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CHAPTER 1 

INTRODUCTION 

 

1.1 INTRODUCTION 

The analytic function played a significant role in developing the geometrical 

theory of analytic function related to complex order. Here we described those 

features which  are important to our further study.  

In some cases, our approach is  not only gave generalizations of 

various known outcomes but also produced many new and best estimates. The 

study of Certain Sub Class of  Analytic Function related to Complex Order  

associated with defined the unit disc  : 1U z z  and inclusion relationships 

to the conjugate points . 

We established the some coefficients inequality for certain sub classes

 , , , ,G A B b  and some inclusion relations. The main object of analytic 

study of Certain Subclass of Analytic Function Related to Complex Order is to 

discuss the various essential properties and determine the limit of the 

coefficients for the classes and obtain accurate results.  

In present study has been proposed to the study of a function is to be 

analytic in a domain D  ,if it is differentiable at every point in D  .Here, 

domain D   mean is a non-empty open connected subset of the complex plane. 

A function f is said to be univalent in D  if it is one-one in D  . This takes no 

value more than once in D . In the other word, we can say that if

   1 2f z f z  at any  point 1z ,
2

z D  then 1 2z z .The function  z z   is 

analytic, but it is univalent in the complex plane. A necessary condition for an 

analytic to be univalent in D   is that ( ) 0f z  ,forz  in D, which is not 

sufficient. For example, the functions  defined by   zz e   is not univalent 

in f  through its derivative never vanishes in f . 



 

 

3 

 

We assume that D to be unit disc    : 1 .z z By the Riemann 

mapping theorem , we can say that any connected domain in the complex 

plane is not the whole plane. It can be mapped by the analytic univalent 

functions on the unit disc. Thus the investigations of my analytical study of 

(Certain Sub Classes Related to Complex  Order is univalent in a simply 

connected in domain D with more than one boundary point  and it can be 

confined to the investigation of certain sub classes of analytic function which 

are univalent in D. This is to simplify and to give short and elegant formula, 

which are given below. 

                      2

( ) n

n

k

z z a z




 
                                                   (1.1.1)

 

. Several sub classes of Univalent Function were introduced in 

different techniques like parametric method, convolution techniques, variation 

method, subordination techniques etc, were discovered. The concept of 

univalence can be extended to be p-valent.  A functions f   is analytic in the 

unit disc U is said to be p-valence if the equation ( )w f z  has at P -solutions 

and there exists  a  
0w in ( )E z   has exactly P  solution in U. Let  P  be the 

positive integer  is greater than and equal to unity and  P y  denote  the class 

of functions of the form. 

                         1

( )
n

p p n

p n

n

f z z a z 




 
                                                   

(1.1.2) 

The results are presented in the next seven chapters .The properties of 

Analytic Function defined by using hyper geometric functions. In Section 3.1, 

we have defined the functions  h z and  I z  by (3.1.4) and (3.1.5) 

respectively .In section3.2,we state the lemma(3.2.1)and (3.2.2) due to , at p=1 

and prove a Lemma(3.2.3) that are needed in the  succeeding section .In this 

section 3.3,we find the sufficient conditions for ( )h z  to be in  .y A B
.Further, 

we obtain the necessary and sufficient conditions for  h z  to be in  ,y A B

and  ,k A B  with appropriate restrictions on a, b and c. In  section 3.4,firstly 

we determined the sufficient conditions for I(z) in K(A,B).Further, we also 
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fined the necessary  and sufficient  condition for I(z) to be K(A,B) with 

appropriate restrictions on a,b,c. Our results generalize the corresponding 

results of Silverman .The study of the certain analytic function related to 

complex order ((I).The description of this chapter is divided into nine sections 

for the systematic of the class  , , , ,V A B b  .In the section 4.1,we have 

defined the class  , , , , .V A B b   

In the section 4.2, we have stated some lemmas that are needed in the 

succeeding sections of this chapter. In the section 4.3,  we have shown the 

containment  relation between    0, , , , , , , ,V A B b cV A B b    ,where
0 . 

In section 4.4, we have obtained the  coefficient estimate for the functions 

belonging  to the class   , , , ,V A B b  .In section 4.5,we have found  the 

sufficient  condition in terms of coefficient for the function  belonging to the 

class  , , , ,V A B b  .In  section 4.6, we have obtained the maximizations of

2

3 2
a a for complex value of    over the class  , , , ,V A B b  .In 

section4.7,we have investigated the distortion properties for the class 

 , , , ,V A B b  .In section 4.8, we have  obtained the Preserving Integral 

Operator of the form (4.8.1) for the class ( , , , , ).V A B b  In  section 4.9,we 

have obtained the  closure property for the class  , , , ,V A B b  . 

 The  study of another family of Certain Analytic Function Related To 

Complex Order(II).The description of this chapter is divided into six sections 

for the systematic study of the class  , , , ,G A B b  . In section 5.1,we have 

defined   the class  , , , ,G A B b  .In section 5.2 provides some lemmas that 

are needed in the succeeding sections of this chapter. In sections5.3,we have 

obtained the coefficient  estimate  for the functions belonging to the class

 , , , ,G A B b  .In section 5.4,we have investigated the sufficient conditions 

in terms of  coefficient for the function belonging   to the class  , , , ,G A B b 

.In section 5.5, we have determined the maximization of 3

3 2
a a  for 

complex value over the  , , , ,G A B b  .In section5.6,we have found the 
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necessary and sufficient conditions in terms of convolution for the function 

belonging to the class  , , , , .G A B b   

The new family of Analytic Function defined by fractional 

derivative(I).The chapter (VI)consist in nine sections. In sections 6.1, we have 

introduced the family  , , ,J A B p    of Analytic Function defined by 

fractional derivative. In section6.2, we have obtained the necessary and 

sufficient condition in term of coefficients for the functions is belonging to the 

class ( , , , )J A B p  .In section 6.3, we have obtained the distortion properties for 

the class ( , , , )J A B p  .In section 6.4,we have obtained the  class Preserving 

Integral Operator  of the form (6.1.5) for the class, we  obtained the radius of 

p-valent star likeness for the class ( , , , )J A B p  . In sections 6.6, we determined 

the radius of p-valent convexity for the class ( , , , )J A B p  .In section 6.7, we 

have obtained some results involving modified Hadamard Product of two 

Functions belonging to the class ( , , , )J A B p  . In section 6.8, we obtained 

some   contentment relations  related to  the ( , , , )J A B p  .In section 6.9,we 

have shown  that the class ( , , , )J A B p   is closed under arithmetic mean and 

convex  linear combination. 

The new family of Analytic Function  Defined by Fractional 

Derivative(II).The chapter VII consists nine sections. In sections 7.1, we have 

introduced the class  , , ,H A B p  .Further, we have determined the same 

properties for the class  , , ,H A B p   in the same order as we have already 

obtained properties for the class  , , ,H A B p    in chapter (VI). The family of 

Analytic Function  defined by Fractional Derivative Having Two Fixed point. 

The chapter (VIII) consists eight section. In sections 8.1, we have defined the 

class  0, , , ,M A B z   . In sections 8.2, we have obtained the necessary and 

sufficient conditions in terms of coefficients for the functions belonging to the 

class  0, , , ,M A B z   .In section 8.3, we have obtained the Distortion 

Properties for the class  0, , , ,M A B z   .In sections 8.4, we have determined 

the class  preserving integral operator defined by(4.8.1) for the class
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 0, , , ,M A B z   .In sections 8.5, we have obtained the radius of convexity for 

the class  0, , , ,M A B z   . In section8.6, we have obtained some result   

involving Quasi-Hadamard Product of two  function  belonging  to the class 

 0, , , ,M A B z   .In section 8.7, we have obtained some contentment  relation  

related to the class  0, , , ,M A B z   .In section 8.8, we have  shown the class 

 0, , , ,M A B z    is closed under  arithmetic  mean  and Convex  Linear 

Combinations. 

 The family of Analytic function  Defined by Fractional Integral .This 

chapter is divided into nine section for the systematic study of class

 , , , ,J A B f p  .In section 9.1, we introduced the class  , , , ,J A B f p  .In 

section 9.2, we have stated the lemma due to Goel,and Sohi,needed to prove 

the result of succeeding sections of this chapter. In section 9.3,we have 

obtained the necessary and sufficient condition in term of coefficients for a 

function G to be in  , , , ,J A B f p  .Consequently, we have shown 

   , , , , , ,J A B f p cJ A B p 
.Since  , , , ,J A B f p  is the sub classes of ( )J p

.It follows that the element of  , , , ,J A B f p   are starlike and hence P-valent 

in U. In sections 9.4, we have obtained the contentment relation related to the 

class  , , , ,J A B f p  . In sections 9.5, we have obtained the class  Preserving 

Integral Operator of  the  from  (9.1.2) for the class  , , , ,J A B f p  .We   have 

found  the radius of p-valent star likeness of the functions G defined in 

(9.1.2).In section 9.6, we have found the radius of  p-valent of convexity for 

the class  , , , ,J A B f p  .In section 9.7, we have  obtained the Distortion 

Properties for the class  , , , ,J A B f p  .In sections 9.8,we have obtained the 

result involving Modified Hadamard Product of two functions belonging to the 

class  , , , ,J A B f p   .In sections 9.9, we have shown that the class

 , , , ,J A B f p   is closed under Arithmetic Mean and Convex Linear 

Combinations.. 
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1.2  CONVOLUTION PROPERTIES INVOLVING 

SUBORDINATE  RELATIONS: 

Now we discuss about the mapping properties for convolutions 

involving the HGF. In this functions in class of functions in the form. 

2

( ) n

n

n

f z z a z




   

Which are analytic in the open disc  : 1U z z   and S denote the subclass 

of functions in A, which are univalent in U. More ever let ( )S   and ( )K   be 

the sub class of S consisting respectively of a functions which are starlike or 

order where 0 1   in U.  

Now we describe the q-derivative operator in conjunctions with the 

principle of sub-ordinations between analytic functions. Recently the theory of 

q-analysis has attracted considerable effort from researchers. Due to its 

applications in many branches of mathematics and physics. 

The main purpose of this theory is to introduce and study two 

subclasses of analytic functions in the open unit disc  : 1U z z and z    

by applying the q-derivative operator in conjunction with the principle of 

subordinate between analytic functions. 

1.4 METHODOLOGY ADOPTED
 

[1]. The tools and methodology used in research design in the technique of Koebe 

univalent function and mapping properties of an analytic function,radius of p-

valent convexity and preliminary lemmas for solving the equations.Different 

methods for the estimations of the operator involved in the distortion 

theorem, integral operator developed by Goodmann,A.W  

[2]. Closure theorems are used for finding numerical solutionsto the different 

differential equations. 
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[3]. Univalent functions, Hadamard product of two analytic functions, Gamma 

Functions, Biberbache conjecture, Robertson conjecture,Milin 

Conjecture,Sheil-Small Conjecture are applied in my thesis. 
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CHAPTER   3 
 

MAPPING PROPERTIES OF ANALYTIC 

FUNCTIONS DEFINED BY USING 

HYPERGEOMETRIC FUNCTION 

 

3.1 INTRODUCTION :  

Let  ( , )J A B  the class of those function f (z) of a ܣ which satisfying the  

conditions .    

                       
'( ) 1 ( )

,
( ) 1 ( )

zf z Aw z
z U

f z Bw z


 


 , 1 1A B     

 

Where w(z) belonging  to the class H.    

  - 

                            K   (A, B)= {f∈ A:zf
/(
(z)∈T

 *
(A,B)}. 

We observe that 

J
 * (2 1) ,     J

*
( ,  ), T

 * (2 1),1    J
*
( )  and J

*
(-1,1) J

 * 

K (2 1) ,     K( , )  ,K (2 1),1    K( ) and K (-1,1)= K( )    . 

For a, b, c   to be complex numbers with c is neither zero nor a negative               

integers, 

            Let  
0

( ) ( )
, , ,

( ) ( )

n

n n

n
n n

a b z
F a b c z

c 



    .                                          (3.1.1) 

Denote the hyper geometric function (HGF), where  
n

   is the Pochhammer 

symbol defined by 

 , ( 1 ) . . . . . . . . . . . . . . . . ( 1 ) , 1 , 2 , . . . . . . . . . . . . . . . .

1 , 0

n n

n n

      
  

This function is analytic in unit disc U. We also that  F(a,b;c;1)   converge  for  

the  Re(c-a-b)>0 and it also relates to the Gamma Function which is given by 

 

            )
, ; ;

( ( )

( ) ( )
F c

c c a b

c c b
a b z

a

   


   
                                                       (3.1.2) 
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Merks and Scott .Ruscheweyh and  Singh studied the mapping properties   of 

   ( ) ( , ; ; )z zF a b c z     

                                                                                                                   (3.1.3) 

The method of differential subordination Recently, Silvermen 

investigated  the mapping properties  of ( )z  with the help of elementary 

results of starlike function and Convex Functions.  

                            h(z)=(1 ) ( ) '( )z z z    .                                             (3.1.4) 

Where 0 ( )and z   defined by(3.1.3) . In fact the mapping 

properties  of h(z)in  my  basic tools are lemmas due to Goal, and Sohi, at p=1  

and we find out  sufficient conditions for h(z) to be  in J*(A,B) and 

ሺܭ , )A B .We obtain the  necessary and sufficient condition for h(z) to be  in 

J*(A,B) and K ( , )A B with suitable  restrictions on a, b ,c. 

In section (3.4), firstly, we determine the sufficient condition for ( )I z   

defined by 

                              I(z)=
( )

o

h t
dt

t

 
 
                                                           (3.1.5)                                                                                              

Where I(z) belong to K(A,B) .Further, we investigate the necessary and 

sufficient conditions ( )I z to be in K(A,B) with appropriate restrictions on a, b, 

c. Our results are generalized to the corresponding results of H. Silverman  

3.2 PRELIMINARY LEMMAS : 

  In this section we state the lemmas [3.2.1] and [3.2.2] due to Goel,and 

Sohi,   at   p=1 and prove a Lemma [3.2.3] that are needed in our 

investigations 

LEMMA 3.2.1:   A sufficient condition for function f define by (1.1.1) to be 

in    , , ,J A B K A B
  is that 

 

   
2 2

(1 ) ( 1) ( ) (1 ) ( 1) ( )
n n

n n

B n A a B A and n B n A a B A
 

 

   
            

   
 

      (3.2.1)   

LEMMA   3.2.2:     A necessary and sufficient condition for f(z) 
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                 2

( ) n

n

n

f z z a z




     

 To be ( , ) ( , ),J A B andK A B is that 

   
2 2

(1 ) ( 1) ( ) (1 ) ( 1) ( )
n n

n n

B n A a B A and n B n A a B A
 

 

 
          

 
 

  

(3.2.2) 

3.3   MAPPING PROPERTIES OF ANALYTIC FUNCTION 

h(z): 

THEOREM  3.3.1 :    If a, b>1 and c>a+b+2, then the sufficient condition for 

h (z) to be   J* (A,B),where1 1A B    is that 

     
2 2

2

(1 )(1 ) (1 2 )( ) ( )
1 2

( ) ( ) ( )( 1) ( )( 2)

B a bB B A abc c a b

c a c b B A c a b B A c a b

        
   

                     (3.3.1) 

The condition (3.3,1) is necessary and sufficient for 
1h  is defined by 

                  
 1

( )
2

h z
h z z

z

    
 to be in ( , )J A B  

PROOF:   Since 

           
   
   

1 1

2 1 1

( ) 1
1

nn n

n n n

a b
h z z m z

c
 


 

  

                             

(3.3.2)      

 Let   according to Lemma (3.2.1) we need to show   that 

                     

  1 1

2 1 1

( ) ( )
(1 ) ( 1) (1 ) ( )

( ) (1)

n n

n n n

a b
B n a n B A

c
 


 

  

      
          

(3.3.3) 

The left side inequality (3.3.3) converge if c>a+b+2 

Now 

            

  1 1

2 1 1

( ) ( )
(1 ) ( 1) (1 )

( ) (1)

n n

n n n n

a b
B n A n

c
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1

( ) ( )
(1 ) ( ) (1 )

( ) (1)

n n

n n n

a b
B n B A n

c






    
          

     

        
   
   

2

2

1 1
1

n n

n n n

a b
B n B B A n B A

c
 





        
          

        

 
1 1 11 1 1

( ) ( ) ( ) ( ) ( ) ( )
(1 ) (1 ) ( ) ( )

( ) (1) ( ) (1) ( ) (1)

n n n n n n

n n nn n n n n n

n a b a b a b
B B B A B A

c c c
 

  

    

         
(3.3.4) 

     Putting    
1

1
n n

 


   and applying (3.1.1) and (3.1.2)  

     We may express that 

   

 

   

1 1 2 2

2 1 1 2

( ) ( ) ( ) ( )
(1 ) ( 1) (1 ) (1 ) ( 2, 2, 2;1)

( ) (1) ( )

(1 ) (1 2 ) ( 1, 1, 1;1) ( ) ( , , ;1) 1

n
n n

n n n

a b a b
B A B F a b c

c c

ab
B B A F a b c B A F a b c

c

 



 

  

        

          



 

   

 2 2

2

( ) ( ) ( 2) ( 2)
(1 ) (1 ) (1 2 ) .

( ) ( ) ( )

( 1) ( 1)
. ( )

( ) ( )

a b c c a b
B B B A

c c a c b

ab c c a b
B A

c c a c b

 
     

      
   

     
 

   

 

   

   2 2

2

(1 ) (1 2 ) (1 )( ) ( )( ) ( )
( ) 1

( ) ( ) ( )( 1) ( )( )

b B A ab B a bc c a b
B A B A

c a c b B A c a b B A c

        
               

 

 Last expression is above   by (B-A) if and only if holds. 

Such that 

  

1 1
1

2 1 1

( ) ( )
( ) (1 )

( ) (1)

nn n

n n n

a b
h z z n z

c
 


 

  

   
                                                  (3.3.5)

 

Thus this least conditions (3.3.1) is also sufficient for the h(z) to be in j*(A,B) 

for the Lemma (3.2.2). 

