds (Table 11 and Fig. 13 - 14). The combination of ligands formed 2
hydrogen bonds of which one was with Alal91 and the other with His226 which
participates in the coordination complex with the Zn ion at the active site. Thus, our
analysis of NSAIDs suggested that the identified combination of NSAIDs can convey
highly effective synergistic structural inhibition of MMP-9 by binding at the active

site of the enzyme.

Table 11: Binding energies of (MMP-9) with Oxaprozin — Piroxicam

combination.

NSAIDs Combination and 6ESM Highest Binding Energy (Kcal/mol)

Oxaprozin-Piroxicam -12.98 kcal/mol

Fig.13: - Docking conformation of MMP-9 (6ESM) with Oxaprozin — Piroxicam

Combination.
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Wa

i

Fig. 14: - Molecular Docking interaction of MMP-9 (6ESM) with Oxaprozin —
Piroxicam Combination.

4.4 Conclusion

The present study evaluated the physiochemical and biological properties of NSAIDs
by PCA analysis. The docking binding energies in the present study were highly
significant compared to previous studies and thus showed the immense potential of
the selected NSAIDs to inhibit MMP-9. The combination analysis of Non-Steroidal
Anti-Inflammatory Drugs (NSAIDs) for inhibiting MMP-9 revealed that the
combination of Oxaprozin-Piroxicam with MMP-9 was the most effective one.
Oxaprozin and Piroxicam revealed high affinity in both individual and combination
dockings and the docking conformations were consistent blocking the active site of

the MMP-9 thus inhibiting its activity.
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CHAPTER -5

Molecular Docking and In Vitro Evaluation of Luteolin and
Piroxicam Reveal Synergistic Anticancer Potential

5.1 Introduction

Cancer is a highly complicated disease that influences a large number of people and
is a prime cause of death in the world (9.7 million cancer deaths in 2022), with about
78 % of cases diagnosed in individuals aged 55 and older. The most common types of
fatal cancers vary between men and women, with lung, stomach, liver, colon, and
breast cancer being the most frequent. Worldwide, cancer deaths are projected to rise,

with an estimated 12 million deaths expected annually by 2030 (Sainz et al., 2012).

Free radicals are normally reactive oxygen species (ROS) and reactive nitrogen
species (RNS), which oxidize cellular proteins, nucleic acids, and lipids. Lipid
peroxidation is a process where free radicals cause damage to polyunsaturated fatty
acids. This process involves the propagation of oxidative damage. It can be terminated
by enzymes such as glutathione reductase, glutathione peroxidase, and superoxide
dismutase (Schattler et al., 1998) or antioxidants present in the body that scavenge
free radicals. (Cheeseman & Slater, 1993). While the body has antioxidant defences
to manage these free radicals, an excess can lead to oxidative and nitrosative stress.
This chronic stress is linked to several diseases, including cancer, highlighting the
importance of maintaining a balance in the body’s redox system. It is investigated that
ROS may cause the breaking of the DNA strand, and oxidative damage to the
nucleotides, causing mutagenesis, resulting in cancer. Cancer cells have high levels of
reactive oxygen species (ROS), that may cause DNA damage and cell death. Increased
levels of ROS cause oxidative stress, damaging proteins, lipids, DNA and
mitochondria (Pizzino et al., 2017), with DNA being particularly vulnerable. This
damage can lead to genomic instability and cancer progression, Recent studies on
treatment called NCX4040 (a nitric oxide donor) generates ROS, may destroy tumor
cells (Sinha et al., 2022). Thus, Oxidative stress and inflammation are related to cancer

and apoptosis tumor cells (Reuter et al., 2010).

A moderate accumulation of ROS can support tumor growth, (Moloney & Cotter,

2018), while excessive ROS or insufficient clearance leads to oxidative stress, (Perillo
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et al.,, 2020), causing damage to DNA, which can promote cancer. Guanine is
particularly vulnerable to oxidation, resulting in products like 8-oxoguanine that
linked to tumorigenesis (Burrows & Muller, 1998), (C. Li et al., 2022). The base
excision repair pathway is crucial for repairing oxidative DNA damage, if it fails, the
likehood of mutation rises can cause tumor induction (Boiteux et al., 2017).
additionally, cancer cells can adapt to higher ROS levels by enhancing their
antioxidant defences, which further support cancer progression. Thus, a moderate

increase in ROS is seen as beneficial for cancer transformation.

