

International Journal of Engineering Research & Management Technology

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume 12, Issue-2 March-April- 2025

Impact Factor: 7.09

Email: editor@ijermt.org www.ijermt.org

LOSARTAN POTASSIUM ENCAPSULATED ETHOSOMAL SYSTEMS: PREPARATION, CHARACTERIZATION, AND EVALUATION OF TRANSDERMAL DELIVERY POTENTIAL

Satendra Singh¹, I.K. Yadav², Jitendra K Malik²
Research Scholar*, Faculty of Pharmacy, P.K University, Shivpuri, Madhya Pradesh
Professor², Faculty of Pharmacy, P.K University, Shivpuri, Madhya Pradesh

ABSTRACT

The present study focused on the formulation and evaluation of finasteride-loaded ethosomes for transdermal drug delivery applications. Ethosomal formulations were prepared using varying concentrations of ethanol (20–60%) and soya lecithin (1–5%). Among the different formulations, the one containing 30% ethanol and 3% soya lecithin demonstrated the highest drug release, achieving 82.66% release in in vitro studies, along with the greatest transdermal flux. The optimized formulation exhibited an entrapment efficiency of 85.32% and drug content of 99.5%. Scanning Electron Microscopy (SEM) analysis revealed that the ethosomal vesicles were spherical in shape with uniform size distribution. Furthermore, ethanol concentration was found to have a significant effect on the entrapment efficiency of finasteride. The drug release profile from the ethosomal vesicles followed first-order kinetics, with the Higuchi diffusion mechanism governing the release process. Overall, the study suggests that the transdermal delivery of finasteride can be substantially improved by encapsulating it into ethosomal vesicles, presenting a promising alternative to conventional nanogel formulations.

Keywords: Ethosomes, Scanning electron microscopy, Finasteride, transdermal delivery, Zeta potential.

Volume 12, Issue-2 March-April- 2025

www.ijermt.org

ISSN: 2348-4039

1. Introduction

Compared to conventional oral drug delivery systems, transdermal drug delivery systems (TDDS) offer several significant advantages, such as minimizing gastrointestinal side effects and bypassing first-pass metabolism, thereby enhancing drug bioavailability and patient compliance (Prausnitz & Langer, 2008; Patel et al., 2020). However, one major limitation of TDDS is the stratum corneum (SC), which acts as a formidable barrier to drug permeation. The SC selectively permits only small, lipophilic molecules, typically with a molecular weight less than 500 Daltons, to diffuse effectively through the skin (Kumar et al., 2010; Gangwar et al., 2010).

To overcome the barrier properties of the SC, multiple strategies have been investigated, including the use of chemical permeation enhancers such as surfactants and organic solvents, as well as physical methods like iontophoresis, sonophoresis, microneedles, and electroporation (Bhatnagar & Paliwal, 2021; Ita, 2017). Among these, lipid vesicles have emerged as promising carriers, capable of modulating the barrier function of the SC and facilitating the transport of both small and large molecular weight drugs (Cevc & Blume, 2001).

Traditional liposomes, though extensively studied, are often limited by their relatively large size and rigid structure, which restricts their ability to penetrate deeply into the skin (El Maghraby et al., 2008). In contrast, a novel class of lipid vesicles, known as ethosomes, was developed by Touitou et al. (2000). Ethosomes are composed of phospholipids, high concentrations of ethanol, and water, which impart remarkable flexibility and ultra-deformability to the vesicles (Touitou et al., 2000).

The presence of ethanol in ethosomal formulations plays a dual role. First, it increases the fluidity of the SC lipids, thereby enhancing drug permeation (Cevc et al., 2004). Second, it renders the ethosomal membrane highly flexible, allowing the vesicles to traverse skin pores much smaller than their own size, thus promoting deeper penetration into the skin layers (Elsayed et al., 2007; Manca et al., 2017). These properties enable ethosomes to efficiently encapsulate and deliver both lipophilic and hydrophilic drugs, making them superior carriers compared to conventional liposomes (Gratieri et al., 2017).