COROLLARY 3.3.1:    if we take 0,   then this theorem becomes, if a,b>0 

and C>a+b+1,thus the sufficient condition for h1 to be J* (A,B), 1 1A B     

is that 

                            

( ) ( ) (1 )
1 2

( ) ( ) ( )( )

C c a b B ab

c a c b B A c a b
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 This  condition is also  necessary and Sufficient for  h(z) defined by (3.3.5) to 

be in j*(A,B). 

REMARKS: If we take  0   , 1A    and 1B  ,the condition(3.3.5) is 

necessary and sufficient for 
1h  to be in  ,J  

 

THEOREM 3.3.2 :   If a, b>-1,c>0 and a, b<0 then a necessary and sufficient 

condition for  h(z) to be in J*(A,B) is that 

            
2 2

1 1 2 . 2 ( )( 2) 0A B a b B B A ab c a b B A c a b                 

                                                                                                                   (3.3.6)                                                 

  The condition 1c a b ab     is necessary and sufficient for ( )h z to be in 

J*(A,B). 

 PROOF:  
   

   
2 2

2 2 1

1 1
( ) 1

1 1

n

n n

n n n

a b zab
h z z n

c c
 


 

  

 
   

                   (3.3.7) 

According to Lemma (3.2.2), we must show that 

           

     
   

 
 2 2

2 2

1 1
1 1 1

1

n

n n

n n

a b z c
B n A n B A

c ab
 


 

 

 
       

    (3.3.8) 

 The left side of(3.3.8) converges if 2c a b    

  Now            

     
   

   
2 2

2 2 1

1 1
1 1 1

1 1

n n

n n n

a b
B n A n

c
 


 

  

 
     


  

 

         

           
   0 1

( 1) 1
1 1 1 1

1 1

n n

n n n

a b
B n B A n

c




 

 
      


  

          

         
   
   

2

0 1

1 1
1 1 1 1

1 1

n n

n n n

a b
B n B B A n

c
 



 

 
            

           

   
   
   

        
   0 0

1 1 1 1
1 1 1

1 1 1 1

n n n n

n nn n n n

a b a b
B n B B A

c c
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   0 1

1 1

1 1

n n

n n n

a b
B A

c



 

 
 


     

 
   

 
    

   
 

 
   
   

0 1

0 0 1

1 1
1 1 1 2

1

1 1 1 1

( 1) 1 1 1

n n

n n

n n n n

n nn n n n

a b
B B B A

c

a b a b
B A

c c

 


 

 

  

 
       



   
 

 



             

 

  

     
 

   
   

      
   

 
   
   

1 1

1 1 1

0

1 1

0 1 1

1 11 1
1

1 1 1

( 1) 1
1 1 2

1 1

1

n n

n n n

n n

n n n

n n

n n n

a ba b
B

c c

a b
B B A

c

a bc
B A

ab c






 

  






 

  

  
  

 

 
   



 







 

   

    
 

   
 

      
 

 
   
   

0

0 1

2 21 1
1

1 2

( 1) 1
1 1 2 .

1 1

n n

n n

n
n n n n

n nn n n

a ba b
B

c c

a b a bc
B B A B A
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1 1
1 2, 2; 2;1

1

1 1 2 . 1, 1; 1; ,; ; ;1 1

a b
B F a b c

c

c
B B A F a b c B A F a b c

ab





 
     



           

 

   
 

   
 

   
   

1 ( 1) 1 2
1 .

1

a b c c a b
B

c c a c b


       
  

    
          

    

.         
   

1 1
1 1 2 .

c c a b
B B A

c a b a


     
    

   
 

            
  

 
c c a bc c

B A B A
ab c a c b ab

   
  

  
 

 

Hence (3.3.8) is equivalent to

 

   

   
   

     
 

  1 1 1 1
1 1 1 2 .

2

c c a b a b
B B B A

c a c b c a b
 

          
      

       

 

 

          

      0
B A c c

c a b B A
ab ab ab

 
      

                                           (3.3.9)
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Thus (3.3.9) is valid  if and only if 

    
 

      1 1 ( 1)
1 1 1 2 0

2

a b B A c a b
B B B A

c a b ab
 

      
        

   
Which is equivalent to(3.3.6).Putting 0, 1A    and B=1  on the condition 

(3.3.6),we find the condition c>a+b+1-ab which is necessary and sufficient for 

h(z) to be ( , )J A B

. 

REMARKS:  if we take 0, 1 1A andB      the condition (2.3.1) is both 

necessary and sufficient for h1 to be in J *(A,B). 

 THEOREM  3.3.3:    If a, b>0 and C>a+b+3,then a sufficient conditions for 

h(z) to be in K(A,B), 1 1A B- £ < £   is that 

  
( )

( )
( ) ( ){ }

( )( )
2 3 2 1 2( )

1
( )

B A B A abc c a b

c a c b B A c a b

mé ù+ - + + -G G - - ê ú+ê úG - G - - - -ê úë û
  

( ) ( ){ }
( )

( ) ( )
( )

( )
( )

( ) ( )
( )

3 32 2

2

1 4 5 1
2

2 3

B B A a ba b B

B A c a b B A c a b

m m ù+ + + - + ú+ + £ú- - - - - - - - úû           

(3.3.10) 

Condition (3.3.10) is necessary and sufficient for ( )1h z  is defined by (3.3.5) to 

be K(A,B). 

PROOF:   Since h(z) defined by (3.3.2) In view of lemma (3.2.1),we need 

only to show  that ( ) ( ){ }( )
( ) ( )
( ) ( )

( )1 1

2 1 1

1 1 1
1

n n

n n n

a b
n B n A m B A

c
m

¥
- -

= - -

+ + - + + £ -å
        

(3.3.11) 

The  left side of(3.3.11) converges if c>a+b=3 

Now ( ) ( ){ }( )
( ) ( )
( ) ( )

1 1

2 1 1

1 1 1
1

n n

n n n

a b
n B n A m

c
m

¥
- -

= - -

+ + - + +å
                                           

( ) ( )( ) ( ){ } ( ){ }
( ) ( )
( ) ( )

1 1

0 1 1

2 1 2 1 1 2
1

n n

n n n

a b
n B n A n

c
m m

¥
- -

= - -

+ + + - + - + +å  

Putting n+2=(n+1)+1,  we have 
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( ) ( ) ( ) ( ){ }( )3 2

0

1 1 1 1 2 1
n

B n B B A nm m
¥

=

é= + + + + + - +êëå

( ) ( ){ }
( ) ( )
( ) ( )

1 1

1 1

1 2
1

n n

n n

a b
B A B A

c
m - -

- -

ù+ + - + - úû
 

( ) ( )( ) ( )
( ) ( )

( ) ( ){ }2 1 1

0 1

1 2 1 1 1 2 .
1

n n

n n n

a b
B n n B B A

c
m m

¥
+ +

= +

= + + + + + + + -å

( ) ( )
( ) ( )
( ) ( )

( ) ( ){ } ( )
( ) ( )
( ) ( )

2 1 1 1 1

0 01 1 1

1 1 1 1 2 1
1 1

n n n n

n nn n n n

a b a b
B n B B A n

c c
m m

¥ ¥
+ + + +

= =+ + +

= + + + + + + - +å å  

   

( )
( ) ( )
( ) ( )

( ){ } ( )
( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

1 1 1 1 1 1

0 0 01 1 1 1

. 1 1 2 .
1 1 1

n n n n n n

n n nn n n n n n

a b a b a b
n B A B A B A

c c c
m

¥ ¥ ¥
+ + + + + +

= = =+ + + +

+ + - + - + -å å å  

   

( )
( ) ( )
( ) ( )

( ){ }
( ) ( )
( ) ( )

1 1 1 1

0 01 1 1 1

1 (1 ) 3 4
1 1

n n n n

n nn n n n

n a b a b
B B B A

c c
m m

¥ ¥
+ + + +

= =+ + + +

= + + + + + -å å
 

( ){ }
( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

1 1

0 11

(2 3 ) 2 1 2
1 1

n n n n

n nn n n n

a b a b
B A B A B A

c c
m

¥ ¥
+ +

= =+

+ + - + + - + -å å
 

( ) ( )
( ) ( )

( ) ( )
( ) ( ){ }2 2

0 2

1 1 1 3 4 .
1

n n

n n n

a b
B n B B A

c
m m

¥
+ +

= +

= + + + + + + -å

( ) ( )
( ) ( )

( ) ( ){ }
( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

2 2 1 1

0 0 12 1

2 3 3 4 .
1 1 1

n n n n n n

n n nn n n n n n

a b a b a b
B A B A B A

c c c
m

¥ ¥ ¥
+ + + +

= = =+ +

+ + - + + - -å å å  

( )
( ) ( )
( ) ( )

( ) ( ){ }
( ) ( )

( ) ( )
2 2 2 2

0 01 1 1

1 1 4 5
1 1

n n n n

n nn n n n

a b a b
B B B A

c c
m m

¥ ¥
+ + + +

= =+ + +

= + + + + + - +å å  

( ){ }
( ) ( )
( ) ( )

( ){ }
( ) ( )
( ) ( )

1 1

0 11

(2 3 ) 2 1 2
1 1

n n n n

n nn n n n

a b a b
B A B A B A

c c
m

¥ ¥
+ +

= =+

+ + - + + - + -å å  

( )
( ) ( )

( ) ( )
( ){ }

( ) ( )
( ) ( )

3 3 2 2

0 03 2

1 (1 ) 4 5 .
1 1

n n n n

n nn n n n

a b a b
B B B A

c c
m m

¥ ¥
+ + + +

= =+ +

= + + + + + - +å å

( ) ( ){ }
( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

1 1

0 11

2 3 2 1 2 1
1 1

n n n n

n nn n n n

a b a b
B A B B A

c c
m

¥ ¥
+ +

= =+

+ - + + - + + -å å                

   Since ( ) ( ) ( )
n k k n

a a a k
+

= +  . 

   We may write the (3.3.12) as 

( )
( ) ( )

( )
( ) ( )

( ) ( )
( ) ( ){ }3 3

03

3 3
1 1 4 5 .

3 1

n n

n n n

a b a b
B B B A

c c
m m

¥

=

+ +
= + + + + + -

+å  



 

 

17 

 

 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ){ }2 2

02

2 2
. 2 3 2 1 2 .

( ) 2 1

n n

n n n

a ba b
B A B A

c c
m

¥

=

+ +
+ - + + -

+å  

  

( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

( )
0 1

1 1

1 1 1

n n n n

n nn n n n

a b a ba b
B A B A

c c c

¥ ¥

= =

+ +
+ - - -

+å å  

( )
( ) ( )

( )
( ) ( ) ( ){ }3 3

3

1 3, 3; 3;1 1 4 5
a b

B F a b c B B A
c

m m= + + + + + + + + -  . 

   .
( ) ( )

( )
( ) { }2 2

2

2, 2, 2,1 (2 3 ) 2 (1 2 )
a b

F a b c B A B A
c

m+ + + + + - + + - . 

   
( )( )1, 1; 1;1 ( , ; ; ) ( )

a b
F a b c B A F a b c z B A

c
+ + + - - -  

   

( )
( ) ( )

( )
( ) ( )

( ) ( )
( ) ( ){ }3 3

3

3 3
1 1 4 5 .

a b c c a b
B B B A

c c a c b
m m

G + G - - -
= + + + + -

G - G -
 

( ) ( )
( )

( ) ( )
( ) ( )

( ) ( ){ }2 2

2

2 2
2 3 2 1 2 .

a b c c a b
B A B A

c c a c b
m

G + G - - -
+ + - + + -

G - G -
 

( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

1
( )

c a c a b c c a bab
B A B A

c c a c b c a c b

G - G - - - G G - -
+ - - -

G - G - G - G -
 

( ) ( )
( ) ( )

( ) ( ){ }
( )

1 2 2 1 2
( ) 1

( 1)

B A B A abc c a b
B A

c a c a B A c a b

mé ù+ - + + -G G - - ê ú= - +ê úG - G - - - - -ê úë û
( ) ( ){ }

( )
( ) ( )

( )
( )( ) ( )

( )( )
3 32 2

2

1 4 5 1
( )

2 3

B B A B a ba b
B A

B A c a b B A c a b

m m ù+ + + - + ú+ + - -ú- - - - - - - - úû
 

This last expression is bounded above by ( )B A- if and only if (3.3.10) holds. 

Since ( )1h z  is defined by (3.3.5).The condition (3.3.10) is also necessary for

( )1h z to be in K (A, B) from Lemma (3.2.2). 

COROLLARY 3.3.4:     If we take 0,m= then Theorem (3.3.2) becomes. If 

we take it , 1, 0a b c>- > and 0,ab <   then    a necessary and sufficient 

condition for h(z) to be in ( ),J A B*
 is that ( )1 ( ).c a b A B ab B A> + + - + -

The condition 1c a b ab> + + -   is necessary and sufficient for h(z).
 

THEOREM 3.3.4 :  If a, b>-1 a b>0 and c>a+b+3, then a necessary and 

sufficient condition for h (z) to be in K(A,B)is that
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( )( ) ( ) ( ) ( ){ }( ) ( ) ( )
3 3 2 2

1 1 4 5 3B a b B B A a b c a bm m+ + + + + - - - - +   

( ) ( ){ } ( ) ( )( )
2 3

2 3 2 1 2 3 3 0B A B A ab c a b B A c a bm+ + - + + - - - - + - - - - ³   

PROOF:  Since h(z)  is defined by (3.3.7) .In view of Lemma (3.2.2) , 

We must show that  

( ) ( ){ }( )
( ) ( )

( ) ( )
( )2 2

2 2 1

1 2
1 1 1

1 1

n n

n n n

a b c
n B n A n B A

c ab
m m

¥
- -

= - -

+ +
+ - + - + £ -

+å  

The left side of (3.3.14) converges if  ( )3c a b> + +  

Now  

( ) ( ){ }( )
( ) ( )

( )
2 2

2 12

1 1
1 1 1

1 (1)

n n

n nn

a b
n B n A n

c
m m

¥
- -

= --

+ +
+ - + - +

+å

( ){ }{ }
( ) ( )

( ) ( )0

1 1
2 (1 )( 2) ( 1) 1 ( 2)

1 1

n n

n n n

a b
n B n A n

c
m m

¥

=

+ +
= + + + - + - + +

+å  

Writing  n+2=(n+1) +1 , we have 

( )( ) ( ) ( ){ }( )3 2

0

1 1 1 1 2 1
n

B n B B A nm m
¥

=

é= + + + + + + - +êëå

( ){ }( ) ( )
( ) ( )
( ) ( )

1

1 1
(1 2 ) 1

1 1

n n

n n

a b
B A B A n B A

c
m

+

+ +ù+ + - + - + + - úû +
 

( ) ( )( ) ( )
( ) ( )

2

0

1 1
1 2 1

1 1

n n

n n n

a b
B n n

c
m

¥

=

+ +
= + + +

+å  

( ) ( ){ } ( )
( ) ( )

( ) ( )0

1 1
1 1 2 1

1 1

n n

n n n

a b
B B A n

c
m

¥

=

+ +
+ + + + - +

+å  

  

( ) ( ){ }
( ) ( )

( ) ( )
( )

( ) ( )
( ) ( )0 0

1 1 1 1
1 2

1 1 1 1

n n n n

n nn n n n

a b a a
B A B A B A

c a
m

¥ ¥

= =

+ + + +
+ + - + - + -

+ +å å  

 

( )
( ) ( )

( ) ( )
( ) ( ){ }

0 1

1 1
1 1 3 4 .

1 1

n n

n n n

a b
B n B B A

c
m

¥

= -

+ +
= + + + + + -

+å  

  

( ) ( )
( ) ( )

( ) ( ){ }
0 1

1 1
. 2 3 2 1 2 .

1 1

n n

n n n

a b
n B A B A

c
m

¥

= -

+ +
+ + - + + -

+å  

  

( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )0 0 1

1 1 1 1

1 1 1 1

n n n n

n nn n n n

a b a b
B A

c c

¥ ¥

= = +

+ + + +
+ -

+ +å å  
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. ( ) ( )
( ) ( )

( ) ( )
( ) ( ){ }1 1

0 1

1 1
1 1 1 3 4 .

1 1

n n

n n n

a b
B n B B A

c
m m

¥
+ +

= +

+ +
= + + + + + + -

+å
   

( ) ( )
( ) ( )

( ) ( ){ }1 1

0 1

1 1
. 2 3 2 1 2 .

1 1

n n

n n n

a b
B A B A

c
m

¥
+ +

= +

+ +
+ + - + + -

+å

( ) ( )
( ) ( )

( )
( ) ( )

( )0 0 1

1 1 1 1

1 1 1

n n n n

n nn n n

a b a b
B A

c c

¥ ¥

= = +

+ + + +
+ -

+ +å å

( )
( ) ( )

( ) ( )
( ) ( ){ }1 1

1

1 1
1 1 4 5 .

1 1

n n

n o n n

a b
B B B A

c
m m

¥
+ +

= -

+ +
= + + + + + -

+å

( )
( ) ( ){ }

0 1

( 1) ( 1)
. 2 3 2 1 2 .

( 1) 1

n n

n n n

a b
B A B A

c
m

¥

= +

+ +
+ + - + + -

+å

( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

1 1

0 01 1 1

1 1

1 1 1

n nn n

n nn n n n

a ba b c
B A

c a b c

¥ ¥
+ +

= =+ + +

+ +
+ -

+å å

( )
( ) ( )

( ) ( )
( ) ( ){ }2 2

0 2

1 1
1 1 4 5 .

1 1

n n

n n n

a b
B B B A

c
m m

¥
+ +

= +

+ +
= + + + + + -

+å

( ) ( )
( ) ( )

( ) ( ){ }1 1

0 1

1 1
. 2 3 2 1 2 .