Excessive generation of reactive oxygen derivatives are linked to cancer development
and progression (Circu & Aw, 2010), (Feng et al., 2020). High oxygen radicals levels
are associated with various malignancies. Factors such as adaptation to low oxygen,
metabolic changes, oncogenic mutation, and activation of pro-tumor signaling
contribute to tumor formation. Hypoxia induced ROS control the expression of MMP-
2 and MMP-9. It also promotes proliferation, migration and invasion of glioblastoma.

Thus, it has been specially noted as a significant factor in this process.

Excessive concentration of free oxygen species may lead to cell-cycle arrest and
apoptosis. To counteract this, cancer cells activate the transcription of antioxidants
enzymes (Perillo et al., 2020). The nuclear erythroid 2-related factor (NRF2) act as a
key factor in regulating antioxidants response (Sporn & Liby, 2012). NRF2 is often
overexpressed in cancer, promoting cell survival by regulating the antioxidant system.
Normally NRF2 is degraded by KEAP1, but under oxidative stress, it separates from
KEAPI, moves to the nucleus, and activates antioxidant response elements (ARE) in
target genes (Kansanen et al., 2013). These genes include those for various antioxidant
enzymes, such as NAD(P)H Quinone dehydrogenase 1 and catalyse (Ma, 2013). Thus,

cancer cells prevent themselves from excessive ROS.

Reactive oxygen species (ROS) may perform oxidative DNA damage, leading to
double-stranded breaks and the creation of mutagenic 8-o0xo0-7-hydroxy-2-
deoxyguanosine (8-oxodG). This compound is a significant contributor to
spontaneous mutagenesis, as it can cause the conversion of guanine to thymine by
pairing with cytosine and adenine (Sallmyr et al., 2008), (Oka & Nakabeppu, 2011).

The build-up of 8-0x0dG in cellular genome is a factor for cancer development.
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Iron is a root source of ROS production and perform a key function in cell death across
various organism and pathological conditions (Dixon & Stockwell, 2013). it is
considered as a contributor component in the development of several cancers due to
iron-induced oxidative stress (Toyokuni, 2016). The clinical impact of excess iron-
induced ROS in cancers, emphasizing the connection between iron-induced ROS and
carcinogenesis. The reducing therapeutic iron levels and lowering ROS can improve
liver health and decreases HCC risk in liver cancer patients (Kato et al,
2007).Antioxidants help mitigate this damage by breaking the chains formed by these
free radicals either by donating a hydrogen atom or an electron. Many of the
investigations suggested that vegetables, fruits, and plants contain natural substances
such as flavonoids, which have an antioxidant effect and can reduce the potential stress
generated by reactive oxygen species. Approximately 4000 flavonoids have been
found to date. (AQIL et al., 2006) The protective role of flavonoids in biological
systems is attributed to their capacity to donate electrons to free radicals, bind metal
catalysts, stimulate antioxidant enzymes, and neutralize alpha-tocopherol radicals,
and inhibit oxidases. The common flavonoids included in DPPH and MTT assay study
were Luteolin, Apigenin, and Quercetin. They have significant health benefits in
various studies, such as luteolin has potential use as a chemopreventive agent against
chromium-induced cancer by scavenging ROS and modulating cell signalling in
human bronchial epithelial cells (Pratheeshkumar et al., 2014). It may also have
medicinal benefits for cognitive dysfunction in Alzheimer’s disease (Fu et al., 2014),
and can positively influence liver carcinogenesis by reducing mast cell recruitment
(Balamurugan & Karthikeyan, 2012). Apigenin have antioxidative properties and
chelating redox-active metals. Apigenin’s antioxidative activities are linked to its
ability to donate hydrogen ions and electrons, which helps to stop the production of
free radicals and prevent oxidative damage by scavenging free radical (Abdulla et al.,
2017). The antioxidant mechanism of apigenin, highlighting its ability to enhance
bioavailability and inhibit oxidative enzymes. The major in-vitro methods for
assessing Apigenin’s antioxidant potential include DPPH, ORAC and ABTS.
(Kashyap et al., 2022). There is limited information available on Apigenin’s
antioxidant properties and discussion on its effects and mechanisms of action.
Quercetin has been researched for its biological activities, including antioxidants, anti-