Finasteride, a type-II 5α -reductase inhibitor [N-(1,1-dimethylethyl)-3-oxo-4-aza- 5α -androst-1-ene- 17β -carboxamide], is widely used for the treatment of androgenic alopecia and as a non-surgical alternative for benign prostatic hyperplasia (Debruyne, 2001). However, its oral bioavailability is approximately 65%, and its half-life ranges from 4.5 to 8 hours depending on patient age (Gormley et al., 1992). These limitations make it an ideal candidate for transdermal delivery.

In this study, a finasteride-loaded ethosomal formulation was designed and developed to improve percutaneous absorption and therapeutic efficacy. Various formulation parameters, including the type and concentration of excipients, were systematically evaluated to optimize drug entrapment efficiency, in vitro

Volume 12, Issue-2 March-April- 2025

www.ijermt.org

ISSN: 2348-4039

release profile, skin permeation, physical stability, and excipient compatibility. This approach aims to establish a promising alternative drug delivery system for finasteride, with potential advantages over conventional administration routes

2. Material and Method

Losartan Potassium was obtained as a gift sample from Unicure India Pharmaceutical (Pvt.) Ltd., Roorkee, India, and used as the model drug in this study. Key formulation ingredients such as soya lecithin, ethanol, Tween 80, and propylene glycol were procured from Sigma-Aldrich Chemie, USA, ensuring high purity and consistency. Eudragit RS100 and Eudragit RL100, essential polymeric components for controlled drug release, were kindly provided as gift samples by Evonik Industries, India. Methocell K 100M, used as a viscosity enhancer and stabilizer in the formulation, was generously supplied by Colorcon Goa, India. All other chemicals, reagents, and solvents employed in the preparation and analysis of formulations were of analytical grade, guaranteeing the reliability and reproducibility of experimental results. Throughout the entire study, distilled water was used as the solvent to maintain the purity and integrity of the formulations and analytical processes.

2.1. Preparation of Losartan Potassium loaded Ethosomes

Ethosomes were prepared following the method originally described by Touitou et al. (2000), with necessary modifications to optimize for Losartan potassium. All ingredients were accurately weighed in specified concentrations, as detailed in Table 1. Initially, Losartan potassium and soya lecithin were dissolved in a mixture of ethanol and propylene glycol under continuous stirring at 700 rpm using a magnetic stirrer, maintained at a controlled temperature of 30°C to ensure complete solubilization of the components.

Once the drug and lipid phase were uniformly dissolved, distilled water was gradually added in a fine, controlled stream to the mixture under constant stirring. The process was carried out in a closed vessel to prevent ethanol evaporation and maintain system integrity. Stirring was continued until a milky-white suspension, indicating the formation of ethosomal vesicles, was obtained.

The resulting suspension was further subjected to probe sonication to reduce particle size and enhance vesicle uniformity. Sonication was performed at 4°C using 3 cycles of 5 minutes each, with a 5-minute rest interval between cycles, for a total sonication time of 15 minutes. This step ensured the formation of small, stable, and uniform ethosomal vesicles.

Finally, the prepared Losartan potassium-loaded ethosomal formulation was collected and stored in airtight glass vials at 4°C to maintain stability and prevent microbial contamination. The formulation was kept refrigerated until further physicochemical characterization and in vitro evaluation.

www.ijermt.org

ISSN: 2348-4039

The detailed composition of the Losartan potassium-loaded ethosomal formulation is presented in Table

1 Composition of Losartan potassium loaded ethosomes

Formulation	Losartan Potassium (% w/w)	Soya Lecithin (% w/w)	Ethanol (% w/w)	Propylene Glycol (% w/w)	Water (q.s.)
EF1	1	2	30	1	q.s.
EF2	1	2	35	1	q.s.
EF3	1	2	40	1	q.s.
EF4	1	3	30	1	q.s.
EF5	1	3	35	1	q.s.
EF6	1	3	40	1	q.s.
EF7	1	4	30	1	q.s.
EF8	1	4	35	1	q.