1 1

n n

n n n

a b
B A B A

c
m

¥
+ +

= +

+ +
+ + - + + -

+å

( ) ( )
( )

( )
( ) ( )
( ) ( )0 1

1 1
.

1 1

n n n n

n nn n n

a b a bc
B A

c ab c

¥ ¥

= =

+ +
+ -

+å å

( )
( ) ( )

( )
( ) ( )

( ) ( )
( ) ( ){ }2 2

02

3 11 1
1 1 4 5 .

1 1 1

n n

n n n

a ba b
B B B A

c c
m m

¥

=

+ ++ +
= + + + + + -

+ +å

( )( )
( )

( ) ( )
( ) ( )

( ) ( ){ }2

0

2 21 1
. 2 3 2 1 2 .

1 3 1

n

n n n

a ba b
B A B A

c c
m

¥

=

+ ++ +
+ + - + + -

+ +å

( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

( )
0 0

1 1
.

1 1 1

n n n n

n nn n n n

a b a bc c
B A B A

c ab c ab

¥ ¥

= =

+ +
+ - - -

+å å

( ) ( ){ } ( ). 2 3 2 1 2 1, 1; 1;1B A B A F a b cm+ - + + - + + + +

( ) ( )( ) , ; ;1
c c

B A F a b c B A
ab ab

- - -

( )
( ) ( )

( ) ( )
2 2

2

3 3( 1) ( 1)
1

( 1)

c c a ba b
B

c c a c b
m

G - G - - -+ +
= +

+ G - G -

( ) ( ){ }( )( )
( )

( ) ( )
( ) ( )

1 1 2 2
1 4 5

1

a b c c a b
B B A

c c a c b
m

+ + G + G - - -
+ + + + -

+ G - G -

( ) ( ){ } ( ) ( )
( ) ( )

1 1
2 3 2 1 2

c c a b
B A B A

c a c b
m

G + G - - -
+ + - + + -

G - G -

( )
( ) ( )

( ) ( )
( )

b a c a bc c
B A B A

ab c a c b ab

æ öG - G - - ÷ç+ - - - ÷ç ÷çè øG - G -
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( ) ( )
( ) ( )

( )
( ) ( )
( )

( ) ( ){ }2 2
1 11 1

1 4 5 .
3

a bc c a b
A B B b A

c a c b c a b
m m
é + +G + G - - - ê= + + + + + -êG - G - - - -êë

( ) ( ) ( ){ }( )1 ( 1) 2 3 2 1 2 2a b B A B A c a bm+ + + + - + + - - - -

( )
( )

( )2
2

.
c a b c

B A B A
ab ab

ù- - - ú+ - - -ú
û

  

This last expression is bounded above by ( )c
B A

ab
-   if and only if

( )
( ) ( )
( )

( ) ( ){ }( )( )2 2
1 1

1 1 4 5 1 1
3

a b
B B B A a b

c a b
m m

+ +é= + + + + + + + +ë - - -

( ){ }( ) ( )
( )

2
2

(2 3 ) 2 1 2 2 0
c a b

B A B A c a b B A
ab

m
ù- - - ú+ + - + + - - - - + - + £ú
û

 

Which is equivalent to (3.3.13). 

COROLLARY 3.3.5: If we take ( )0, 2 1Am a b= = -   and B b= ,then  the 

theorem (3.3.2) becomes. If , 1, 0a b c>- >   and 0ab<  , then a necessary 

and sufficient conditions for h(z) to be in ( ),J a b*
 is that 

                       
( ) ( )1 1 2 1c a b abb b a³ + + - + -  . 

The condition 1c a b ab> + + -  is necessary and sufficient for h(z) to be in

J *  .The following theorem are parallel to the theorems (3.3.1) and(3.3.2)  for 

the convex case. 

COROLLARY   3.3.6:    If we take μ=0,then the theorem (3.3.3) becomes: If  

a, b>0 and c>a+b+2, then a sufficient conditions for ( )1h z  to be in K(A,B)

1 1A B- £ £ £  is  that   

( ) ( )
( ) ( )

( )
( ) ( )

( )( ) ( )
( )( )

2 2

2

12 3
1 2

1 2

B a bc c a b B A ab

c a c b B A c a b B A c a b

é ù+G G - - + -ê ú+ + £ê úG - G - - - - - - - - -ê úë û
  

This condition is necessary and sufficient for ( )1h z  defined by(3.3.5) to be in 

corollary in K(A,B) . 

 COROLLARY 3.3.7:   If we   take  .If we take μ=0 , ( )2 1A a b= -  and B=β, 

then Theorem (3.3.3) becomes: 
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If a, b >0 and c>a+b+2, then a sufficient conditions h1(z) to be in K(α, 

β),0≤α<1,0<β≤1 is that 

( ) ( )
( ) ( )

( )
( ) ( )

( )( ) ( )
( )( )

2 2

2

12 4 2
1 2

2 1 1 2 1 2

a bc c a b ab

c a c b c a b c a b

bb ab

b a b a

é ù+G G - - + -ê ú+ + £ê úG - G - - - - - - - - -ê úë û
  

This condition is necessary and sufficient for  h1(z) is defined by(3.3.5) to be 

in K(A,B). 

COROLLARY  3.3.7:    If   we take μ=0,then the theorem (3.3.4) becomes: 

If a, b>-1,ab<0 and c>1+b+2, then a necessary and sufficient condition for  

h(z)    to   be in K(A,B) is that 

( )( ) ( ) ( ) ( ) ( )( )
2 2 2

1 2 3 2 2 0B a b B A ab c a b B A c a bé ù+ + + - - - - + - - - - ³ê úë û  

COROLLARY 3.3.8:    If we  take ( )0, 2 1Am a b= = -  and B b=  then 

theorem (3.3.4)  becomes: If  a, b>0,ab<0 and c>a+b+2, then a necessary and 

sufficient condition for  h(z) to be in K(α,β) is  that

( )( ) ( ) ( ) ( ) ( )( )
2 2

1 2 4 2 2 2 1 2 0a b ab c a b c a bb b ab b aé ù+ + + - - - - + - - - - ³ê úë û    

3.4  MAPPING  PROPERTIES OF  INTEGRAL OPERATOR 

I(z): 

THEOREM  3.4.1: If a, b>0 and c>a+b+2, then a sufficient condition for I(z) 

defined by (3.1.6) to be in K(A,B),-1<A<B<1, is that 

( ) ( )
( ) ( )

( ) ( ){ }
( )( )

( )( ) ( )
( )( )

2 2

2

1 1 2 12
1 2

1 2

B B A ab B a bc a b

c a c b B A c a b B A c a b

m mé ù+ + + - +G G - - ê ú+ + £ê úG - G - - - - - - - - -ê úë û
 (3.4.1) 

PROOF:  With the help of  Lemma (3.2.3) and theorem (3.3.1),the proof is 

obvious. 

 COROLLARY 3.3.4:   If we take μ=0,then  Theorem (3.1.1) becomes: If   a, 

b>0 and c>a+b+2 , then a sufficient  condition for I(z)  defined by (3.1.6) to be 

inK(A,B),-1<A<B<1isthat
( ) ( )
( ) ( )

( )
( )( )

1
1 2

1

c c a b B ab

c a c b B A c a b

é ùG G - - +ê ú+ £ê úG - G - - - - -ê úë û            (3.4.2)
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COROLLARY  3.3.2:  If we take μ=0 ,then  the theorem (3.1.1) is a  

sufficient for I(z)  defined by (3.1.6) to be in K(α,β), 0≤b<1,0<β≤1 is that
 

( ) ( )
( ) ( )

( )
( )( )

1
1 2

2 1 1

c c a b ab

c a c b c a b

b

b a

é ùG G - - +ê ú+ £ê úG - G - - - - -ê úë û
  

THEOREM  3.4.2:  If  a, b>-1,a,b<0 and c>a+b+2 , then a necessary  and 

sufficient conditions for  I(z) to be in K(A,B) is that 

( )( ) ( ) ( ) ( ){ } ( ) ( )( )
2 2 2

1 1 1 2 2 2 0B a b B B A ab c a b B A c a bm mé ù+ + + + + - - - - + - - - - ³ê úë û
COROLLARY 3.4.3:   If we take μ=0, then  the theorem(3.4.2) becomes. If  

a, b>-1,ab<0 and c>a+b+1, then a necessary  and sufficient conditions for I(z) 

to be in K(A,B) is that 
 

( )
( )
1

1
B ab

c a b
B A

+
³ + + -

-
 

 

COROLLARY 3.4.4: If we take μ=0 ,A=(2α-1)β and B=β then   the theorem 

(3.4.2) becomes: If a, b>-1 ab<0 and c>a+b+2 , then a necessary and sufficient 

conditions for I(z) to be in K(α, β) is that  c≥a+b+1-ab(1+β)/2β(1-α) 

REMARK:  If we take μ=0 ,A=(2α-1) and B=1 , our  results  concede with 

corresponding results of Silverman                                                

******** 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

23 

 

 CHAPTER 4 

CERTAIN SUB CLASSES OF ANALYTIC FUNCTIONS 

RELATED TO COMPLEX ORDER (I) 
 

4.1 INTRODUCTION: 

  If f   and g   are any two functions in such that f and g defined by (1.1.1) by 

               2

( ) n

n

n

f g z a z
¥

=

= +å     And   ( )
2

n

n

n

g z z a z
¥

=

= +å   

Then the Convolution Techniques or Hadamard products of f and g is denoted 

by f g  is defined by the power series. 

                    ( )( )
2

n

n n

n

f g z z a b z
¥

=

* = +å  

Now, we have introduced the class ( ), , , , ,V A B bl m  of the Analytic Functions 

of Complex Order b, by using the Convolutions Technique, as defined below. 

A function f  of A belongs to the class ( ), , , ,V A B bl m .If and only if there 

exists a functions W belonging to the class ݔ	such that.

            

( )
11 ( ) 1 ( )

1 1 1 , ,
1 ( )

D f z Aw z
z U

b z Bw z

l

m m
+æ ö æ ö+÷ ÷ç ç÷+ - = - + ÷ Îç ç÷ ÷ç ç ÷÷ çç +è øè ø

                             (4.1.1)                                                             

Where 1 1,0 , 1B A im l- £ < £ < £ >-   

                     

( )
( )

( )
( )1

( )

!1
l

z z f zz
D f z f z

z

l
l

l

l
l

-

+= * =
-

 

Where . Ruchewyeh] observed that 

                      
( )

( )( )1

!

z z f z
D f z

l
l

l

l

-

=  

It is easy to see that the conditions (4.1.1) is equivalent to  

                    

( )

1

1

( )
1

1,
( )

1

D f z

z z
D f z

A B b B
z

l

l
m

m

+

+

-
< Î

ì üï ïï ï- - -í ýï ïï ïî þ

 

By giving the specific values to A, B and b in (4.1.3). We obtain the following 

sub classes studied by the various researchers in earlier works. 
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I. For μ=1, A=1 and B=-1, we obtain the class of the functions f  is satisfying 

the condition. 

       

1

1

( )
1

1,
( )

2 1

D f z

z z
D f z

b B
z

l

l
m

+

+

-
< Î

ì üï ïï ï- -í ýï ïï ïî þ

 

For  (cos ) ib e aa= ,we obtain the class of function f  satisfying the  

Condition. 

            

( )

1

1

( )
1

1,
( )

1

i

i

D f z
e

z z
D f z

A B b Be
z

l
a

l
a

m

m

+

+

-
< Î

ì üï ïï ï- - -í ýï ïï ïî þ

 

Where ,
2 2

n n
a

æ ö÷çÎ - ÷ç ÷çè ø
 For μ=1 and b=1, we obtain the class of function f  is 

satisfying the condition. 

                

1

1

( )
1

1,
( )

1

D f z

z z
D f z

A B
z

l

l
m

+

+

-
< Î

ì üï ïï ï- -í ýï ïï ïî þ

 

For μ=1,A=1-2α,B=-1 and b=1,We obtain the class of functions f  satisfying 

the  condition.   

                  
( )

1

1

( )
1

1,
( )

1 2

D f z

z z
D f z

z

l

l
m

a

+

+

-
< Î

- +
 

               Where 0 1,a£ <   

II. For μ=1 and 0l= .We obtain the class of functions f  satisfying the 

conditions. 

                   

( )
( ) ( ){ }

' 1

1

f z

b A B B f z

-
¢- - -

1, z m< Î  
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 Where ( )( ) ( )' 'D f z f z= .This function is studied by Dixit ,K.K and Pal, S.K 

[58]. 

III. For μ=1 and b= (cosα) e
iα

 and 0l= , we obtain the class of function f is 

satisfying the conditions. 

                   

( )
( )

1

cos sin

i

i

e f z

Be f z A iB

a

a a a

¢ -
¢ - +

1, z m< Î  

           Where ,
2 2

n n
aÎ -  is studied by  Shukla, and Dashrath For μ=1,b=1,

0l= ,we obtain the class of function f  is satisfying the conditions. 

                    

( )
( ){ }

1
1,

f z
z

Bf z A
m

¢ -
- < Î

-  

               This is studied by Goel, and Mahrok  For μ=1,A=δ ,B=δ ,b=1 and

0l= ,we get the class of function  f  is satisfying the conditions: 

                         

( )
( )

1
,

1

f z
z

f z
d m

¢ -
< Î

¢ -
 

, For μ=1,A=(1-2P)δ ,B=-δ b=1 and 0l=   we  get the satisfying the condition: 

                          

( )
( )

1
,

1 2

f z
z

f z p
d m

¢ -
< Î

+ -
 

Where 0 ,0 1P d£ < < £  this way, we come to near the  study of  the class 

( ), , , ,V A B bl m   .  The  study of my thesis  possesses  nine parts, In part 4.2, 

we provide some lemmas that have necessity in the succeeding sections of this 

chapter. In the part 4.3,we have displayed the containment relation between

( )0 , , , ,V A B bl m c ( ), , , ,V A B bl m
 

where
0 .l l>  In the section 4.4,we have 

received the coefficient for the function f(z)   belonging  to the class 

( ), , , ,V A B bl m .In  section 4.5,we have obtained  the   many condition in term 

of coefficient for the function f  belonging to the class ( ), , , , .V A B bl m    
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In  the  part4.6,we  got the  maximization of
3 2a ad-   for the complex 

value of over the class ( ), , , ,V A B bl m .In section4.7,we have observed 

distortion properties of class ( ), , , ,V A B bl m .In part 4.8,we have investigate  

the class Preserving Integral Operator  of the form(4.8.1) for the class 

( ), , , ,V A B bl m .In the section 4.9,we have received the Closure Properties for  

the class ( ), , , ,U A B bl m . 

4.2 PRELIMINARY LEMMAS: 

In this part, we describe the Lemma 4.2.1 and 4.2.2  and  prove that the   

lemma (4.2.3) that our need  in our observation. 

LEMMA4.2.1: If a function W is analytic for ( )1, 0 0z r w£ < =  and 

                    
( ) ( )

0
max ,w z z r w z= =  

Then 

             
( ) ( )0 0 0z w z w z¢ =                                                                          (4.2.1) 

 LEMMA  4.2.2:    Let ( )
1

k

k

k

W z c z
¥

=

= å be analytic with ( ) 1w z <   in U. If d 

is any complex number, then 

               
{ }2

2 2
max 1,c dc d- £                                                              (4.2.2) 

Equality may be attained with function ( ) 2W z z=   and ( )W z z=
 

LEMMA 4.2.3: A function f belong to the class ( ), , , ,V A B bl m   ,

1 1.B A- < < £   If and only if
 

                  
( ) , ,H z m M z u- < Î                                                             (4.2.3) 

Where 

                   

( )
( )1

1
1 1

D f z
H z

b z

l+

= + -                                                    (4.2.4)   

                            
( )

( )2
1,

1

B A B
m

B

m -
= -

-
                                                                                          

and            
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( )
( )21

A B
m

B

m -
=

-
                                                                         

(4.2.5) 

PROOF:  Suppose that   ( ), , , , .f V A B bl mÎ Then form (4.1.1) .We get 

                               

( )1 ( )
( )

1 ( )

B A B W z
H z

BW z

m+ + -
=

+
 

There fore   

                    

( )1 ( )
( )

1 ( )

m B A B BmW z
H z m

BW z

m- + + - -
- =

+
                 (4.2.6) 

                            
( )

( )
1 ( )

B w z
M Mh z

BW z

+
= =

+
  

It is clear that the function h (z) satisfies ( ) 1n z <  .Hence (4.2.3) follows 

from(4.2.7). 

Conversely, suppose that  the condition (4.2.7) holds. 

Then we have 

                               

( )
1

H z m

M M
- <

 

                            

( ) ( )
( ) ( )

0

1 0

z

z

r r

r r

-

-
 

Clearly W (0) =0 and ( ) 1W z <   

Note-   The condition (4.2.3) can be written as 

          

( ) ( ) ( )
( )

1 1 1 1
,

1 1

B H z A B
z u

A B B B

m

m

- - + -
- < Î

- + +
 

Now as B<<<<-1, the above condition reduced to                                             

                              
{ } ( ){ }1

Re ( ) 2 1 , ,
2

H z A z um> - + Î  

Which is covalent to (4.2.1) when B=-1. Thus including the limiting case 

B<<<-1 The results proved with the help of above Lemma will hold for

1 1.B A- £ < £  Throughout this chapter H (z), m, M are given by (4.2.4), 

(4.2.5) and (4.2.6) respectively. 
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4.3   CONTENTMENT RELATION: 

THEOREM  4.3.1   Let 
0l  be any integer such that

0l > l . 

Then 

                 
( ) ( )0 , , , , , , , ,V A B b cV A B bl m l m                                                  

(4.3.1) 

PROOF:  In order to established the required result .It is show that 

                     
( ) ( )1, , , , , , , ,V A B b cV A bl m l m+

.
 