inflammatory, antitumor (Y. Li et al., 2016). Quercetin can impede growth of cancer
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cell by causing cell cycle arrests at G2/M or G1 phase and promoting the activity of
enzymes and ROS in cells (Seufi et al., 2009). It activates ROS-scavenging enzymes
for the reduction of intracellular ROS level (N. Li et al., 2014). Pure Quercetin have
higher antioxidant activity. Due to the contribution of hydroxyl groups. The radical
inhibitory and metal reducing activity of quercetin decreases when cations are
chelated. It utilized three methods including DPPH. The metal ions significantly alter
the chemical properties, affecting its antioxidant activity. Quercetin may reduce Fe

(ITT) in a concentration and time dependent manner (Dolatabadi et al., 2014).

Various assays are employed to assess the antioxidant activity of herbal extracts and
phenolic compounds, utilizing different radicals and methods to analyze antioxidant
effects and determine oxidation products. The most potent method involves using a
stable free radical, DPPH, to assess how well antioxidants can neutralize reactive
species. The ability of antioxidants to reduce DPPH is a key feature of this method,
as a single electron of the nitrogen atom in DPPH is reduced by hydrazine by taking
a hydrogen atom from the antioxidants. The DPPH radical is intensely coloured and
stable; due to this property, its solution is commonly used. It is identified that the UV-
vis spectrum of DPPH shows two distinct bands due to 7m-7" transitions with the
unpaired electron contributing significantly to the visible band (O. Chen et al., 2009).
When DPPH is mixed with a hydrogen atom donor substance solution, its violet colour
fades, indicating the formation of the reduced DPPH radical (DPPH-H) (Yapic1 et al.,
2021). This colour change from violet to pale yellow occurs due to radical reduction
by antioxidants, examined by using UV-vis spectroscopy and to evaluate the
antioxidant property of substances like herbal extracts and phenolic compounds (Xie

& Schaich, 2014).

The DPPH test is used to estimate the total content of reductants in plant extracts,
indicating the antioxidant capabilities of phenolic compounds and their capacity is

quantified (Gulcin, 2020), (Giilgin, 2011).

XO* + ROOH XOH + ROO

This method is known for being simple, sensitive, fast, and reproducible, making it a
convenient choice for evaluating the antioxidant potential of various compounds and

herbal extracts. The concentration referred to as ICso, indicates its efficiency or
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inhibitory capacity. The ICso values are essential for comparing the radical scavenging

capacities of various antioxidants.

The MTT assay, developed in 1983, is widely utilized to determines viability of cells
and metabolic activity (Mosmann, 1983).The MTT reagent (3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyl-2H-tetrazolium bromide) consists of a positively charged tetrazole
ring surrounded by aromatic rings. When reduced by metabolically active cells, MTT
is converted into a violet-blue insoluble molecule called formazan (Berridge et al.,
2005), (Stockert et al., 2018). This reaction allows for colorimetric measurement of
cell metabolic activity. While mitochondria are often associated with MTT reduction,
(Surin et al., 2017), (Stockert et al., 2018). Various studies have found formazan in
multiple cellular organelles, including the endoplasmic reticulum, lipid droplets,
plasma membranes, nucleus, and microsomes (Stockert et al., 2012) (Bernas &
Dobrucki, 2000), (Y. Liu et al., 1997). In an MTT assay, the IC50 value represents the
concentration of a drug or compound needed to inhibit a biological process by 50%

and indicates the potency of the drug.

The present study deals with in vitro investigation of natural phytochemicals for their
antioxidant and, Anticancer activity toward cancer cell lines. Further analysis in in-

vivo conditions can provide safe, natural and effective treatment against cancers.

5.2 Methodology

5.2.1 Molecular Docking analysis of MMP-9

Molecular docking studies were performed to evaluate the binding interactions of
selected flavonoids (Quercetin, Luteolin, and Genistein) and NSAIDs (Ketorol and
Piroxicam), both individually and in combination, against matrix metalloproteinase-9
(MMP-9) based on our previous studies (Singh et al., 2024). The three-dimensional
crystal structure of MMP-9 was retrieved from the Protein Data Bank (PDB). The
ligands were obtained from the PubChem database and converted into PDBQT files.
For docking, a grid box was constructed to cover the MMP-9 active sites, with
dimensions large enough to accommodate ligand flexibility and ensure comprehensive
exploration of the binding pocket. The Lamarckian Genetic Algorithm (LGA) was
employed as the search method, with a population size of 150, maximum number of