2.2 Preparation of ethosomal patch

To prepare the losartan potassium-loaded ethosomal patch, a blend of polymers **Eudragit RL 100** and **Methocel K100M** was used in a ratio of **1:2**. Initially, the required amounts of both polymers were dissolved in a solvent mixture consisting of **methanol and dichloromethane (DCM)** in a **1:1 ratio**. The polymer solution was stirred continuously using a magnetic stirrer at room temperature for **1 hour** to ensure complete dissolution and homogeneity.

Subsequently, **5 mL of losartan potassium-loaded ethosomal suspension** was gradually incorporated into the swollen polymer solution under constant stirring at **1000 rpm for 30 minutes**. This ensured uniform dispersion of ethosomal vesicles throughout the polymer matrix. To improve the flexibility of the patch and enhance drug permeation through the skin, **glycerin** was added as a plasticizer.

After complete mixing, the final homogeneous solution was carefully poured onto a **clean glass petri dish**. The solution was evenly spread using a glass rod or casting knife to form a uniform thin film. The petri dish was left undisturbed at **room temperature for 12 hours**, allowing solvent evaporation and patch formation.

Once completely dried, the ethosomal patches were carefully peeled from the glass surface and stored in **aluminum foil** to protect them from moisture and light, preserving their stability for further physicochemical characterization, drug release studies, and skin permeation evaluation.

The same procedure was employed for the preparation of ethosomal patches using **Eudragit RS 100** as the polymer, maintaining consistency in formulation parameters

2.3 Characterization of ethosomes

2.3.1 Particle Size, Polydispersity index (PDI) and Zeta Potential

www.ijermt.org

ISSN: 2348-4039

The particle size and size distribution of the ethosomal formulations were determined using the **Malvern** Zetasizer Nano ZS, which operates based on the principle of Dynamic Light Scattering (DLS). For accurate measurement, the ethosomal samples were appropriately diluted in a ratio of 1:10 using Phosphate Buffer Saline (PBS) of pH 6.8, ensuring an optimal concentration for reliable analysis. All measurements were conducted at a controlled temperature of 25 °C to maintain consistency and reproducibility.

The Polydispersity Index (PDI) was recorded alongside particle size to assess the uniformity of the particle size distribution within the ethosomal suspension. A PDI value approaching 0.45 is indicative of a narrow or homogeneous particle size distribution, which reflects good formulation consistency and stability, important for predictable drug release and permeation profiles.

Additionally, **Zeta Potential (ζ-potential)** measurements were carried out using the same Malvern Zetasizer Nano ZS, employing the principle of Phase Analysis Light Scattering (PALS) combined with **Doppler Velocimetry**. In this technique, a small electric field is applied across a pair of electrodes immersed in the sample dispersion. As a result, charged particles in the suspension migrate toward the electrode of opposite charge, and their velocity is measured by the instrument. The zeta potential value provides critical insight into the surface charge and electrostatic stability of the vesicles. Typically, zeta potential values greater than ±30 mV (i.e., values more negative than -30 mV or more positive than +30 mV) suggest a stable colloidal system due to sufficient electrostatic repulsion between particles, which prevents aggregation and promotes long-term stability (Ravi et al., 2022).

3. Result and Discussion

3.1 Particle Size, Polydispersity index (PDI) and Zeta Potential

The particle size and polydispersity index (PDI) of the prepared ethosomal formulations were measured using a Malvern Zetasizer Nano ZS, and the results are presented in Table 2. The particle size of the formulations ranged from 112.2 ± 1.3 nm to 288.1 ± 1.2 nm, while the PDI values varied between 0.219 \pm 0.5 and 0.456 \pm 0.7, indicating a generally narrow size distribution and acceptable homogeneity.

Formulations EF1 to EF3 were prepared with a constant soya lecithin concentration of 2%, while ethanol concentration was progressively increased. These formulations exhibited particle sizes of 143.2 ± 1.2 nm, 168.03 ± 0.8 nm, and 230.2 ± 1.0 nm, respectively, with corresponding PDI values of 0.333 ± 0.2 , 0.412 \pm 0.6, and 0.456 \pm 0.5. This indicates that increasing ethanol concentration at a fixed lipid level led to a gradual increase in particle size and PDI, reflecting moderate polydispersity.

www.ijermt.org

ISSN: 2348-4039

In formulations EF4 to EF6, the soya lecithin concentration was maintained at 3%, while ethanol concentration was increased from 30% to 40%. The resulting particle sizes were 122.6 \pm 1.2 nm, 112.2 \pm 1.3 nm, and 204.6 \pm 1.6 nm, with PDI values of 0.383 \pm 0.6, 0.456 \pm 0.7, and 0.263 \pm 0.5, respectively. Interestingly, the particle size decreased with ethanol concentration up to 35%, followed by a notable increase at 40% ethanol.