Let  ( )1, , , ,f V A B bl mÎ +  , choose the function such that 

               

{ }1 ( ) ( )
( )

1 ( )

B AB W z
H z

BW z

m+ +
=

+
                                                 (4.3.2) 

Where W (0) =0 and w (z) is either analytic or meromorphic in u. It is easy to 

verify that 

                  
( )1 2 1( ( )) 2 ( ) ( 1) ( )f D f z D f z h D f zl l ll+ + += + - +                (4.3.3) 

Differentiating (4.3.2) and using (4.3.3)we  get  

              

( )1 2 ( )
1 1

D f z
m

b z

læ ö+ ÷ç ÷+ - -ç ÷ç ÷çè ø
                                                      (4.3.4) 

               =  
( ) ( ){ }

( )
1 3 ( ) ( ) ( )

1 ( ) 2 1 ( )

m B u A B m w z u A B zw z

Bw z Bw zl

- + + - - ¢-
+

+ + +
  

 Let r*   be the distance from the origin to the pole of W(z) is nearest to the 

origen. Thus W (z) is analytic in the disc min( ,1)oz r r*< =  .By the 

Lemma4.2.1, for ( )0z r r r£ £  , there exist the point
0Z  such that 

                   
( ) ( )0 0 1oZ W Z W Z¢ = ³                                                                 

(4.3.5)                                              

  From (4.3.4) and (4.3.5) ,we have
 

             

( )
( )

2
00

0 0

( )1
1 1

N zD f z
m

b z R z

l+é ùì üï ïï ïê ú+ - - =í ýê úï ïê úï ïî þë û
                                          (4.3.6) 

Where 

            
( ) ( )( ) ( )( ) { }0

1 2 1 2 ( )N z m M B B u A B Bml lé ù= - + + - + + + - -ë û  

             
( ) ( ) ( ) ( ) ( ){ } ( )2

02 ] 2ou A B W Z B B u A B Bm W Zl l+ + - + + + - -  
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And 

                   
( ) ( ) ( ) ( ){ }2 0

0 0 0
2 1 2 .R Z BW Z B W Zl= + + +  

Now we suppose that it was possible to have 

                     
( ) ( ), max 1M r W W z z r= = =   

For some
0 1.r r< <  At the point

0Z , where this occurs, we would have

( )0
1.W Z =  Then using identity ( )1. ,m BMadbB A B Bm Mm= + - - =  we 

have. 

                
( ) ( ){ }

2
2 22

0 0 02 ReN Z M rz a W zb- = +  

Where  

                
( ) ( ) ( ) ( )2

2 2 1a A B A B M Bm m lé ù= - Î - + + +ê úë û
  

and 

            ( ) ( )2 2A B MBb em l= - +                                                 (4.3.7) 

             
( ) ( )

0 22

0 0 0N Z M R Z- >   

Provided a±2β>0 

Now, In view of the fact ( ) 0A Bm - > , It n follows that 

       and

( ) ( ) ( ) ( )2
2 2 2 1 0A B A B M Ba b m e m e l+ = - - + + + >

 

             

( ) ( ) ( ) ( )2
2 2 2 1 0A B A B M Ba b m e m e l+ = - - + + + <

 

Thus from (4.3.6) and (4.3.8) .We get  But this  is contrary to (4.2.4).So, we 

cannot have ( , ) 1.M r w =  Thus ( ) 1W z =  in 0.z < Since W(0)=0, ( ) .W z  It 

cannot have a pole at 0z r= .Therefore W is  analytic inm  and satisfies belong 

to ( ), , , , .V A B bl m   
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4.4  COEFFICIENT ESTIMATE: 

THEOREM 4.4.1 : If function f   defined by (1.1.1) belong to the class

( ), , , ,V A B bl m  then 

              
( )

( )
, 2,3...

,
n

A B b
a n

n

m

a l

-
£ =                                       (4.4.1) 

Where 

                  

( ), .
1

n
n

l
a l

l

æ ö+ ÷ç= ÷ç ÷ç ÷ç +è ø
                                                               (4.4.2) 

The inequality (3.4.1) is sharp. 

PROOF:  Since ( ), , , ,f V A B bl mÎ  . We have form (4.1.1) 

           

( ){ } ( )1 1( )

1 ( )

A B b B w zD f z

z Bw z

l m+ + - +
=

+
                                           (4.4.3)  

Where w belonging to the class H . 

From (4.4.3), we have 

                      

( )
1 1( ) ( )

1 1 ( )
D f z D f z

A B b B w z
z z

l l

m
+ +é ùì üï ïï ïê ú- + - + -í ýê úï ïï ïî þë û

  

or 

                  

( ) ( )1 1

2 2

, ( ) ,j j

j j

j j

j a z A B b B j a za l m a l
¥ ¥

- -

= =

é ù
ê ú= - +ê ú
ë û

å å               (4.4.4) 

Where 

                      1

( ) j

j

j

W z t z
¥

=

= å   

Equating the corresponding coefficients on the both sides of (4.4.4), we find 

that the coefficients on the left hand side of the (4.4.4) depends only 

2 3 1, ..... na a a -  on the right hand side of(4.4.4). Hence for 2.h ³  It follows from 

(4.4.4) that 

               

( ) ( ) ( ) ( )
1

1 1 1

2 1 2

, ,
n

j j j

j j j

j j n j

j a z d A B b B j a z w za l m a l
¥ ¥ -

- - -

= = + =

é ù
ê ú+ - +ê ú
ë û

å å å   
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Here 
jd  are some complex numbers. Since ( ) 1,W z < by using Perceval 

Identity, we get 

                 

( ){ } ( ) ( )2 22 2 1 2 1

2 1

,
j j

j j

j n

j a r d ra l
¥ ¥

- -

= +

+å å    

                 ( ) ( ){ } ( )
1

222 2 2 12 2

2

,
n

j

j

j

A B b B j a rm a l
-

-

=

£ - + å  

                 

( ) ( ){ }
1

222 22 2

2

,
n

j

j

A B b B j am a l
-

=

£ - + å                                       

Taking(r-1) on the left hand side of the above inequality, we have obtain the 

result 

               

( ){ } ( ) ( ){ }
1

2 22 22 22 2

2 2

, ,
n

j j

j j

j a A B b B j aa l m a l
¥ -

= =

£ - +å å  

Thus  

( ){ } [ ] ( ) ( ) ( ) ( ){ } ( )
1

222 22 2 2 22 2 2

2

, 1 ,
n

n j

j

n a A B b B n j a A B ba l m l m
-

=

£ - - - - £ -å
Hence 

              

( )
( )

2,3...
,

n

A B d
a n

n

m

a l

-
£ =  

In order to established the sharpness, we consider the function f  is given by  

                

( )
1

1

1 ( ) 1
1 1 1 , 2,3...

1

n

n

D f z Az
n

b z Bz

l

m m
-

-

æ ö æ ö+÷ ÷ç ç÷ ÷+ - = - + =ç ç÷ ÷ç ç÷ ÷ç ç +è ø è ø
  

We observe that 

                 

( )

2

2

( )
1

1
( )

1

D f z

z

D f z
A B b B

z

l

l

m

+

+

ì üï ïï ï-í ýï ïï ïî þ <
ì üï ïï ï- - -í ýï ïï ïî þ

  

Hence ( )1, , , , .f A B bl mÎ + It is easy to compute that the function f  has the 

expansion. 

                  

( )
( )

( )
...

,

n
A B b

f z z z
n

m

a l

-
= + +   

Showing  that the estimate (4.4.1) is sharp.  
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THEOREM 4.4.2: If f  is defined by (1.1.1) belongs to the class

( 1, , , , )V A B bl m+ ,then 

                

( ) ( ){ } ( )
22 2 22 2

2

1 ,
j

j

B j a A B ba l m
¥

=

- £ -å                             (4.4.5) 

Where ( ), ja l  is according to (4.4.2). 

PROOF:  Since  ( )1, , , ,f V A B bl mÎ +  ,we have 

                  
1

1 ( ) 1 ( )
1 1 (1 )

1 ( )

D f z Aw z

b z Bw z

l

m m
+ì ü ì üï ï ï ï+ï ï ï ï+ - = - +í ý í ýï ï ï ï+ï ïï ï î þî þ

 

Where  
1

( )
j

j

j

w z t z
¥

=

= å  is analytic in  u  and satisfies ( )0 0w =  and ( ) 1w z <  

for z uÎ  .Hence 

     

( ) ( ) ( ) ( )1 1

2 2

, ,j j

j j

j j

j a z A B b B j a z w za l m a l
¥ ¥

- -

= =

é ù
ê ú= - -ê ú
ë û

å å  

On solving, we get 

      

( ){ } ( ) ( ){ }
1

22 22 22

2 2

, ,
n

j j

j j

j a A B b B j aa l m a l
¥ -

= =

£ - +å å  

Or 

                     ( ) ( ){ } ( )
2

22 2 22

2

1 , j

j

B j a A B ba l m
¥

=

- £ -å
 

4.5    SUFFICIENT CONDITION: 

THEOREM 4.5.1:  Let the function f  is defined by(1.1.1) be analytic in u

.If, for  1 0,B-£ <  ( ) ( ) ( )
2

1 , n

n

B n a A B ba l m
¥

=

- £ -å  ,where ( ), na l  is 

defined by(4.4.2),then f belongs to the class ( )1, , , ,V A B bl m+ .The result is 

sharp. Although converse need not to be true. 

PROOF:  Suppose that the inequality (4.5.1) holds. Then, f or ,z uÎ   

We have 

                

1 1( ) ( )
( )

D f z D f z
A B b B

z z

l l

m
+ +ì üï ïï ï- - + í ýï ïï ïî þ
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( ) ( )1 1

2 2

, ( ) ,n n

n n

n n

n a z A B b B n a za l m a l
¥ ¥

- -

= =

- - +å å  

            

( ) 1 1

2 2

, ( ) ( , )n n

n n

n n

n a r A B b B n a ra l m a l
¥ ¥

- -

= =

ì üï ïï ï£ - - +í ýï ïï ïî þ
å å  

             
( ) ( )

2 2

( , ) ,n n

n n

n a A B b B n aa l m a l
¥ ¥

= =

< - - -å å  

             

2

(1 ) ( , ) ( )

0

n

n

B n a A B ba l m
¥

=

= - - -

£

å  

 Hence it follows that 

                  

1

1

( )
1

1,
( )

( ) 1

D f z

z
z u

D f z
A B b B

z

l

l

m

+

+

ì üï ïï ï-í ýï ïï ïî þ < Î
ì üï ïï ï- - -í ýï ïï ïî þ

  

Therefore f  belong to the class ( )1, , , ,V A B bl m+  .We note that 

                 
( ) ( )

( )
( ) , 2,3...

,

nA B b z
f z z n

A B n

m

a l

-
= - =

-
  

   is an external function with respect to above theorem, since for this function. 

                    

1

1

( )
1

1
( )

( ) 1

D f z

z

D f z
A B b B

z

l

l

m

+

+

ì üï ïï ï-í ýï ïï ïî þ =
ì üï ïï ï- - -í ýï ïï ïî þ

 

For  1z =  , and the inequality is attend in (3.5.1). 

In order to show that converse need to be true, we consider the function f   

given by(1.1.1) defined by 

                        

{ }1 1 ( )( )

1

B A B b zD f z

z Bz

l m+ + + -
=

+
  

Where 1 0,B z u- < < Î  .Then it is easy to verify that 

                          

2( ) ( )

( , )

n

n

A B b B
a

n

m

a l

-- -
=   

But 

                            2

(1 ) ( , ) n

n

B n aa l
¥

=

-å   
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 A B b    

Hence, the converses need not to be true. 

 4.6  MAXIMIZATION THEOREM: 

 THEOREM 4.6.1:  If  the function f  is defined by (1.1.1)  and it belong to 

the class ( 1, , , , )V A B bl m+  .If d  is any complex  number, then 

                 
( )

{ }2

3 2

( )
max 1 ,

,

A B b
a a d

m
d

a l b

-
- £   

Where 

                 

{ } ( ){ }
{ }

2

2

( , 2) ( ) , ,3

( ,2)

B A B b
d

a l m d a l

a l

+ -
=                                 (4.6.1) 

The inequality (4.6.1)  is sharp. 

PROOF: Since f  belongs to the class ( 1, , , , )V A B bl m+ , 

We have 

              

( )
1

1 ( ) 1 ( )
1 1 1 ,

1 ( )

D f z Aw z

b z Bw z

l

m m
+ì ü ì üï ï ï ï+ï ï ï ï+ - = - +í ý í ýï ï ï ï+ï ïï ï î þî þ

                       (4.6.2) 

Where 

1

( ) k

k

k

w z C z
¥

=

= å  is analytic in u  and satisfy the conditions (0) 0, ( ) 1w w z= <   

From (4.6.2) ,we  have 

                

1

1

( )
1

( )
( )

( ) 1

D f z

z
w z

D f z
A B b B

z

l

l

m

+

+

ì üï ïï ï-í ýï ïï ïî þ=
ì üï ïï ï- - -í ýï ïï ïî þ

  

                    

 

   
2

2

,

,

n

n

n

n

n

n

n a z

a b b n a z

 

  









 




                                         

            
 

   
  
 

2 2 2

2

2

, 21
, 2 ,3

B a z
a z z

A B A B

 
   

  

 
   

   

 

      And then comparing the coefficient of    z and 
2z  on the both sides, we 

have  
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3
1

( , 2)

( )

a
c

A B b

a l

m
=

-
  

and 

                           

( )
( )

( ){ } 23
2

2 2 2

, 2,3

( )

B aa
c

A B b A B b

a la l

m m
= +

- -
  

Thus 

                            

( ) 1

2
( , 2)

A B bc
a

m

a l

-
=   

and  

                             

2

2 1
3

( ) ( )

( ,3)

A B b c Bc
a

m

a l

- -
=   

Hence 

                             
( )

( )2 2

3 2 2

( )

,3
i

A B b
a a c dc

m
d

a l

-
- = -   

Where 

                               

{ } ( ){ }
( ){ }

2

2

( , 2) ( ) ,3

, 2

B A B b
d

a l m d a l

a l

+ -
=   

Therefore 

                               
( )

2 2

3 2 2 1

( )

,3

A B b
a a c c

m
d

a l

-
- = -   

Using the Lemma (4.2.2) in the above equations, we get 

                               
( )

{ }2

3 2

( )
max 1, .

,3

A B b
a a d

m
d

a l

-
- £  

 Since the inequality (4.2.2) is sharp, so that the inequality (4.6.1) must also be 

sharp. 

4.7  DISTORTIAN THEOREM: 

THEOREM 4.7.1: If f  belongs to class ( 1, , , , )V A B bl m+

( ) ( )2 2 21

2 2

1 Re( ) ( )( )
Re

1

B r Br A B b A B b rD f z

z B r

l m m+ì ü - - - - -ï ïï ï ³í ýï ï -ï ïî þ
    (4.7.1) 

 And 
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( ) ( )2 2 21

2 2

1 Re( ) ( )( )
Re

1

B r Br A B b A B b rD f z

z B r

l m m+ì ü - - - - -ï ïï ï £í ýï ï -ï ïî þ    

 (4.7.2)         

The inequalities (4.7.1) and (4.7.2) are sharp. 

PROOF: Since f  belongs to the class ( )1, , , ,V A B bl m+  ,we have

( ) ( )
1

1 ( ) 1 ( )
1 1 1 1 ( )

1 ( )

D f z Aw z
p z

b z Bw z

l

m m m m
+ì ü ì üï ï ï ï+ï ï ï ï+ - = - + = - +í ý í ýï ï ï ï+ï ïï ï î þî þ

       (4.7.3) 

Where  

            
( ){ } ( ){ }( ) 1 1P z Aw z Bw z= + +  

It is well known that the transformation ( ){ } ( ){ }( ) 1 1P z Aw z Bw z= + +

maps the circle equations (4.7.2) and (4.7.4) yield 

             

( )
( )

2

2 2 2 2

1
( )

1 1

A BABr
P z

B r B r

ì ü -ï ï-ï ï- £í ýï ï- -ï ïî þ
                                               (4.7.4)                                                     

            
( )
( )

1

2

2 2 2 2

1 ( )
1

1

1 1

D f z

A B rb z ABr

B r B r

l

m

m

+ì üï ïï ï+ -í ý ì üï ï -ï ï-ï ïî þ ï ï- £í ýï ï- -ï ïî þ
    

Or 

             

( ) ( ){ }
( )

( )2 2 2
1

2 22 2

1( )

11

B r b Br A B A B b rD f z

z B rB r

l m m+ - - - -
- £

--
  

Hence 

               

( ) ( ) ( ) ( )2 2 21

2 2

1 Re( )
Re

1

B r A B Br b A B b rD f z

z B r

l m m+ì ü - - - - -ï ïï ï³í ýï ï -ï ïî þ  

And 

               

( ) ( ) ( ) ( )2 2 21

2 2

1 Re( )
Re

1

B r A B Br b A B b rD f z

z B r

l m m+ì ü - - - - -ï ïï ï£í ýï ï -ï ïî þ  

By considering the functions f  is defined by 

              
  1 1( )

,
1 ir

A B b BD f z

z Bze

    



  

 Where,     ir
b Bzb

e
b Bz b

-
=

-
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We find that bounds in (4.7.1) and (4.7.2) are sharp at  .irz e=  respectively 

4.8 OPERATOR: 

 THEOREM 4.8.1 :   Let r be a real number such that 1.r >-  If  f  belongs 

to the Class ( ), , , ,V A B bl m ,then the functions F  is defined  by

1

0

1
( ) ( )r

r

r
F z t f t dt

z

¥
-+

= ò
                                                                      

(4.8.1)

 

 Also belongs to  ( ), , , ,V A B bl m .                         