evaluations set to 2.5 x 1076, and 100 independent docking runs for each ligand.
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Docking results were ranked based on binding free energy (AG, kcal/mol). The most
stable complexes were selected for further analysis. Protein—ligand interactions were
visualized using PyMol. Comparative docking of combinations of flavonoids and
NSAIDs was performed to assess potential synergistic binding interactions within the

active site of MMP-9.
5.2.2 DPPH assay

Free radicals are molecules that can damage DNA, and contributing to aging and
diseases like cancer and inflammation. The DPPH (2,2-diphenyl-1-picrylhydrazyl)
radical is commonly used to test antioxidant activity because it changes colour from
purple in methanol to yellow when it reacts with antioxidants, indicating the reduction
process. The DPPH purple colour in methanol has maximum absorption at 517 nm,
that decreases in yellow colour when it reacts with hydrogen to produce the reduced
DPPH-H species. The produced electrons consequent decolorization are

stoichiometric.

To measure flavonoids anticancer activity (Luteolin, Genistein, and Quercetin) and
NSAIDs (Ketorol and Piroxicam) using the DPPH radical scavenging test. A small
amount (0.5 mg/mL) of flavonoids and NSAIDs solution was mixed with 10 % (v/v)
ethanol to obtain 100 pL were mixed to a test tube using a micro syringe and 1ml
DPPH solution (100 uM) in 99.8% (v/v) ethanol and 1 mL of 96% (v/v) ethanol, then
vortexed and incubation time for 30 minutes. The change in colour was measured at
517 nm to determine how well flavonoids and NSAIDs can neutralize free radicals. It
is tested with gallic acid (0.05 mg/mL) and Trolox (1 mg/mL) for comparison. The
percentage of DPPH radical inhibition was calculated by following expression to

assess antioxidant effectiveness.
Antioxidant Activity (%) = [Abs Control — Abs Sample / Abs Control] x 100

The final results are shown as IC 50 values, which indicate the concentration of
antioxidant or radical-scavenging agent needed to reduce the initial radical amount by
50 %. Linear regression analysis was used to determine these values from the
concentration versus activity graphs. The spectrophotometric tests were performed in

triplicate on both the samples and reference substances.
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5.2.3 MTT assay

Many flavonoids can inhibit cancer cell growth. The MTT assay was used to monitor
cell development and changes, showing by the flavonoids and NSAIDs, which was
prominent in phytochemical and antioxidant tests. This experiment evaluates the
anticancer potential of Flavonoids (Luteolin, Genistein, and Quercetin) with MCF-7
a human breast cancer cell line. The results compared to the NSAIDs (Ketorol, and
Piroxicam), indicating that increasing flavonoids concentrations increases cell death,

proposing as an anticancer agent.

The testing of the cytotoxic effects of flavonoids and NSAIDs on breast cancer cells
(MFC-7). The samples were dissolved in DMSO and applied to cells cultured in 96-
well plates. After 24 hours, the medium was replaced, and cells were incubated for an
additional 24 or 48 hours with different concentrations of the samples. The MTT assay,
which involves adding MTT solution (5 mg/mL), incubating 3 hours, and then
processing the plates further with 10 % SDS buffer (100 pL) were mixed in each well,
incubate overnight then absorbance was determined at 570 nm with the help of
microplate reader. The current study determines the potential substances which kill

cancer cells.

5.2.4 ROS Assay

Intracellular ROS levels were quantified using the Cellular Reactive Oxygen Species
Detection Assay Kit (Abcam, UK) with the fluorogenic dye H2DCFDA, following
the manufacturer’s protocol. Breast cancer cells (25,000/well) were inoculated in 96-
well black-wall plates (Corning, USA) and incubated overnight. On the subsequent
day, cells were washed with HBSS (150 pl; Gibco, UK) and incubated with staining
buffer (100 pl; 20 uM H2DCFDA in HBSS) for 40 min at 37 °C. After washing, HBSS
(100 pl) was added, and fluorescence was measured using a POLARstar Omega reader
at 485 nm excitation and 535 nm emission. For treatment-induced ROS measurement,
compounds (flavonoids and NSAIDs) were added along with HBSS, and fluorescence
was recorded after the desired incubation time.