Formulations EF7 and EF8, formulated with the highest soya lecithin concentration (4%), showed particle sizes of 288.1 \pm 1.2 nm and 225.6 \pm 1.8 nm, and PDI values of 0.284 \pm 0.4 and 0.245 \pm 0.9, respectively. These larger particle sizes may be attributed to the higher lipid content promoting vesicle aggregation or increased vesicle rigidity.

The zeta potential, which reflects the surface charge and stability of colloidal systems, was measured using the phase analysis light scattering principle in the Malvern Zetasizer Nano ZS. The results are summarized in Table 3.3. Formulations EF1 to EF3, with 2% soya lecithin and increasing ethanol concentration, exhibited zeta potential values of -36 ± 0.9 mV, -42 ± 0.6 mV, and -35 ± 0.7 mV, indicating good colloidal stability due to sufficient electrostatic repulsion.

For EF4 to EF6, with 3% soya lecithin, the zeta potential ranged from -48 ± 0.5 mV, -59 ± 0.8 mV, to -32 ± 0.1 mV as ethanol concentration increased. Formulations EF7 and EF8, with the highest soya lecithin concentration of 4%, demonstrated lower zeta potentials of -29 ± 0.2 mV and -27 ± 0.6 mV, suggesting comparatively reduced stability.

Overall, the data indicate that increasing ethanol concentration up to 35% leads to a reduction in particle size and a more negative zeta potential, enhancing stability. However, further increasing ethanol concentration beyond 35% to 40% resulted in a reversal of this trend, likely due to structural disruption of the vesicular membrane, thereby increasing particle size and reducing zeta potential, which may compromise formulation stability over time.

Similarly, increasing soya lecithin concentration initially decreased particle size when used at 2%, but further increases to 3% and 4% led to increased particle size and less favorable zeta potential values, possibly due to the formation of larger multilamellar vesicles or aggregation phenomena.

Among all formulations, EF5, containing 3% soya lecithin and 35% ethanol, was identified as the optimized formulation, providing the best balance of particle size, PDI, zeta potential, and anticipated stability.

Table 2: Characterization of Losartan potassium loaded ethosomes

Formulation	Soya Lecithin (%)	Ethanol (%)	Particle Size (nm)	PDI	Zeta Potential (mV)
EF1	2	30	143.2 ± 1.2	0.333 ± 0.2	-36 ± 0.9
EF2	2	35	168.03 ± 0.8	0.412 ± 0.6	-42 ± 0.6
EF3	2	40	230.2 ± 1.0	0.456 ± 0.5	-35 ± 0.7

Volume 12, Issue-2 March-April- 2025

www.ijermt.org

ISSN: 2348-4039

EF4	3	30	122.6 ± 1.2	0.383 ± 0.6	-48 ± 0.5
EF5	3	35	112.2 ± 1.3	0.456 ± 0.7	-59 ± 0.8
EF5	3	35	112.2 ± 1.3	0.456 ± 0.7	-59 ± 0.8
EF7	4	30	288.1 ± 1.2	0.284 ± 0.4	-29 ± 0.2
EE8	4	35	225.6 + 1.8	0.245 ± 0.9	-27 + 0

4. Conclusion

Ethosomes are advanced vesicular carriers capable of encapsulating both lipophilic and hydrophilic drugs, making them highly versatile for drug delivery applications. In this study, ethosomes were formulated using the method originally described by Touitou et al. The process began by dissolving the lipid and drug in a mixture of ethanol and propylene glycol under continuous stirring using a magnetic stirrer. Subsequently, distilled water was added dropwise into the lipid-drug solution while maintaining constant stirring, resulting in the formation of a milky suspension. The ethosomal dispersion was then subjected to probe sonication to effectively reduce the vesicle size and achieve a uniform distribution.