PROOF: From (4.8.1), it easy to verify that 

                    
( ) ( )1 1 1( ) 1 ( ) ( )z D F z r D F z rD F zl l l+ + +¢ = + -                       (4.8.2) 

Suppose that 

                     

( )
{ }

1

1 ( ) ( )

1 ( )

B A B w z
H z

Bw z

m+ + -
=

+
                                       (4.8.3) 

Where 

                             

1

1

1 ( )
( ) 1 1

D F z
H z

b z

l+ì üï ïï ï= + -í ýï ïï ïî þ
  

w(o)=0 and w  is either  analytic or meromorphic in  u. 

 Differentiating (4.8.2) and using the identity (4.8.2),we get 

                             

11 ( )
1 1

D F z
m

b z

l+é ùì üï ïï ïê ú+ - -í ýê úï ïï ïî þë û
                      

 

( ) { }
( )

( )
{ }2

1 ( ) ( ) ( )

1 1 1 ( )

m B A B B m w z zw zA B

B w z r B w z

m m ¢- + + - - -
= +

+ - +

  

The required result can be obtained now from (4.8.4) by using the same 

technique as applied in (4.8.4) in proof of theorem (4.3.1). 

 4.9  CLOSURE THEOREM: 

THEOREM 4.9.1 : If the function f  and g  belongs to the class 

( ), , , ,V A B bl m  and 0 1S£ £  then the function F is given

( ) ( )( ) 1 ( )F z sf z s g z= + -  also belongs   to ( ), , , ,V A B bl m . 
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PROOF: Since f  and g  belong to the class ( ), , , ,V A B bl m ,by Lemma 

(4.2.3), we have 

      

11 ( )
1 1

D f z
m M

b z

l+é ùì üï ïï ïê ú+ - - <í ýê úï ïï ïî þë û
  

and 

        

11 ( )
1 1 ,

D g z
m M z u

b z

l+é ùì üï ïï ïê ú+ - - < Îí ýê úï ïï ïî þë û
 

Therefore 

        

11 ( )
1 1

D F z
m

b z

l+é ùì üï ïï ïê ú+ - -í ýê úï ïï ïî þë û
  

         

( )1 1( ) 1 ( )1
1 1

sD f z s D g z
m

b z

l l+ +é ùì üï ï+ -ï ïê ú+ - -í ýê úï ïê úï ïî þë û                                                

1 11 ( ) 1 ( )
1 1 (1 ) 1 1

D F z D g z
S m s m

b z b z

l l+ +é ù é ùì ü ì üï ï ï ïï ï ï ïê ú ê ú= + - - + - + - -í ý í ýê ú ê úï ï ï ïï ï ï ïî þ î þë û ë û
 

  

1 1
1 ( ) 1 ( )

1 1 (1 ) 1 1
D f z D g z

m s m
b z b z

l l+ +é ù é ùì ü ì üï ï ï ïï ï ï ïê ú ê ú£ + - - + - + - -í ý í ýê ú ê úï ï ï ïï ï ï ïî þ î þë û ë û
 

(1 )sM s M M< + - =    

 Hence ( , , , , ).f V A B bl mÎ  

 

   

                                             ******** 
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CHAPTER 5 

CERTAIN SUB CLASSES OF ANALYTIC 

FUNCTIONS RELATED TO COMPLEX ORDER (II) 

 
5.1 INTRODUCTION:    

In this Chapter, we have also introduced another class by using the 

convolution techniques as follows. A function f of A belongs to the class 

( , , , , )G A B bl m  if and only if there exists a function w  belonging to the class 

H  such that 

                   

( )1 ( ( )) 1 ( )
1 1 1 , ,

( ) 1 ( )

z D f z Aw z
z u

b D f z Bw z

l l

l
m m

ì ü ì ü¢ï ï ï ï+ï ï ï ï+ - = - + Îí ý í ýï ï ï ï+ï ïï ï î þî þ
         

(5.1.1) 

Where 

1 1,0 1, 1, ( )B A D f zlm l- £ < £ < £ -  is defined by(5.1.1) and  b  is any non 

zero complex number. Using the identity, we have 

               ( ) 1( ( )) 1 ( ) ( )z D f z D f z D f zl ll l+¢ ¢ = + -  in(4.1.1). we have 

               

( )
( )

11 ( ) 1 ( )
1 1 1 , ,

( ) 1 ( )

D f z Aw z
z u

b D f z Bw z

l

l

l
m m

+ì ü ì ü+ ï ï ï ï+ï ï ï ï+ - - + Îí ý í ýï ï ï ï+ï ïï ï î þî þ
           

(5.1.2) 

It is easy   to see that  the  conditions(5.1.1) and (5.1.2) are equivalent  to 

               

( )

( )

( )
1

( )

1, ,

( )
( ) 1

( )

z D f z

D f z

z u

z D f z
A B b B

D f z

g

g

g

g
m

ì üï ï¢ï ïï ïï ï-í ýï ïï ïï ïï ïî þ < Î
ì üï ï¢ï ïï ïï ï- - -í ýï ïï ïï ïï ïî þ

                             (5.1.3) 

and   

                  

( )

( )

( )
( 1) 1

( )

1, ,

( )
( ) 1

( )

z D f z

D f z

z u

z D f z
A B b B

D f z

g

g

g

g

l

m

ì üï ï¢ï ïï ïï ï+ -í ýï ïï ïï ïï ïî þ < Î
ì üï ï¢ï ïï ïï ï- - -í ýï ïï ïï ïï ïî þ
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Respectively 

This chapter  is divided into  six sections for the systematic study to the 

class ( , , , )G A B bl m .Section 5.2 provided some lemma that are used in 

succeeding  section of this chapter .In Section 5.3,we  have  obtained the 

coefficient estimate  for  section f  belonging to the class ( ), , , ,G A B bl m  .In 

section5.4,we have  investigate the sufficient  condition  in terms of 

coefficient, for  the functions f belonging to the class ( ), , , ,G A B bl m .In 

sections 5.5, we have determined the maximization of 2

3 2
a a-  for the 

complex of over the class ( ), , , ,G A B bl m .In section 5.6, we have found the 

necessary and sufficient condition in term of convolution for the function f

belonging to class ( ), , , ,G A B bl m . 

5.2 PRELMINARY LEMMAS    

In this section, we state the Lemma (5.2.1) due to Robertson and prove a 

Lemma (5.2.2), that are need in our investigations. 

LEMMA 5.2.1  ( ) ( )
2 2

, , 0p p

p p

p q p q

h z d z H z D z q
¥ ¥

= =

= = ³å å   

If ( ) ( )h z w z=  , where ( )0 0w =  and ( ) 1d w z <  in ݑ, then ݀0=ݍ , then we 

have, 

                        

1
2 2

1

, ( 1, 2,..)
k k

p p

p q p q

d D k q q
-

= + =

£ = + +å å   

LEMMA5.2.2 :  For a fixed integer , 3,k k ³   

               Let     
( ) ( )

( )

2

2

2
, 2,3.....

1
j

A B b j B
M j k

j

m

l

- - -
= =

+ -
                   (5.2.1) 

And  

                  
( )

( )
1( 1)

,
1 !

p
c p

p

l
l

-+
+

-
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                     =
( )( ) ( )

( )
( )

1 2 .. 1
, 2,3...

1 !

p
P

p

l l l+ + + -
=

-
  

Then 

                 

( ) ( ){ }
( ) { }

( ){ }

1
2 22 2

2
2

2

2 2

1
( ) ( 1) .

1 ,

. ,

k

p

p p

j j
j j

A B b A B b p B
k c k

k M M

m m
l

l

-

=

= =

é ù- + - - -ê úë û-

ù
úP = P
úû

å

PROOF:  We shall prove (5.2.2) by mathematical inductions on k. A  brief 

calculation to show that (5.2.2)  holds for  k=3. We assume   that   (5.2.2) is 

valid for k=4, 5…t-1, then for k=t    

 
 , the left side of (5.2.2) gives. 

 

( ) ( ){ }
( )

( ) ( ) ( ){ } ( ){ }

2

2

1
22

2
1

1

1 ,

1 1 ,
t p

j
j

p

A B b
t c t

A B b p B p c k M

m
l

m l
-

=
=

é ù- +ê úë û-

ù
ú+ - - - - - P ú
û

å

( ) ( ){ }
( ) ( ) ( ){ } ( ){ }

( ) ( ) ( ){ } ( ){ }

2
2 22 22

2
2

2
12 22

2

1 ,
1

1 ,
2 2 , 1

t p

j
j

p

t

j
j

A B b A B b p B c p M

t c t
A B b t B t c t M

m m l

l
m l

-

=
=

-

=

é ù
ê ú- + - - - Pê ú
ê ú=
ê ú- ê ú+ - - - - - - Pê úë û

å

 
( ) ( ){ }

( ) ( ){ }

{ } ( ){ }

12

2

2 1 22 2

2

2 , 1
1

1 1 ( 2)} , 1

t

j t
j

jt j

t j
j

t c t M

M
t c t t M t c t M

l

l l l

-

=

- =

=

é ù
- - P +ê ú

ê ú= = Pê ú
ê ú- - + - - - - Pê úë û

  

This concludes the proof of (5.2.2)

 
 5.3   COEFFICIENT ESTIMATES: 

THEOREM5.3.1 : Let the function  f  is defined by (1.1.1) belongs to the 

class ( ), , , ,G A B bl m
.
 

Then   

                 

( )
( )1

n

A B b
a

m

l

-
£

+
                                                                   (5.3.1) 

And if ( ) 1A B b Bm - - £  an 3n ³   

Then, 
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( ) ( )

( )
1

2

1
n

n

A B b n
a

m

l
-

- -
£

+
                                                (5.3.2) 

Furthermore, if  

                
( ) ( ) ( )2 2 , 3,A B b n B n nm - - - > - ³   

  Let              
( ) ( )

( )
2

2

A B b n B
M

n

mé ù- - -ê ú= ê ú+ê úë û
   

be the greatest integer is less than  or equal to the expression  with in the 

square  bracket. 

Then 

       
( )

( ) ( )
21

1
2

1

n

n

jn

a A B b j Bm
l =-

£ P - - -
+

for  3, 4,... 2;n M= +     (5.3.3) 

And 

    

( )
( ) ( )

( )
3

2
1

2 !
( ) 2

2 ! 1

m

n
j

n

n
a A B b j B

m
m

l

+

=
-

-
£ P - - -

+ +
form >M+ 1          (5.3.4) 

The bounds (5.3.1) and (5.3.3) are sharp for all admissible , , , ,A B bm l and for 

each	݊. 

PROOF: From (5.1.1), we have, 

        
( ) ( ){ } ( )( ) ( ) ( ) ( ) ( )z D f z D f z A B b B D f z Bz D f z w zl l l lm

¢ é ù¢- = - + -ê úë û        

(5.3.5) 

Since 

              
( )

2

( ) , p

p

p

D f z z c p a zl l
¥

=

= +å  

It follows that (5.3.5) is equivalent to 

             

( ) ( ) ( ) ( ){ } ( )
2 1

1 , 1 , ( ),p p

p p

p p

p c p a z A B b p B c p a z w zl m l
¥ ¥

= =

é ù
ê ú- = - - -ê ú
ë û

å å   

Where 
1 1.a =  Using the Lemma (5.2.1), we have 
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( ) ( ){ } ( ) ( ){ }
1

2 22 22

2 1

1 , ( ) 1 ,
n n

p p

p p

p c p a A B b p B c p al m l
-

= =

- £ - - -å å   

This simplifies to 

          

( ) ( ){ }

( )

( ){ } ( ){ }

2 22

2
1

222 22

2

1

( ) ( 1) 1 ,1 ,

n
n

p

p

A B b

a
A B b p B p c p an c n

m

m ll
-

=

é ù- +ê ú
ê ú£ ê ú- - - - -- ê ú
ê úë û
å

         

(5.3.6)  

For every n=2, 3…  

Or 

n=2, we have 

               
( )

2

2

2

( )

1

A B b
a

m

l

ì üï ï-ï ïï ï£í ýï ï+ï ïï ïî þ
  

This proves that (5.3.1) 

 Suppose that 

              
( )( ) ( 2) 2A B b n B nm - - - £ -  and 3n ³  .Then it follows that 

                 
( )( ) ( 2) 2A B b n B nm - - - £ -  and 3n ³  

Since all the terms under the summations in (5.3.6) are non positive, we obtain 

             
( ) ( )

( )
, 3

1 ,
n

A B b
a n

n c n

m

l

-
£ ³

-
  

This gives (5.3.2). However, if  

             
( ) ( )2 ( 2), 3A B b n B n nm - - - > - ³   

Then all the terms under the summation in (5.3.6) are positive. We shall 

established for 3n >  and n<M+2 from by mathematical inductions .For n=3, 

we have, 

             
[ ]

( )( )
2

3

( ) ( )
,

1 2

A B b A B b B
a

m m

l l

é ù- - -ê ú£ ê ú+ +ê úë û
    

Which proves (5.3.3) hold (5.3.3) holds for n=4,5….k-1,then n=k,(4.3.6) 

yields 
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( ) ( ){ }

{ } ( ){ }

2 2

2

1
22

2

1
( )

1 ,

( ) ( 1) ( 1) ,

k

k
p

p

p

a A B b
k c k

A B b p B p c p a

m
l

m l
-

=

é ù£ - +ê úë û+

+ - - - - -å
                                 

 

( ) ( ){ }
( ) { } ( ){ }

( )

1
22 22 2

2
2

2

2
2

1
( ) ( 1) ( 1) ,

1 ,

( ) ( 2)
.

1

k

p

p

j

A B b A B b p B p c p
k c k

A B b j B

j

m m l
l

m

l

-

=

=

é ù
ê ú£ - + - - - - -ê ú- ë û

- - -
P

+ -

å

( )

2

2
2

( ) ( 2)

1

k

j

A B b j B

j

m

l=

- - -
= P

+ -

 By Lemma (5.2.2) .It is now that easy to show that (5.3.3) holds for 

2.n M³ +  Finally, Suppose n>M+2. Then we may write (5.3.6)

 ( ) ( ){ }
( )2 22

2

1
)

1 ,
na A B b

n c n
m

l

é£ - +êë-

       { } ( ){ }
2

222

2

( ) ( 1) ( 1) ,
m

p

p

A B b p B p c p am l
+

=

+ - - - - -å

{ } ( ){ }
1

222

3

( ) ( 1) ( 1) ,
n

p

p m

A B b p B p c p am l
-

= +

+ - - - - -å  

( ) ( ){ }
( ) 22

2

1
)

1 ,
A B b

n c n
m

l

é£ - +êë-
  

( ) ( ){ }
( ) { } ( ){ }

2
222 22

2
2

1
) ( ) ( 1) ( 1) , .

1 ,

m

p

p

A B b A B b p B p c p a
n c n

m m l
l

+

=

é£ - + - - - - -êë-
å

 

( )
( )

2

2
2

( 2)

1

p

j

A B b j B

j

m

l=

ù- - - úP ú
ú+ - û
 

( ) ( )
( ) ( )

( )

( )

2

3

2

( 2)2 , 3

1 , 1

m

j

A B b j Bm c m

n c n j

ml

l l

+

=

- - -é ù+ +ê ú= ê ú- + -ê úë û
å  

    

( )
( ) ( )( ) ( )

( )
2

3
2

2

2 !
. ( ) 2

1 ! 1 2 ...... 1

m

j

n
A B b j B

m n
m

l l l

+

=

é ù-ê ú - - -ê ú+ + + + -ê úë û
å  

{ } ( ){ }
2

222

2

( ) ( 1) ( 1) ,
m

p

p

A B b p B p c p am l
+

=

+ - - - - -å  
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By the application of Lemma (5.2.2) and (5.3.3) follows from above. For the 

function ( )nf z  is given by and using the convolution technique we have, 

( ) { } 11

(1 ) ( ) ( 1) , 0

exp ( ) 1, 01
n n

z Bz A B b B n Bz
f

z A B B bz n Bz
l

m

m -+

ì + - - ¹ïï* = íï - + - =- ïî
  

 Where  ( ) 1.A B b Bm - - < Finally, the inequality (5.3.3) is sharp for the 

function  ( )f z   is given by 

( ) { }1

(1 ) ( ) , 0

exp ( ) , 01
n

z Bz A B b B Bz
f

z A B B bz Bz
l

m

m+

ì + - ¹ïï* = íé ùï - + =- ë ûïî  

Where 

( ) ( ) ( )2 2 , 3.A B b n B n nm - - - > - ³  

 

REMARK:   If we take 1m =  . 

 5.4   SUFFICIENT CONDITION: 

THEOREM 5.4.1:   Let f  is defined by (1.1.1) be analytic in   U. If 

( ){ } ( ) ( )
2

1 ( ) ( 1) , ,n

n

n A B b n B c n a A B bm l m
¥

=

- + - - - £ -å                 

(5.4.1) 

Holds for some 0,l³  then the functions f  belongs to the class

( ), , , ,G A B bl m
 

PROOF:  Suppose that the inequality (5.4.1) holds. Then, for z uÎ  ,we have 

( ( )) ( ) { ( ) } ( ) ( ( ))z D f z D f z A B b B D f z B D f zl l l lm¢ ¢- - - +   
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( ) ( ) ( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ) ( ){ } ( )

( ){ } ( )

2 2

2 2

2 2

2

1 , 1 ,

1 , 1 ,

1 , 1 ,

1 ( ) ( 1) , ( )

n n

n n

n n

n n n

n n

n n

n n

n n

n

n

n c n a z A B bz A B b n B c n a z

n c n a r A B b r A B b n B c n a r

n c n a A B b A B b n B c n a

n A B b n B c n a A B b

l m m l

l m m l

l m m l

m l m

¥ ¥

= =

¥ ¥

= =

¥ ¥

= =

¥

=

- - - + - - -

é ù é ù
ê ú ê ú£ - - - - - - -
ê ú ê úë û ë û

< - - - + - - -

= - + - - - - -

å å

å å

å å

å
 0,£  by the inequality (5.4.1). 

REMARK: If we take 1, 1Am= =  B=-1. Theorem (5.4.1) coincides with the 

corresponding result of Chaudhary. 