The viability of treated MCF-7 cells was expressed in percentage of control cell
viability. Each test was repeated three times, and results are shown as mean + SD.

Data analysis was performed using GraphPad Prism software.
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5.3 Results and Discussion

5.3.1 Molecular docking of flavonoids and NSAIDs

Molecular docking of the Quercetin, Luteolin, Genistein, Ketorol and Piroxicam was
performed individually as well as in combination of one flavonoid and one NSAID.
These flavonoids and NSAIDs were selected based on our previous analysis
conducted separately for inhibition of MPP-9 (Singh et al., 2024). the docking of
piroxicam-luteolin combination gave the highest negative binding affinity of -6.89
kcal/mol (Table 12), indicating the effective inhibition of MMP-9. To further explore
the inhibition potential and to evaluate the antioxidant effect of the best flavonoids
and NSAIDs in vitro, DPPH assay, MTT assay, and ROS assay were performed both

individually and in combinations.

Table 12: Amino acids interaction, Hydrogen bond formation, and Binding
energies of MMP9-flavonoid-NSAID complex

S. Combination of Amino Acids Interaction Binding Energy
No. NSAID and (Kcal/mol)
Flavonoid
1 Piroxicam- GLU241, ALA242, LEU243, -6.89 kcal/mol

Luteolin TYR245, MET247, PRO245,
HIS226, GLN227, ALA189,

LEU188, LEU222, TYR248,
ARG249

Fig 15: Molecular docking view of Piroxicam — Luteolin combination
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5.3.2 DPPH Assay

The samples were analysed to determine their antioxidant potential, and the 50%
inhibitory concentration (ICso) values were calculated to identify the most potent
flavonoids and non-steroidal anti-inflammatory drugs (NSAIDs) demonstrating
effective inhibition of MMP-9. Among the compounds screened, the flavonoids and
NSAIDs exhibiting the most favourable binding energies in combined docking studies
(Table 13). In individual analyses, luteolin and piroxicam displayed highly significant
antioxidant effects, with ICso values of 22.85 £ 0.080 uM and 20.512 + 0.04 uM,
respectively. However, when tested in combination, luteolin and piroxicam produced
a markedly reduced ICso value of 10.89 + 0.34 uM, indicating a substantially
enhancement in antioxidant capacity as compared to their individual effects. The
reduced ICso value expressing the synergistic connection between luteolin, a naturally
occurring flavonoid with well-documented antioxidant and anticancer properties, and
piroxicam, an NSAID as an anti-inflammatory and potential anticancer effects. The
observed synergy demonstrates that the combined administration of luteolin and
piroxicam may significantly improve the mitigation of oxidative stress conditions that
associated in cancer progression. Such results indicating the therapeutic potential of
integrating natural compounds with conventional pharmacological agents to enhance
overall efficacy, reduce required dosages, and potentially reduce side effects, thereby
offering a strategy for developing novel combination therapies targeting oxidative

mechanisms in cancer.

Table 13: Inhibitory concentration (IC50) values of best flavonoids and NSAIDs
in DPPH assay

S. No. Sample Name Inhibitory Concentration
(ICs0) Value (uM)
1 Ascorbic Acid 27.73+£0.018
2 Quercetin 65.46 £ 0.055
3 Luteolin 22.85+0.080
4 Genistein 2798 £ 0.056
5 Ketorol 1248 £ 0.041
6 Piroxicam 20.512 +£0.04
7 Luteolin and Piroxicam 10.89 £0.34
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Graph 1: IC50 values of all considered compounds (Flavonoids and NSAIDs) in
DPPH assay

5.3.3 MTT Assay

The MTT assay is a widely used, sensitive, and reliable colorimetric technique to
identify viability of cells, proliferation, and activation. It functions in metabolically
active cells can convert the yellow, water-soluble compound 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) into insoluble dark blue formazan
crystals. The quantity of formazan produced is directly proportional to the number of
viable cells, making this assay a robust quantitative measure of cytotoxicity. In this
study, flavonoids and NSAIDs exhibiting the most favourable docked ligands were
selected for evaluation against a human breast cancer cell line. All tested compounds
demonstrated the ability to inhibit cancer cell proliferation to varying degrees.
Notably, luteolin and piroxicam emerged as the most potent agents, showing
individual ICso values of 198.3 = 0.088 uM and 175.5 £ 0.129 uM, respectively (Table
14). Further assessment of their combined effect revealed a remarkably reduced 1Cso
value of 73.3 + 0.25 puM, indicating a pronounced synergistic cytotoxic effect. This
substantial decrease in ICso suggests that the luteolin—piroxicam combination
significantly enhances the inhibition of cancer cell proliferation compared to either
compound alone. The results highlight the potential of integrating natural flavonoids