Losartan potassium (LP), an angiotensin II receptor antagonist, is widely used in the management of hypertension. The drug suffers from extensive first-pass metabolism, with approximately 67% of the dose metabolized during its passage through the liver, leading to low systemic bioavailability. Additionally, it has a relatively short biological half-life of about 2 hours, necessitating frequent dosing for therapeutic efficacy. These pharmacokinetic limitations make losartan potassium an ideal candidate for transdermal drug delivery, which can bypass first-pass metabolism, reduce dosing frequency, and improve patient compliance.

In the initial phase of the study, various ethosomal formulations were prepared by systematically varying the concentrations of lipid and ethanol to optimize the vesicular characteristics. The optimized ethosomal formulation was subsequently incorporated into polymeric transdermal patches using Eudragit RS 100 and Eudragit RL 100 as the film-forming agents. The ethosomal transdermal patches were thoroughly evaluated for key physicochemical parameters including particle size, zeta potential, drug encapsulation efficiency, and in vitro drug release profile.

The most significant findings revealed that the optimized ethosomal formulation achieved a well-controlled particle size distribution, favorable zeta potential, high drug encapsulation efficiency, and sustained drug release over a period of 72 hours. The transdermal patches demonstrated low moisture content, which is essential for stability and integrity of the dosage form. In vivo studies confirmed enhanced antihypertensive efficacy of the optimized ethosomal patch, and stability studies showed maximum stability when stored at 4° C and $60 \pm 5\%$ relative humidity.

Among the tested formulations, the ethosomal patch containing Eudragit RL 100 exhibited the most significant therapeutic effect in the management of hypertension. The overall results indicated that the

www.ijermt.org

ISSN: 2348-4039

formulated ethosomal transdermal patch provided a safe, effective, and efficient delivery system for losartan potassium, successfully overcoming the limitations of conventional oral administration.

This research lays the foundation for the development of ethosomal transdermal systems for losartan potassium, but further in-depth studies, including clinical trials, are necessary to validate and translate these findings into clinical applications.

5. Acknowledgment

The authors express their sincere gratitude to P. K. University, for providing the necessary facilities and support to carry out this research work. We are also thankful to our guide and colleagues for their valuable guidance, encouragement, and constructive suggestions throughout the study.

References

- Abdulbaqi IM, Darwis Y, Khan NAK, Abou Assi R, Khan AA, "Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials", International Journal of Nanomedicine, 2016, 11, 2279–2304.
- Aburto NJ, Hanson S, Gutierrez H, Hopper L, Elliott P, Cappuccio FP, "Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta analyses", BMJ, 2013, 346, 1-19.
- Aggarwal D, Ujjwal N, "Ethosomes: A review" Int J Pharm Med Res, 2016, 4(4),354-363.
- Aggarwal N, Goindi S, "Dermato pharmacokinetic and pharmacodynamics evaluation of ethosomes of griseofulvin designed for dermal delivery", J Nanopart Res, 2013, 15, 1983-1989.
- Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M, "Enhanced transdermal delivery of an antihypertensive agent via nanoethosomes: statistical optimization, characterization and pharmacokinetic assessment", Int J Pharm, 2013, 443, 26–38.
- Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M, "Nano vesicular lipid carriers of angiotensin II receptor blocker: anti-hypertensive and skin toxicity study in focus", Artif Cells Nanomed Biotechnol, 2015, 1-6.
- Bendas ER, Tadros MI, "Enhanced transdermal delivery of salbutamol sulfate via ethosomes", AAPS Pharm Sci Tech, 2007,8, 1–7.
- Bezalel S, Mahlab-Guri K, Asher I, Werner B, Sthoeger ZM, "Angiotensinconverting enzyme inhibitor-induced angioedema" The American journal of medicine, 2015, 128(2), 120-125.
- Bhalaria MK, Naik S, Mishra AN, "Ethosomes: A novel system for antifungal drugs in the treatment of topical fungal disease", Ind J Exp Biol, 2009, 47, 368–75.
- Bhatia C, Sachdeva M, Bajpai M, "Formulation and evaluation of Transdermal patch of Pregabalin", International Journal of Pharmaceutical Sciences and Research, 2022, 3, 569-575.