5.5 MAXIMIZATION THEOREM 

5.5.1 THEOREM  If f   is defined by(1.1.1) belongs to the class

( ), , , ,G A B bl m andd  is any complex number, then 

( )
{ }2

3 2

( )
max 1, ,

2 ,3

A B b
a a d

c

m
d

l

-
- <                                                 (5.5.1) 

Where  

           

( ) ( ) ( ){ } ( ){ }
( ){ }

2

2

2 ,3 , 2

, 2

A B bc A B b B c
d

c

dm l m l

l

- - - -
=   

The inequality (5.5.1) is sharp for each d  . 

 

PROOF:   Since ( , , , , )f G A B bl mÎ  ,then we have 

             

1 ( ( )) 1 ( )
1 1 (1 ) ,

( ) 1 ( )

z D f z Aw z
z u

b D f z Bw z

l

l
m m

ì ü ì ü¢ï ï ï ï+ï ï ï ï+ - = - + Îí ý í ýï ï ï ï+ï ïï ï î þî þ
                 

(5.5.2) 

Where  
1

( ) k

k

k

w z c z
¥

=

= å  from (5.5.2), we have 

{ }
( ( )) ( )

( )
( ) ( ) ( ( ))

z D f z D f z
w z

A B b B D f z Bz D f z

l l

l lm

¢-
=

¢- + -
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( ) ( )

{ } ( )

2

2

1 ,

( )

( ) ( ) ( 1) ,

n

n

n

n

n

n

n c n a z

w z

A B bz A B b n B c n a z

l

m m l

¥

=
¥

=

-
=

- + - - -

å

å
 

                        Or 

( ) ( ) { } { }22 2

2 3 2

( )1
( ) , 2 2 ,3 . ( , 2) ...

( ) ( )

A B b B
w z c a z c a z c a z

A B A B b

m
l l l

m m

é ù- -ê ú= + - +ê ú- -ë û
 

Equating the coefficients of  z  and 2z on the both sides, we get, 

                 

( )
( )

2

2
, 2

A B bc
a

c

m

l

-
=   

And 

                 

( ) ( ){ }
( )

2

2 1

3

( )

2 ,3

A B bc A B b A B B c
a

c

m m

l

- + - - -
=   

Thus, we 

                     

( ) ( )2 2

3 2 2 1
,

2

A B b
a a c dc

c

m
d

-
- = -   

Where 

                        

( ) ( ) { } ( ){ }
( ){ }

2

2

2 ,3 ( ) , 2

, 2

A B c A B b b c
d

c

dm l m l

l

- - - -
=   

Hence 

                         
( )

( )
{ }2

3 2 max 1, ,
2 ,3

A B b
a a d

c

m
d

l

-
- =   

Since the inequality (5.2.2) is sharp, so that the inequality(4.5.1) must also  be 

sharp. 

REMARK:   If we take 1, 1Am= =  and B=-1, theorem (5.5.1) coincides with 

corresponding result  
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5.6   CONVOLUTION CONDITION: 

THEOREM 5.6.1 :   A   function f  belong to the class ( ), , , ,G A B bl m   

( )
( ) ( ) ( ) ( ){ }

( )

2

2

1 1

1

0

A B bzx X A B b B z
f z

z
l

m l m l

+

é ùé ù- - + + + - + +ê úê úë û* ê ú
-ê úë û

¹

               

(5.6.1) 

In where, 0 1,z< <  1X =  and 1X =   

PROOF:    Let the function f belongs to the class ( ), , , ,G A B bl m then 

              

( )( )
( )

( )1 1 ( )
1 1 1

1 ( )

z D f z Ax z

b D f z Bx z

l

l
m m

ì üï ï¢ï ï ì üï ï+ï ïï ï ï ï+ - ¹ - +í ý í ýï ï ï ï+ï ïî þï ïï ïï ïî þ

                            

(5.6.2) 

1X =   and 1X =  in 1,o z< <   is equivalent to  

( ){ }1 ( ( )) ( ) ( ) ( ) 0 1Bx z D f z D f z b A B XD f z in zl l lm¢+ - - - ¹ >         (5.6.3) 

We know that 

                     
( ) 1( ( )) 1 ( ) ( )z D f z D f z D f zl l ll l+¢ = + -                                 

(5.6.4) 

Using (5.6.4) in (5.6.3) , we have, 

              
( ) ( ){ }11 1 ( ) ( )Bx D f z D f zl ll l++ + -  - 

              
{ }1 ( ) ( ) 0Bx b A B D f zlm+ + - ¹  in 0 1z> <                        (5.6.5) 

Since   

       
( ) 1

( ) 1
1

z
D f z

z

l

l+= *
-

  

reduce to     ( )
( ) ( ) ( ){ }

( )

2

2

1 ( ) 1

1

A B bzx X A B b B z
f z

z
l

m l m l

+

é ùé ù- - + + + - + +ê úê úë û* ê ú
-ê úë û

  

Which is  required  convolution condition. The converse part follows easily 

since all the steps can be retracted back. 

REMARK:   If we take μ=1,A=1and B=-1,theorem (5.6.1) coincides with the 

corresponding result  
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CHAPTER 6
 

ANALYTIC FUNCTIONS DEFINED BY 

FRACTIONAL DERIVATIVE(I) 

 

6.1 INTRODUCTION: 

 Let ( )J P  dente subclass of ( )Y P consisting of analytic functions and p- 

valent functions which can be expressed in the form. 

1

( ) ,p p n

p n

n

f z z a z p n
¥

+
+

=

= - Îå
                                                                  

(6.1.1) 

If f and g  are any two functions in the class ( )J p  such that f is defined 

by(6.1.1)and 

1

( ) ,p p n

p n

n

g z z b z p n
¥

+
+

=

= - Îå
                                                                

(6.1.2) 

Then the Modified Hadamard Product of f and g, denoted by is defined by the 

power series     

1

( )( ) p p n

n p n p

n

f g z z a b z
¥

+
+ +

=

* = -å
                                                       

(6.1.3) 

Now, we have made known the class ( ), , ,J A B p d  of Analytic 

Functions in terms of Fractional Derivatives Operator as defined below. A 

function of  ( )J P  belongs to the class ( ), , ,J A B p d .If and only if there exists a 

functions ݓ  belongs to the class  ݔ such that. 

( ), 1 ( )
( )

1 ( )

p

z

Aw z
f z

Bw z

d +
W =

+
, where1 1A B£ < £                                                 

(6.1.4) 

And 

( ) ( ), 1
( ) ( )

( 1)

p p

z z

p
f z z D f z

p

d d d
d -G - +

W =
G +                                                             

(6.1.5) 

Here ( )zD f zd denotes the Fractional Derivative of f(z) order and is defined by 

( )
( )

( )0

1
( )

1

z

z

f dd
D f z

dz z

d
V V

d V d
=

G - -ò    ,   Where 0 1d£ <                            (6.1.6) 
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Where 0 1d£ < and f is Analytic Functions in a simply connected regions of z-

plane. The origin multiplicity of ( )z V- is removed by ( )log z V-  to be real, 

when 

0z V- >  
With 1 ( ) ( )zD f z f z¢=  

The condition (6.1.4) is equivalent to 
( )

( )

,

,

( ) 1
1,

( )

p

z

p

f z
z u

B f z A

d

d

W -
< Î

W -
                                                                        

(6.1.7) 

By the specific value to A,B,p andd  from(6.1.7), we obtain the following 

important subclasses studied by researcher in earlier works. 

[i]For A=2a-1 and B=1,we obtain the class of functions ݂ satisfying the 

condition. 
( )

( )

,

,

( ) 1
,

( ) 2 1

p

z

p

f z
z u

f z a

d

d
b

W -
< Î

W - +

 [ii]For , 0  ,we obtain the class of functions f  is satisfying the condition.

( ) 1
1,

( )

p

p

z f z
z u

Bz f z A

-

-

-
< Î

-
 

In the sections 6.2 , we have obtained the necessary and sufficient 

condition in terms coefficients for the functions ݂ belonging for the class 

( , , , )J A B p d  .In section 6.3, we have investigated the Distortion Properties for 

the class ( , , , )J A B p d .In sections 6.4 ,we have studied Integral Operator of the 

form. 

0

( ) 1 ( )

z

c

c p
F z tc f t dt

z

+
= -ò

                                                              
(6.1.8) 

When ( ), , ,f J A B p dÎ  .In section 6.5,we have found the radius of p-

valent Starlikeness for the class ( ), , ,J A B p d . In section 6.6, we have obtained 

the radius of p-valent convexity for the class ( ), , ,J A B p d . In section 6.7,we 

have obtained the results involving Modified  Hadamard Product of two 

functions belonging to the class ( ), , ,J A B p d . In sections 6.8,we have obtained 

the contentment relations related to the  class ( ), , ,J A B p d .In sections 6.9, we 

have investigated some Closure Properties for the class ( ), , ,J A B p d .  

Note-   In this Chapter, we assume that 
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( )
( ) ( )
( ) ( )

1 1
, ,

1 1

n p p
n p

p n p

d
f d

d

G + + G + -
=

G + G + + -
 

 6.2  NECESSARY AND SUFFICIENT CONDITIONS: 

THEOREM 6.2.1 : A function f   is defined by(6.1.1) is in the class

( ), , ,J A B p d  .If and only if 

( ) ( )
1

, , (1 ) p n

n

n p B a B Af d
¥

+
=

+ £ -å  

The inequality (6.2.1)is sharp. 

 PROOF:  Let 1.z =  Then 

( ) ( ) ( ) ( )

( ) ( ) ( )

( )( )

, ,

1 1

1

1

, , , ,

, , 1 ( )

p p

z z

n n

p n p n

n n

p n

n

f z B f z A

n n p a z B A B n p a z

n p B a B A

d d

f d f d

f d

¥ ¥

+ +
= =

¥

+
=

W - - W -

= - - -

£ + - -

å å

å

≤0, by the 

hypothesis. 

Hence, by the Maximum Modulus Theorem ( ), , ,f J A B p dÎ . 

To prove the converts, 

Let 

( ) ( )
( )

( )

( )

,

1

,

1

, ,
1

1,

( ) , ,

n
p p n

z n

p
nz

p n

n

n p a z
f z

z u
B A

B A B n p a z

d

d

f d

f d

¥

+
=

¥

+
=

-
W -

= < Î
W - - -

å

å
 

Since Re( )z z£  for all z. 

We have 

1

1

( , , )

Re 1

( ) ( , , )

n

p n

n

n

p n

n

n p a z

B A B n p a z

f d

f d

¥

+
=

¥

+
=

é ù
ê ú
ê ú
ê ú <
ê ú

- -ê ú
ê úë û

å

å
 

Choose the value of z on the real axis so that
( ) ( ), p

z f z
dW is real. Upon the 

clearing the denominotor in (6.2.2) and letting 1z ®  through the real value, 

we have 

This is the complete proof the theorem. 
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The function 

( )
( ) ( )

( ) ,
1 , ,

p n
B A

f z z z n N
B n pf d

-
= - Î

+
 

This function is an external function. 

COROLLARY 6.2.1 Let the function f  defined by (5.1.1) belongs to class 

( , , , )J A B p d .Then 

( )
( ) ( )

,
1 , ,

p n

B A
a

B n pf d
+

-
£

+
 for every integer , n NÎ  

6.3   DISTORTIAN THEOREM: 

THEOREM 6.3.1 : ( ), , ,f j A B p dÎ  .Then 

( )( )
( )( )

( )
( )( )

( )( )
1 11 1

1 1 1 1

p p p pB A p B A p
z z f z z z

B p B p

d d+ +- + - - + -
- £ £ -

+ + + +
            

(6.3.1)

             

 

And  

( )
( )

( ) ( )
( ) ( )

( )
( )

( ) ( )
( ) ( )

1

1

1 1
( )

1 1 1

1 1

1 1 1

p p

z

p p

p B A p
z z D f z

p B p

p B A p
z z

p B p

d d d

d d

d d

d d

- - +

- - +

G + - G +
- £

G + - + G + -

G + - G +
£ -

G + - + G + -

                          
(6.3.2) 

Where z∈U    

PROOF: Since 

( )( )
( )

( )
1 1

1 1
( , , )(1 ),

1
p n p n

n n

p B
a n B a B A

p
f f d

d

¥ ¥

+ +
= =

+ +
£ + £ -

+ - å å  

It  is evidently yields  

( )( )
( )( )1

1

1 1
p n

n

B A p
a

B p

d¥

+
=

- + -
£

+ +å
 

Consequently, we obtain 

( )( )
( )( )

1

1

1

( )

1

1 1

p p

p n

n

p p

f z z z a

B A p
z z

B p

d

¥
+

+
=

+

³ -

- + -
£ -

+ +

å

 

( )

( )( )
( )( )

1

1

11

1 1

p p

p n

n

p p

f z z p a

B A p
z z

B p

d

¥
+

+
=

+

³ +

- + -
£ +

+ +

å
  

This proves the inequality (6.3.1) 
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Next, by using the second inequality (6.3.3), we observe that 

( )
( )
( )1

, ,
1

p n

n

B A
n p a

B
f d

¥

+
=

-
£

-å  

Now 

( ) ( ),

1

( ) , ,
p p npp

z p n

n

z f z z n p a z
d

f d
¥

+
+

=

W ³ -å  

( )1

1

, ,
p p

p n

n

z z n p af d
¥

+
+

=

³ - å  

( )
( )

1

1

p pB A
z z

B

+-
³ -

-
 

And 

( ) ( ),

1

( ) , ,
p p npp

z p n

n

z f z z n p a z
d

f d
¥

+
+

=

W £ +å  

( )
1

, ,
p p n

p n

n

z z n p af d
¥

+
+

=

£ + å  

( )
( )

1

1

p pB A
z z

B

--
£ +

-
 

This has given the inequality (6.3.2). 

6.3.1   COROLLARY:  Under the hypothesis of Theorem (6.3.1), f z  is 

included in the disc with the center at the origin and radius r is given by 

( )( )
( )( )

1
1

1 1

B A p

B p

d- + -
G = +

+ +
 

And ( )zD f zd  is included in disc with its  centre at the origin and radius R is given  

by 

( )
( )
( )

(1 )
1

1 1

B Ap
R

p Bd

ì üï ï-G + ï ï= +í ýï ïG + - -ï ïî þ
 

6.4 INTEGRAL OPERATOR: 

 THEOREM  6.4.1  Let c p>- if ( ), , ,f J A B p dÎ  .Then the functions 

defined by (5.1.8) also belong to ( ), , ,J A B p d  . 

PROOF: From the definitions of (5.1.8) and (5.1.1), it easily proof that 

1

( ) p p n

p n

n

F z z n z
¥

+
+

=

= -å  

Where      
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( )
( )p n p n

c p
n a

c p n
+ +

+
=

+ +
 

Therefore  

( )( )
1

, , 1 p n

n

n p B nf d
¥

+
=

+å  

( )
( )

( )1

, , p n

n

c p
n p a

c p n
f d

¥

+
=

+
=

+ +å  

( )( )

( )
1

, , 1
p n

n

n p B a

B A

f d
¥

+
=

< +

£ -

å
 

Hence, by theorem (6.2.1) ( ), , ,F J A B p dÎ  . 

COROLLARY6.4.1 :      If ( ), , ,f J A B p dÎ  . 

Then 

1

0

( )
( )

z

p

p

f t
F z z

t

-= ò   at  ( ), , ,f J A B p dÎ
 

THEOREM 6.4.2 :  Let c>-p. Also let F be the class ( ), , ,J A B p d .Then the 

functions f is given by p-valent in the unit disc z R< ,where 

( ) ( ) ( )
( )( )( )

inf 1 ( ) 1

1

B c b n p p
R

n r B A c p n n p

d

d

é ù+ + G + G + -ê ú= ê úÎ - + + + + -ê úë û
 

The result is sharp. 

PROOF:   Let ( )
1

( ) , , ,
p p n

p n

n

F z z a z J A B p d
¥

+
+

=

= - Îå  

Then from (6. 1.8) it follows that 

1

p p n

p n

n

c p n
z a z

c p







  
   

 
   

In order to established to required result, then we get, 

( )

( )
( )

( )
1

1

p

n

p np
n

f z
p pfor z R

z

f z c p n
p p n a z

z c p

¥

+-
=

¢
- £ <

ì ü¢ + +ï ïï ï- £ + í ýï ï+ï ïî þ
å

 

  Thus 

( )
1p

f z
p p

z -

¢
- <  
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( )
( )

( )1

p

p n

n

c p n
p n a z p

c p

¥

+
=

ì üï ï+ +ï ï+ <í ýï ï+ï ïî þ
å

                                                             

(6.4.1) 

But from the theorem (6.2.1),We obtain 

( )
( )
( )1

1
, , p n

n

B p
n p a p

B A
f d

¥

+
=

+
£

-å  

The inequality (6.4.1)will be satisfied if  

( )( )
( )

( )
( )
( )
1

, ,
n

p n p n

p n c p n B
a z n p a

c p n B A
f d+ +

+ + + +
<

+ + -
 

  For each n NÎ  or if 

( )( ) ( ) ( )
( )( ) ( ) ( )

1

1 1

1

nB c p p n p
z

B A c p n p n p

d

d

+ + G + G + -
<

- + + G G + + -
 

 for each n NÎ . Hence f  is p –valent z R<  .

 
Sharpness follows,if we take 

( ) ( ) ( )
( ) ( ) ( )

1 1
( )

1 1 1

p
B A p n p

F z z
B n p p

d

d

- G + G + + -
= -

+ G + + G + -
 

6.5:    RADIUS OF P-VALENT STARLIKENESS: 

THEOREM 6.5.1 :      If we take ( ), , ,f J A B p dÎ .Then f  is p-valent 

starlike of order( )0 a p£ <  in the unit disc
1z R*< ,where ( )1 1 , , ,R R A B p d* *=  

. 