with conventional pharmacological agents to improve therapeutic outcomes, reduce
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required doses, and potentially minimize toxicity. Such synergistic combinations
could represent a promising approach for anticancer treatment strategies targeting cell

proliferation mechanisms.

Table 14: Inhibitory concentration (IC50) values of best flavonoids and NSAIDs
in MTT assay

S. No. Sample Name Inhibitory Concentration
(ICs0) Value (uM)
1 Quercetin 1458 £0.107
2 Luteolin 198.3 £ 0.088
3 Genistein 524.5+0.103
4 Ketorol 1306 £ 0.058
5 Piroxicam 175.5+0.129
6 Luteolin and Piroxicam 73.3+0.25
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Graph 2: IC50 values of all considered compounds (Flavonoids and NSAIDs) in
MTT assay

90



Chapter - 5 Molecular Docking and In-Vitro Evaluation of Luteolin and Piroxicam

"l
“\

-

00000000

-~
~

-
-
~

S
000

e e

e

200

. 4

-
r

P

9.9

.

-
~
A\‘

00000000

N

0000000

-

o
00000000

>
LB}

0o
2

-

Y =

' .

'@
4‘\
@’

-

-

oeee

-
Y
b,

-

oo o
Qi

NN X

£

@

v

e
D@
.

-
C

”

-

’

)
)

-

v

®

»

-
A

<’
.)
«
4
K
A
‘ Y
i T

‘—/ S P

Fig 17: Luteolin-Piroxicam Combination MTT Assay

5.3.4 ROS Assay

The intracellular ROS levels were estimated in the absence and presence of best
flavonoids and NSAIDs, and also in the presence of the best combination of luteolin

and piroxicam. The percentage reduction in ROS levels compared to control were
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evaluated based on the fluorescence recorded (Table 15). Effective reduction in ROS
was observed in luteolin and piroxicam individually. This reduction was observed to
be amplified on the combination of compounds.

Table 15: ROS reduction efficiency analysis of best flavonoids and NSAID

S. No. Sample Name ROS reduction (%)
1 Quercetin 20
2 Luteolin 58
3 Genistein 21
4 Ketorol 36
5 Piroxicam 48
6 Luteolin and Piroxicam 73
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Graph 3: ROS reduction by considered compounds (Flavonoids and NSAIDs)
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Fig 18: - Comparative evaluation of luteolin and piroxicam, treated individually and
in combination, on MCF-7 cells, revealing enhanced reduction in cell population with
the combination treatment in comparison with control.

5.4 Conclusion

The present investigation demonstrates that the combination of luteolin, a natural
flavonoid, and piroxicam, a widely used NSAID, exerts synergistic antioxidant and
cytotoxic effects against cancer cell lines. Molecular docking confirmed favorable
binding interactions of the luteolin—piroxicam complex with key residues, supporting
their strong binding affinity. In vitro assays studies further confirmed that while both
compounds individually exhibited significant antioxidant and cytotoxic activities,
their combination markedly reduced ICso values, thereby enhancing their overall
efficacy. The synergistic reduction in intracellular ROS levels further highlights their
ability to modulate oxidative stress, a critical factor in cancer progression.
Collectively, these results suggest that the luteolin—piroxicam combination holds
considerable promise as a safe, natural, and effective anticancer strategy. However, as
this study was limited to in vitro analysis, further in vivo validation and mechanistic
studies are essential to fully establish its therapeutic potential and clinical applicability

in cancer treatment.
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CHAPTER -6