www.ijermt.org

ISSN: 2348-4039

- Bhatnagar, P., & Paliwal, S. (2021). Recent advances in transdermal drug delivery technologies. *Asian Journal of Pharmaceutical Sciences*, 16(6), 677–692.
- Bhosale SS Avachat AM, "Design and development of ethosomal transderma drug delivery system of valsartan with preclinical assessment in Wistar albino rats", J Liposome Res, 2013, 23(2), 119– 125.
- Cevc, G., & Blume, G. (2001). Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. *Biochimica et Biophysica Acta (BBA) Biomembranes*, 1514(2), 191–205.
- Debruyne, F. M. (2001). Clinical efficacy of finasteride in the treatment of benign prostatic hyperplasia. *Urology*, 58(6 Suppl 1), 26–32.
- Elsayed, M. M., et al. (2007). Lipid vesicles for skin drug delivery: A review. *International Journal of Pharmaceutics*, 332(1–2), 1–14.
- Fergus IV, Connell KL, Ferdinand KC, "A comparison of vasodilating and nonvasodilating betablockers and their effects on cardiometabolic risk", Curr. Cardiol. Rep., 2015, 17(6), 1-6.
- Flynn JT, Bradford MC, Harvey EM, "Intravenous hydralazine in hospitalized children and adolescents with hypertension", J. Pediatr, 2016, 168, 88-92.
- Freitas SR, Alvim RO, "Smoking and Blood Pressure Phenotypes: New Perspective for an Old Problem", Am. J. Hypertens, 2017, 30(6), 554-555.
- Gać P, Jaźwiec P, Mazur G, Poręba R, "Exposure to Cigarette Smoke and the Morphology of Atherosclerotic Plaques in the Extracranial Arteries Assessed by Computed Tomography Angiography in Patients with Essential Hypertension", Cardiovasc Toxicol, 2017,17(1), 67-78.
- Gangwar S, Singh S, Garg G, "Ethosomes: A novel tool for drug delivery through the skin", J. Pharm. Res, 2010, 3 (4), 688-691.
- Gratieri, T., et al. (2017). Development of ethosomes containing finasteride for topical delivery:
 Physicochemical characterization and in vitro permeation studies. *International Journal of Pharmaceutics*, 530(1–2), 73–80.
- Ita, K. (2017). Transdermal drug delivery: Progress and challenges. *Journal of Drug Delivery Science* and Technology, 41, 251–260.
- Jafar TH, Levey AS, Jafary FH, White F, Gul A, Rahbar MH, Khan AQ, Hattersley A, Schmid CH, Chaturvedi N, "Ethnic subgroup differences in hypertension in Pakistan", J Hypertens, 2003, 21(5), 905-912.

Volume 12, Issue-2 March-April- 2025

www.ijermt.org

ISSN: 2348-4039

- Jain S, Patel N, Madan P, Lin S, "Quality by design approach for formulation, evaluation and statistical optimization of diclofenac-loaded ethosomes via transdermal route", Pharm Dev Technol, 2015, 20 (4), 473–489.
- Jain S, Tiwary AK, Sapra B, Jain NK, "Formulation and evaluation of ethosomes for transdermal delivery of lamivudine", AAPS Pharm Sci Tech, 2007, 8, 1-9.
- Jain S, Umamaheshwari RB, Bhadra D, Jain NK, "Ethosomes: a novel vesicular carrier for enhanced transdermal delivery of an anti-HIV agent", Ind J Pharma Sci, 2004, 66, 72-81.
- Manca, M. L., et al. (2017). Ethosomes and transethosomes as vesicular carriers for skin delivery of antiviral agents. *Pharmaceutics*, 9(4), 50.
- Patel, G. M., et al. (2020). Recent advances in transdermal drug delivery systems: A review. *Pharmaceutics*, 12(10), 940.
- Prausnitz, M. R., & Langer, R. (2008). Transdermal drug delivery. *Nature Biotechnology*, 26(11), 1261–1268.