( )( ) ( ) ( )
( )( ) ( ) ( )

1

inf 1 1 1

1 1

nB p a n p p

n N B A n p a p n p

d

d

é ù+ - G + + G + -ê ú
ê úÎ - + - G + G + + -ê úë û

 

PROOF:    In order to obtain the result, it is sufficient to show that 

( )
( )

( ) 1

zf z
p p a for z R

f z

*
¢

- < - <  

Let  

            1

( ) p p n

p n

n

f z z a z
¥

+
+

=

= -å  . 

Then we have 
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( )
( )1

1
n

p n

n

n p a
a z

p a

¥

+
=

+ -
<

-å
                                                          

(6.5.1) 

But from the theorem (6.2.1), we have  

              

( )
( )

1

1
, , 1

( )
p n

n

B
n p a

B A
f d

¥

+
=

+
£

-å  

Hence (6.5.1) will be satisfied if 

              

( )
( )

( )
( )

( )
1

, ,
nn p a B

z n p
p a B A

f d
+ - +

<
- -

 

For each n NÎ  

Or  if         
( )
( )

( )
( )

( ) ( )
( ) ( )

1

1 1 1

1 1

nB p a n p p
z

B A n p a p n p

d

d

é ù+ - G + - G + -ê ú< ê ú- + - G + G + + -ê úë û
 

For each  n NÎ  

The result is sharp for the function 

( )
( )

( ) ( )
( ) ( )
1 1

( ) ,
1 1 1

p
B A p n p

f z z n N
B n p p

d

d

- G + G + + -
= - Î

+ G + + G + -
 

6.6     RADIUS OF P-VALENT CONVEXITY:  

THEOREM 6.6.1: If ( ), , ,f J A B p dÎ ,then f  is p-valent convex of order 

( )0 a p£ <  in the unit disc
2z R*<  where ( )2 2 , , , ,R R p A B ad* *=  

The result is sharp. 

PROOF:   In order to established that  it is sufficient to show that 

( )
( ) 2

1 ( )
zf z

p a for z R
f z

*
¢¢

+ < - <
¢

 

( )
( )

( )
1

1

1

n

p n

n

n

p n

n

p n n a z
zf z

p
f z

p a z

¥

+
=

¥

+
=

+¢¢
+ - £

¢
-

å

å
 

Therefore 

( )
( )

( )1
zf z

p p a
f z

¢¢
+ - < -

¢
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( )( )
1

1
( )

n

p n

n

p n p n a
a z

p p a

¥

+
=

+ + +
<

-å  

But the theorem (6.2.1), we have 

( )
( )
( )1

1
, , 1p n

n

B
a n p a

B A
d

¥

+
=

+
£

-å  

Hence( )6.6.1  will be it is satisfied if 

( )( )
( )

n

p n

p n p n a
a z

p p a
+

+ + +

-
 

( )
( )

( )
1

, , p n

B
a n p a

B A
d +

+
<

-
For each n NÎ  

or, if 

( )( ) ( ) ( )
( )( ) ( ) ( )

1 1
,

1

B p a n p p
z n N

B A n p p n p

d

d d

é ù+ - G + G + -ê ú< Îê ú- + - G G + + -ê úë û
 

Therefore  f  is convex in 2z R*<  . 

The result is sharp with the external functions of the form 

( )
( )

( ) ( )
( ) ( )
1 1

( )
1 1 1

p p n
B A p n p

f z z z
B n p p

d

d

+- G + G + + -
= -

+ G + - G + -
 

6.7 SOME RESULTS INVOLVING MODIFIED PRODUCT: 

THEOREM 6.7.1: Let the function ( )jf z ,where 1,2,3,....j m=   is defined by  

,

1

( ) p p n

p n j

n

f z z a z
¥

+
+

=

= -å  ( 1,2,3,....j m= ) 

Be the classes ( ), ,
j j

J A B p d  where 1,2,3,....j m= , respectively. 

Also let 

{ }min
0.

11
j

B
j mp

dì üï ïï ï+ ³í ýï ï £ £+ï ïî þ
 

Then 

( )( )1 2 , ,

1 1

....
m j j p

j j

f f f z J A B
d

¥ ¥

= =

æ ö÷ç ÷* Î ç ÷ç ÷çè ø
å å

                                                      

(6.7.1) 

PROOF: Since ( ), , ,
j j j

f J A B p dÎ  where 1,2,3,....j m=  using by the theorem 

(6.2.1), we have 

( )( ) ( ),

1

, , 1 j p n j j j

n

n p B a B Af d
¥

+
=

+ £ -å
                                                  

(6.7.2) 

And 
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( ) ( )
( ),

1

1

1 1

j j

p n j

n j

B A p
a

B p

d¥

+
=

- + -
£

+ +å ,   each 1,2,3,....j m=                         (6.7.3) 

Using for any  
0J   and (6.7.3) for the rest, we obtain  

( ) ,
1 1

1

, , 1
m m

j p n j
j j

n

n p B af d
¥

+= =
=

é ù
+ P Pê ú

ê úë û
å  

( )

( )
0

1

1,

1

1

1

m

j j
j

m

j
j j j

P
B A

p

B

d

=

= ¹

ì üï ï+ -ï ï P -í ýï ï+ï ïî þ£
P +

 

( )

1

1 1

1

1
1

min
1

1

m
m m

j j
j j

m

j

B A
p

B
j m

d
-

= =

-

é ù é ùê ú- P - Pê úê ú ê ú+ ë ûë û£
é ù

é ùê ú+ ê úë ûê ú£ £ë û

 

1
1

m m

j j
j

j

B A
=

=

£ P -  

           

( )1 1
0

min
1

1
j

p

B
j n

l

é ù
ê ú
ê ú- +
ê ú<
ê úé ùê ú+ ê úë ûê ú£ £ë û

 

Consequently, we have assertion (6.7.1) with the theorem (6.2.1).For
jA A=  

and 
jB B= ,where 1,2,3,....j m= .The theorem yields. 

COROLLARY 6.7.1: Let the functions ( )jf z  where 1,2,3,....j m= is defined 

by ( ) ,

1

,p p n

j p n j

n

f z z a z
¥

+
+

=

= -å be in the class ( ), , ,J A B p d  .Also let 

0
1

B
R

dì üï ïï ï+ ³í ýï ï+ï ïî þ
 

Then 

( )( ) ( )1
,..... , , ,m m

m
f f z j A B p d* Î  

 

THEOREM 6.7.2 : Let the function f  and g  defined by (6.1.1) and (6.1.2) 

respectively be in the class ( ), , , .J A B p d  Then ( )f g z*  is defined by( )6.1.3  

belong to the class ( ), , , .J A B p d with 1 1A B- £ < £  where 

( )
( )
( )

( )
( )

2

1

1
, , ,

1 1

B A B
A A p A B B

B p

d
d

- + -
£ = +

+ +
 

The result is sharp. 
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PROOF:   Since  ( ). , , ,f g J A B p dÎ  .Then the theorem5.2.1,we have 

( )
( )
( )1

1
, , 1p n

n

B
n p a

B A
f d

¥

+
=

+
£

-å
                                                                      

(6.7.4) 

And 

( )
( )
( )1

1
, , 1p n

n

B
n p b

B A
f d

¥

+
=

+
£

-å
                                                                      

(6.7.5) 

We have wish to find the value A1, such that
11 A B- £ <  for

( ) ( )1, , , .f g J A B p d* Î Equivalently, we want to determine 1, ,A B  satisfying 

( )
( )
( )1

1
, , 1p n

n

B
n p b

B A
f d

¥

+
=

+
£

-å
                                                                        

(6.7.6)

 

Combining the (6.7.4) and (6.7.5)   ,we get the inequality 

1

p n p n

n

u a b
¥

+ +
=

å
                                                                                           

(6.7.7) 

Where 
1 1

2 2

1 1

1p n p n

n n

u a u b
¥ ¥

+ +
= =

ì ü ì üï ï ï ïï ï ï ï£ £í ý í ýï ï ï ïï ï ï ïî þ î þ
å å  

( )
( )
( )
1

, ,
B

u n p
B A

f d
+

=
-

 

(6.7.6) is satisfied if  

1 p n p n p n p nu a b u a b+ + + +£  

( )
( )

( )1

1
, ,

j

B
u n p

B A
f d

+
=

-
  for  n∈N. 

But from (6.7.7), we have 

( )1
,p n p na b n N

u
+ + £ Î  

Therefore, it is enough to find  
1u  such that 

1

1 u

u u
£  

or 
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2

1u u£  

or   it is equivalent to  

( ) ( ) ( )
( ) ( ) ( )

2
1 1

1 1 1

B A p n p
B A

B n P p

d

d

- G + G + + -
- £

+ G + + G + -
 for 1n ³                                    

(6.7.8) 

Right hand member decreases as n  increases and so it is maximum for 1n =

,so (6.7.8) is satisfied and proved 

( )
( )

( )
( )

2
1

1 1

p B A
B A

p B

d+ - -
- ³

+ +
 

Or 

( )
( )

( )
( )

2

1

1

1 1

B A p
A B

B p

d- + -
£ +

+ +
 

This proves the desired result. The result is sharp for the function 

( )
( )

( )
( )

1
1

( ) ( )
1 1

p p
B A p

f z g z z z
B p

d -- + -
= = -

+ +
 

CORROLARY6.7.2 :   Let ( ), , , ,1f g J A B pÎ  .Then

( ) ( )( ) , , ,1f g z J A B p* Î  . 

Where ( )
( )

( )( )

2

1 1 , ,
1 1

B A p
A A p A B B

B p

-
£ = +

+ +
 

The result is sharp for the function. 

( )
( )

( )
( )

1( ) ( )
1 1

p p
B A p

f z g z z z
B p

+-
= = -

+ +
 

Let ( ), , , ,f g J A B p oÎ  .Then( )( ) ( ), , ,f g z J A B p o* Î  . 

Where 

( )
( )
( )

1

1 1 ,
1

p
B A

A A A B B z
B

--
£ = +

+
 

THEOREM6.7.3:  If ( ), , ,f J A B p dÎ  and ( ), , , .g J A B p dÎ Then 

( )( ) ( )2 , , , .f g z J A B p d* Î  

( )( ) ( )2 , , ,f g z J A B p d* Î Î  

Where 
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( )
( ) ( )

( )( )

2

2 2

1
, , ,

1 1

B A p
A A p A B B

B p

d
d

- + -
£ = +

+ +
 

The result is possible for 

( )( )
( )( )

( )( )
( )( )

1

1

1
( )

1 1

1
( )

1 1

p p

p p

B A p
f z z z

B p

and

B A p
g z z z

B p

d

d

-

-

- + -
= -

+ +

¢- + -
= -

+ +

 

PROOF:  Proceeding exactly as in theorem (6.7.2), 

We require 

( ) ( )
( ) ( )

( )
( )2

1 1 1

1 1

n p p B

p n p B A

d

d

G + + G + - +

G + G + + - -
 

( )
( )

( ) ( )
( ) ( )

( )
( )

( )
( )

1 1 1 1 1
. 1

1 1 1

B n p p n p B
n

B A p n p n p B A

d

d d

ì üï ï+ G + + G + - G + + +ï ï£ ³í ýï ï- G + G + + - G + + - -ï ïî þ
 

That  

( )
( )

( ) ( )
( ) ( )

2

2

1 1

1 1 1

B A p n p
B A

B n p p

d

d

- G + G + + -
- ³

+ G + + G + -
                                                 

(6.7.9) 

The right hand side member decreases as n  increases and so it is maximum 

for n=1.So the (6.7.9) it is satisfied proved of the  given relations. 

( )
( )

( )( )
( )

( )
( )

( )( )
( )

2

2

1

1 1

1
.

1 1

B A B Ap
B A

p B

or

B A B Ap
A B

p B

d

d

¢- -+ -
- ³

+ +

¢- -+ -
£ +

+ +
 

COROLLARY 6.7.3:  If ( ), , , , , .f g n J A B p dÎ

 

Then 

( )( ) ( )3 , , ,f g n z J A B p d* * Î  

, where 

( )
( )
( )

( )
( )

3

3 3 2

1
, , ,

1 1

B A p
A A p A B B

B p

d
d

- + -
£ = +

+ +
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The result is best possible for 

( )
[ ]

( )
( )

1
1

( ) ( ) ( )
1 1

p p
B A p

f z g z n z z z
B p

d +- + -
= = = -

+ +
                                     

(6.7.10) 

THEOREM 6.7.4 :Let the function f  defined by (6.1.1) be in the class

( ), , , .J A B p d
 

We also let 

( ) 1

1

p p

p n

n

g z z b z
¥

+
+

=

= -å . 

Where( )1 ;p nb p N+ £ Î  

Then( )( )f g z*  belongs to the class ( ), , , .J A B p d
 

PROOF:   Since 

( )( )

( ) ( )

1

1

, , 1

, , (1 ) .

P n p n

n

P n

n

n p B a b

n p B a B A

f d

f d

¥

+ +
=

¥

+
=

+

£ + £ -

å

å
 

Hence  

( )( ) ( ), , ,f g z J A B p d* Î  

THEOREM 6.7.5: Let the function f  and g  defined by(6.1.1) and(6.1.2) 

respectively belongs to ( ), , ,J A B p d .Then 

2 2

1

( ) ( )p p n

p n p n

n

h z z a b z p N
¥

+
+ +

=

é ù= - + Îê úë ûå  

Belongs to   the class  ( )4 , , ,J A B p d . 

COROLLARY 6.7.5 :   Let ( ), , ,f J A B p dÎ  .Also 

( )
1

( ) , 0p p n p n

p n p n

n

g z z b z b z
¥

+ +
+ +

=

= - £å  

Then( )( )f g z* belongs to class ( ), , ,J A B p d . 

( )
( ) ( )

( )( )

2

4 4

2 1
, , ,

1 1

B A p
A A p A B B

B p

d
d

- + -
£ = +

+ +
 

The result is sharp for the function. 



 

 

63 

 

( )
( )

( )
( )

1
1

( ) ( )
1 1

p p
B A p

f z g z z z
B p

d +- + -
= = -

+ +
 

PROOF:    In view of theorem(6.7.2),it is sufficient to prove that

( ) ( )
( ) ( )

( )
( )

2 2

1 4

1 1 1
1

1
p n p n

n

n p p B
a b

p n p B A

d

d

¥

+ +
=

G + + G + - + é ù+ £ê úë ûG + G + - -å
                         

(6.7.11) 

Where 
4A  is defined by(6.7.10) 

Since ( ), , , ,f g J A B p dÎ  .Then 

( )
( )
( )

( )
( )
( )

2

2

1

2

1

1
, , 1

1
, , 1

p n

n

p n

n

B
n p a

B A

and

B
n p b

B A

f d

f d

¥

+
=

¥

+
=

é ù+ê ú £ê ú-ê úë û

é ù+ê ú £ê ú-ê úë û

å

å

 

Therefore 

( )
( )
( ) { }2 2

1

11
, , 1

2
p n p n

n

B
n p b b

B A
f d

¥

+ +
=

é ù+ê ú + £ê ú-ê úë û
å     (6.7.12) 

By comparing (6.7.11) and (6.7.12),it is easily seen that inequality (6.7.11) 

will be satisfied if 

( )
( )

( )
( ){ } ( )

( )

2

2

4

1 1
, , , , ,

B B
n p n p n N

B A B A
f d f d

ì üï ï+ +ï ï£ Îí ýï ï- -ï ïî þ
 

That is if 

( )
( )
( )

( ) ( )
( ) ( )

2

4

2 1 1
,

1 1 1

B A p n p
B A

B n p p

d

d

- G + G + + -
- ³

+ G + + G + -
 

Then right hand member decrease as ݊ increase and so it is maximum for 

n=1.So the above inequality is satisfied if, 

( )
( )

( )
( )

2

4

2 1

1 1

B A p
A B

B p

d- + -
£ +

+ +
 

This is complete the proof of the theorem. 
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 6.8    CONTENTMENT RELATION: 

With the help of the theorem (6.2.1).We immediately obtain the following 

theorems. 

THEOREM 6.8.1 :  0 1, 1 1 1 1A and Bd£ £ - £ < - £ < .Then 

( )1

1 2
, , , 1. .

1

B A
J A B p J p

B
d d

æ ö- + ÷ç= ÷ç ÷çè ø+
 

Generally we can see that if  1 1 0 1.A and B- £ < £ <  Then 

( ) ( ), , , ; ; ,J A B p J A B pd d=  

If and only if  

( )
( )

( )
( )1 1

B AB A

B B

¢ ¢--
=

¢+ +
 

COROLLARY 6.8.1: Let 
1 20 1, 1 1A Ad£ £ - £ £ <  and 0 1.B£ £  Then 

( ) ( )1 2, , , , , , .J A B p J A B pd dÉ  

 COROLLARY6.8.2: 
1 20 1, 1 1B Bd£ £ - £ £ < . Then 

( ) ( )1 2 2, , , , , , .J A B p J A B pd dÉ  

6.9  CLOSURE THEOREM: 

THEOREM6.9.1:    Let ( ) ( ),

1

, 1,2,3,........ ;p n

j p n j

n

f z z a z j m p N
¥

+
+

=

= - = Îå  

If ( ), , ,jF J A B p dÎ ,for each( )1, 2,3,........ ;j m p N= Î .Then the function 

are also belong to ( ), , ,J A B p d . 

Where, 

,

1

1
p n p n j

j

b a
m

¥

+ +
=

= å  . 

PROOF: Since ( ), , ,jF J A B p dÎ .It follows from the theorem(6.2.1).  

We have 

( )( ) ( ),

1

, , 1 p n j

n

n p B a B Af d
¥

+
=

+ £ -å for each ( )1, 2,3,........ ;j m p N= Î   

Therefore 
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( )( )
1

, , 1 p n

n

n p B bf d
¥

+
=

+å  

( )( ) ,

1 1

1
, , 1

p n j

n j

n p B a
m

d d
¥ ¥

+
= =

ì üï ïï ï£ + í ýï ïï ïî þ
å å  

( )B A< -  by, theorem(6.2.1) 

Hence  ( ), , , .n J A B p dÎ  

THEOREM  6.9.2:  The class ( ), , ,J A B p d is convex. 