CONCLUSION

Cancer remains one of the most devastating health challenges globally, with high
morbidity and mortality rates driven by its aggressive proliferation and metastatic
capabilities. Among molecular targets, matrix metalloproteinase-9 (MMP-9) has
gained significant attention due to its central role in extracellular matrix degradation,
angiogenesis, and tumor invasion. This study explored the inhibitory potential of
natural flavonoids and nonsteroidal anti-inflammatory drugs (NSAIDs) against MMP-
9, both individually and in combination. In-silico screening identified luteolin and
quercetin as the most promising flavonoids, while oxaprozin and piroxicam emerged
as the top NSAIDs. Molecular docking revealed that certain flavonoid—flavonoid and
NSAID-NSAID combinations displayed stronger binding affinities than individual
compounds, with cross-class pairing of luteolin and piroxicam also demonstrating
high inhibitory potential. These computational results were complemented by
experimental validation, where DPPH radical scavenging, ROS reduction and MTT
assays confirmed strong antioxidant activity and cancer cell cytotoxicity. Collectively,
the findings suggest that the flavonoids and NSAIDs combination could effectively

target MMP-9 and reduce oxidative stress—mediated cancer progression.
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CHAPTER -7
SIGNIFICANCE OF INVESTIGATION

Cancer progression is a multifactorial process involving uncontrolled cell
proliferation, evasion of apoptosis, angiogenesis, and metastasis. Among the
numerous molecular mediators implicated in tumor aggressiveness, matrix
metalloproteinase-9 (MMP-9) has emerged as a pivotal enzyme responsible for
extracellular matrix (ECM) degradation, facilitating tumor invasion and metastasis.
Overexpression of MMP-9 has been reported in diverse cancer forms, namely breast,
colorectal, lung, and pancreatic and other cancers, and is aligned with decreased
survival rates, high metastatic potential, and chemoresistance. The oxidative stress has
been exhibiting to upregulate MMP-9 expression through activation of transcription
factors such as NF-«B and AP-1, thereby linking redox imbalance to cancer

progression. Therefore, MMP-9 is therapeutic target for cancer intervention.

Natural compounds, particularly flavonoids such as luteolin and quercetin, have
drawn significant interest due to their pleiotropic anticancer effects, including
antioxidant, anti-inflammatory, and anti-metastatic activities. These phytochemicals
shown to suppress MMP-9 expression at both transcriptional and post-translational
levels, inhibit cancer cell invasion, and modulate multiple oncogenic pathways with
minimal toxicity to normal cells. Similarly, nonsteroidal anti-inflammatory drugs
(NSAIDs), including piroxicam and oxaprozin, exert anticancer activity through
cyclooxygenase (COX) inhibition, suppression of prostaglandin synthesis, and
modulation of MMP expression. Notably, NSAIDs can downregulate MMP-9, reduce
inflammation-driven tumor progression, and synergize with other chemopreventive

agents.

Despite the individual benefits of flavonoids and NSAIDs, combination therapy
targeting MMP-9 has been underexplored. Rationally designed drug combinations can
enhance therapeutic efficacy, and minimizing toxicity. In the context of MMP-9
inhibition, combining antioxidant-rich natural molecules with anti-inflammatory
NSAIDs offers the potential to address both oxidative stress—mediated and

inflammation-mediated upregulation of MMP-9. Such a dual approach may achieve
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superior inhibition of tumor invasion, angiogenesis, and metastasis compared to

monotherapy.

This investigation is significant for several reasons. First, it integrates computational
and experimental strategies to identify potent MMP-9 inhibitors from two distinct
drug classes. Molecular docking provides a structural basis for understanding binding
interactions. Second, it evaluates both individual and combination -effects,
highlighting synergistic interactions that may be more effective. Third, it incorporates
antioxidant (DPPH assay), ROS reduction and cytotoxic (MTT assay) evaluations,
linking MMP-9 inhibition to oxidative stress reduction and direct cancer cell growth

suppression.

From a translational perspective, this study opens new doors for the development of
multi-targeted, low-toxicity anticancer regimens. Since both flavonoids and many
NSAIDs are already well-characterized for safety, their repurposing in combination
therapies could significantly reduce the time and cost required for clinical
implementation. Furthermore, the results provide a foundation for in vive studies and
clinical trials aimed at validating efficacy, determining optimal dosage ratios, and

assessing pharmacokinetic compatibility.

In conclusion, the significance of this work lies in its innovative approach to tackling
MMP-9—driven cancer progression by combining natural antioxidants with
established anti-inflammatory drugs. This dual-targeted strategy not only addresses
the multifaceted regulation of MMP-9 but also offers a promising pathway toward

more effective, safer, and accessible anticancer therapies.
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