PROOF: Let f  and g ( ), , ,J A B p dÎ .The it is sufficient to show that the 

function.  

( ) ( ){ }
1

1 .p p n

p n p n

n

n z z u a u b z
¥

+
+ +

=

= - + -å  

And( )0 1u£ £  is also the class ( ), , ,J A B p d .Since f  and g ( ), , ,J A B p dÎ

.Then from the theorem (6.2.1).We have 

( )( ) ( )
1

. , 1 .p n

n

n p B b B Af d
¥

+
=

+ £ -å  

Therefore 

( )( ) ( ){ }
1

, , 1 1 .p n p n

n

n p B u a b u bf d
¥

+ +
=

+ + -å  

( )B A£ -  

Hence  ( ), , , .n J A B p dÎ
 

COROLLARY 6.9.2: The extreme point of the class ( ), , ,J A B p d  is  the 

function  of the form 

( )
( )

( ) ( )
( ), 0

1 , ,

n p n

p n

B A
f z z z n N

B n pf d

+
+

-
= - Î

+
 

THEOREM 6.9.3:    Let
 ( ) p

pf z z=  and 

( )
( )

( ) ( )1 , ,

p p n

p n

B A
f z z z

B n pf d

+
+

-
= -

+
Where 1 0 1; .A B p Nd- £ < £ £ £ Î

Then the function in the class ( ), , ,J A B p d if and only if, it can be expressed of 

the form 
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( )
0

( ) .p n p n

n

f z c f z
¥

+ +
=

= å Where
0

0; 1.p n p n

n

c c
¥

+ +
=

³ =å  

PROOF: Let us suppose that 

( ) ( )

( )
( ) ( )

0

1 1 , ,

p n p n

n

p p n

p n

n

f z c f z

B A
z c z

B n pf d

¥

+ +
=

¥
+

+
=

=

-
= -

+

å

å
 

Then 

( )( )
( )

( ) ( )1

, , 1
1 , ,

p n

n

B A c
n p B

B n p
f d

f d

¥
+

=

ì üï ï-ï ï+ í ýï ï+ï ïî þ
å  

Hence, by theorem(6.2.1), ( ), , ,f J A B p dÎ  conversely. Let ( ), , ,f j A B p dÎ , 

It follows then from theorem6.2.1 that 

( )
( )( )

,
, , 1

p n

B A
a n N

n p Bf d
+

-
£ Î

+
 

Then, we have 

( ) ( )
( )

1 , ,
,p n

B n p
c n N

B A

f d
+

+
= Î

-
 

And                                              

1

1p p n

n

c c
¥

+
=

= -å  

Now, we have 

( ) ( )
0

p n p n

n

f z c f z
¥

+ +
=

= å  

This is complete proof of the theorem. 

******** 
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CHAPTER 7                    

ANALYTIC FUNCTIONS DEFINED BY 

FRACTIONAL DERIVATIVE (II) 

 

 7.1  INTRODUCTION: 

 In this chapter, we have also introduced a new class ( )Η , , ,A B p d  of Analytic 

Function  defined Fractional Derivative, as defined below.  A function ( )f p  

belongs to the class ( , , , )H A B p d .If and only if there exists a function ݓ 

belonging to the class ( , , , )H A B p d  such that 

                              

( )

( )

,

1,

( ) 1 ( )
,

1 ( )( )

p

Z

p

Z

f z Aw z
z u

Bw zf z

d

d-

W +
= Î

+W
                                        

(7.1.1)

 

Where 1 1A B- < < <   and
( ),

( )
p

Z f z
dW is defined by (5.1.5) 

The condition (7.1.1)  is equivalent to  

                                

( ) ( )

( ) ( )

, 1,

, 1,

( ) ( )
1,

( ) ( )

p p

Z Z

p p

Z Z

f z f z
z u

B f z A f z

d d

d d
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-

W -W
< Î

W - W
                            

(7.1.2) 

By giving the specific values to A, B, p andd  in (7.1.2), we   obtain the 

following important sub class studied by various researchers in earlier works. 

(1) For 1d =  ,we obtain the class of functions ( )f z  is satisfying the 

conditions 

                          

( ) ( )
( ) ( )

1,
zf z f z

z u
Bf z Af z

¢ -
< Î

¢ ¢-
  

Studied by Goel, and  Sohi, For ( )1, 2 1 ,A Bd a b b= = - =  and 1p =  ,we  

obtain the class of function ( )f z is satisfying the conditions 

                         

( ) ( )
( ) ( ) ( )

,
2 1

zf z f z
z u

zf z f z
b

a

¢ -
< Î

¢ - -
  

Where 0 1a< <  and  0 1b< <  is studied by  Gupta V.P  and Jain P.K[87] 
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(2) For ( )1, 2 1 , 1A Bd a b= = - = , we obtain the class of function ( )f z is 

satisfying the conditions. 

                       

( ) ( )
( ) ( ) ( )

1,
2 1

zf z f z
z u

zf z f za

¢ -
< Î

¢ - -
 

Studied  by  Silverman, H . This chapter  is divided into nine sections for the 

systematic study of the class ( , , , )H A B p d . In  sections 7.2,we have obtained 

the necessary  and sufficient conditions in terms of coefficients for a functions 

( )f z is belonging to the ( , , , )H A B p d .In sections 7.3,we have investigated the 

Distortion Properties for the class ( , , , )H A B p d .In sections7.4,we study the 

Integral Operator of the form (6.1.8).In Sections7.5, we have investigated the 

radius of p-valent Star likeness for the class ( , , , )H A B p d .In sections 7.6,we 

have determined the p-valent convexity for the class ( , , , )H A B p d .In 

sections7.7,we have obtained the result involving the  Modified  Hadamard  

Product of two functions belonging to the class ( , , , )H A B p d .In sections7.8, 

we have obtained the class some  contentment relations related to the class

( , , , )H A B p d . In sections7.9, we have investigated the Closure Properties for 

the class ( , , , )H A B p d   

Note : Throughout this chapter, we assume that 

                    

( )
( ) ( )
( ) ( )

1 1
, ,

1 2

n p p
n p

p n p

d
y d

d

G + + G + -
=

G + G + + -
  

7.2     NECESSARY AND SUFFICIENT CONDITION 

THEOREM  7.2.1   A functions f(z) is defined by(7.2.1)in the class

( ), , ,H A B p d  if and only if 

            
( ) ( ) ( )( ){ } ( )

1

, , 1 1 p n

n

n p B n B A p a B Ay d d
¥

+
=

+ + - + - £ -å   (7.2.1) 

PROOF: Let 1.z =  Then 
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+
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    Hence, by the Maximum Modulus Theorem, 

    
( ), , , .f H A B p dÎ   

    To prove the converse, let 
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  Since ( )Re z z<  for all  z, we have 
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( ) ( ) ( )( ){ }{ }
1
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n
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n
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                (7.2.2)

 

Choose the values of z on the real axis, so 

 that

( ) ( )
( ) ( )

,

1,

p

z

p

z

f z

f z

d

d-

W

W
 is  real. Once clearing the denominator of the (7.2.2) and 

letting z=1   through real values, we obtain 

                  
( ) ( ) ( )( ){ } ( )
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, , 1 1
n

n p B n B A p B Ay d d
¥

=
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This is the complete proof of the theorem. 

COROLLARY7.2.1:  Let the function ( )f z  defined by (7.1.1) be in the class

( ), , ,H A B p d . 

Then 

                 

( )
( ) ( )( ){ } ( )1 1 , ,

p n

B A
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B n B A p n pd y d
+

-
£
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 for, n NÎ  
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7.3   DISTORTION THEOREM: 

THEOREM 7.3.1: Let the function ( )f z  defined by (7.1.1) be in the class

( ), , ,H A B p d . 

Then 
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(7.3.2)

                        

 

Whenever z u   

PROOF: Since f(z) belongs to the class ( ), , , .H A B p d In view of Theorem  

(7.2.1).we have  
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And 
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This gives the inequality (7.3.1). 

Next, by using the second inequality in(7.3.3),we observe the that 
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This gives the inequality (7.3.2). 
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COROLLARY 7.3.1  Under the hypothesis of the Theorem (7.3.1), the 

function ( )f z  is included in a disc with the centre at the origin and radius r   is 

given by 

    
( )( )

( ) ( )( ){ }
2

1
1 1

B A p
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B B A p

d

d
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And it is included in a disc with its centre at the origin and the radius R is 

given by 
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7.4 INTEGRAL OPERATOR: 

THEOREM 7.4.1  Let the function ( )f z   defined by (7.1.1) is in the class

( ), , ,H A B p d .Also let c>-p. Then the function F defined by (7.1.8) is also in 

the class ( ), , ,H A B p d . 

PROOF:   From the definition (7.1.8) and (7.1.1),it is easily seen that 
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Hence ( ), , , .F H A B p dÎ   
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Theorem (7.4.1) simplifies considerably when we have the set 1c p= -  and 

thus we obtain 

COROLLARY  7.4.1 :  If ( ), , , .F H A B p dÎ  Then 
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In the following theorem, we consider the converse problem of the above 

theorem. 

THEOREM 7.4.2 Let .C p>-  Also let function ( )f z  is in the class

( , , , ).H A B p d  Then the ( )F z  given by (6.1.8) is p-valent in the disc ,z R<  

where 

               

( ) ( )( )( ) ( ){ }
( )( )( )

1 1 , ,
infn N

B n B A p c p p n p
R

B A c p n p n

d y d
Î

é ù+ + - + - +ê ú= ê ú- + + +ê úë û
  

The result is sharp. 
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In order to established the required result, it suffices to show that 
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But from the theorem (7.2.1), we  have 
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This inequality (7.4.1) will be satisfied if 
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For each ,n N orÎ  if 
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For  each n NÎ . 

Hence ( )f z  is p valent-  for each .z RÎ  To show the sharpness of the result, 

we take, 
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Hence the result is sharp. 
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7.5 RADIUS OF P-VALENT STARLIKENESS: 

THEOREM 7.5.1: Let the function ( )f z  defined by (7.1.1) be in the class

( ), , ,H A B p d  .Then the function ( )f z is p-valent starlike in the disc z R*<  

,where 
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PROOF:   In order to obtain the required result, it is sufficient to show that 
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(7.5.1) 

But from Theorem (7.2.1), we have 

Hence (7.5.1) will be satisfied if  
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        p= .  At z R*=   

Hence the result is sharp. 

7.6 RADIUS OF p-VALENT CONVEXITY:               

THEOREM7.6.1: Let the function ( )f z  defined by (5.1.1)be in the class 

( ), , , .H A B p d  Then the function ( )f z is p-valent convex in the disc z R*<  

,where 
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The result is sharp. 

PROOF:   In order to established the required result, it is sufficient to show 
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(7.6.1) 

But from the Theorem (7.2.1), we have 
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Hence (7.6.1) will be satisfied if 
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 Therefore ( )f z  is convex  in 1z R*<  . 

To show that sharpness of the result, we take 
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0p =  z R*= , which     show that the result is sharp. 
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7.7    SOME RESULTS INVOLVING MODIFIED 

HADAMARD PRODUCT: 

In the following theorems, we use the technique of Padmanabhann.  

THEOREM7.7.1:  Let the functions f  and g   defined by (7.1.1) and(7.1.2) 

respectively be in the class ( ), , , .H A B p d Then f g*   defined by (7.1.3)  

belongs to class ( ), , ,H A B p d ,where 
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PROOF :  Since ( ), , , , .f g H A B p dÎ Then from theorem (7.2.1), we  have
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and 
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-å                      (7.7.2) 

Our aim is to find that the valuesA1,B1 such that

( ) ( )1 1 1 11, , , , .A B for f g H A B p d- £ < £ * Equivalently, we want to determine 

A1, B1 satisfying 

            

( ) ( )( ){ } ( )
( )

1 1 1

1 1 1

1 1 , ,
1.p n p n

n

B n B A p n p
a b

B A

d y d¥

+ +
=

+ + - + -
£

-å   

Combining (77.1) and (7.7.2), we get using the     Cauchy-Schwarz   

inequality 
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( ) ( )( ){ } ( )
( )

1 1

2 2

1 1 1

1

1 1 , ,

p n p n p n p n

n n n

u a b u a u b

where

B n B A p n p
u

B A

d y d

¥ ¥ ¥

+ + + +
= = =

ì ü ì üï ï ï ïï ï ï ï£ £í ý í ýï ï ï ïï ï ï ïî þ î þ

+ + - + -
=

-

å å å
                           

(7.7.3)  

For each  n NÎ  ,(7.7.3) is satisfied if 

           

( ) ( )( ){ } ( )
( )

1 1 1

1

1 1

1 1 , ,
, .

B n B A p n p
u n N

B A

d y d+ + - + -
= Î

-
  

But from (7.7.4) ,we have 

           

1
,p n p na b n u

u
+ + £ Î   

Therefore, it is enough to find 
1u  such that 

     

 

1

2

1

1 u

u u

or

u u

£

<

  

It is equivalent to 

    

( ) ( )( ){ }
( )

( )
( ) ( )( ){ } ( )

( )

2

1 1 1

1 1

2

1 1 1 1 , ,
, ,

, 1

B n B A p B n B A p n p
n p

B A B A

u n

d d y d
y d

é ù+ + - + - + + - + -ê ú£ê ú- -ê úë û
³        

(7.7.4) 

That is 

        
( ) ( )( ){ } ( ) ( )2

1 1 1 1 11 1 , ,B n B A p n p u B Ad y d+ + - + - £ -   

This yield 

       

( ) ( ) ( )
( ) ( )

2

1 1

1 2

1 , , , ,

1 , ,

u B p n n p B n n p
A

u p n p

d y d y d

d y d

- + - - -
<

- + -
  

It is easily to varify  that 

         
( ) ( )2 1 , ,u p n pd y d> + -  for 1n ³         

Now the above inequality gives the simplification. 
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( )
( )

( )
( ) ( )

1 1

2

1

, ,

1 1 , ,

B A n n p

B u p n p

y d

d y d

-
³

+ - + -
for 1n ³                                        (7.7.5) 

The right hand member decrease as n increases and so is maximum for n=1 

.So (7.7.5) is satisfied.            

( ) ( )

( )( ) ( )( )( )( ) ( )( )( )

2 2

1 1

2
2

1

1

1 1 1 1 2 1 2

p B AB A

B p B A p p B A B A p p B A

d

d d d d

+ - --
³

+ é ù+ - + + + - - + + + + - + - -ê úë û

 (7.7.6)                                     

k=  

Obviously k<1 fixing A1 in (7.7.6), we get. 

Let
 1 1,B =  then 

1 1 2 .A k£ -   

Therefore ( )( ) ( )1 2 ,1, , ,f g z H k p d* Î -  with   k defined as (7.7.6). 

COROLLARY7.7.1:    Let the functions f  and g  defined by (7.1.1) and 

(7.1.2) respectively, be in the class ( ), , ,1 .H A B p  Then( )( )f g z*  defined by 

(7.1.3) belongs to the class ( )1 2 ,1, , .H k p d- where 

      

( )
( ) ( )( )

2

2
1 2 1

p B A
k

B p B A B A

-
=

+ + - + -
  

THEOREM7.7.2 : Let  function f  defined(7.1.1) belongs to the class  

( ), , ,H A B p d  and g   defined  by (7.1.2) belongs to the class ( ), , ,H A B p d¢ ¢

,then ( )( )f g z*  defined by (7.1.3)belongs to the class ( )2 2, , ,H A B p d  .where

2 1 2A k£ -  and 
2B  ,and 2 1

2

11

A k
B

k

-
³

-
 with 

( )( )( )( )
( )( )( ) ( )( ) ( )( ) ( )( ){ }

( )( ) ( )( )

1

2

1 2

1 1 1 1 1 1 1

1 1

p p B A B A
k

p B B p p B B A B B A

p B A B A

d d

d

d d

¢ ¢+ - + - - -
=

é ù¢ ¢ ¢ ¢+ + + + + + - + - + + - +ê ú
ê ú
ê ú¢ ¢+ - + - - -ë û
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PROOF: Proceeding exactly as in theorem (7.7.1), we require 

       

( ) ( )( ) ( ){ }
( )

2 2 2

2 2

1 1 , ,B n B A p n p

B A

d y d+ + - + -

-

 
           

( ) ( )( ) ( ){ }
( )

1 1 , ,B n B A p n p

B A

d y d+ + - + -
£

-
 

            

( ) ( )( ) ( ){ }
( )

1 1 , ,B n B A p n p

B A

d y d¢ ¢ ¢+ + - + -

¢ ¢-
          

  =C for all 1n ³   

That is 

            

( )
( ){ } ( )

2 2

2

, ,

1 1 , ,

n n pB A

B c p n p

y d

d y d

-
³

+ - + -
  

The function 
( )

( ){ } ( )
, ,

1 , ,

n n p

c p n p

y d

d y d- + -
is decreasing with respect to ݊ and so 

is maximum for ݊=1, we get   

( )( )( )( )
( )( )( ) ( )( )

( )( ) ( )( ){ } ( )( )

2 2

2

2

1 2

1 1 1 1 1 1

1 1 1

p p B A B AB A

B p B B p p

B B A B A B A p

d d

d

d d

¢ ¢+ - + - - --
³

é ù¢+ + + + + + + -ê ú
ê ú

¢ ¢ ¢ê ú+ - + - - + + + -ë û

    
1K=   

 Clearly   K1<1.Fixing in A2 in (7.7.1),we get 
( )2 1

2

11

A k
B

k

-
³

-
 as ,we requiring 

B2<1-2k. Therefore    ( )( ) ( )1 2 ,1, ,f g z H k p d* Î -  with K1 as in (7.7.7). 

COROLLARY7.7.2  :   Let ( ), , , , ,f g h H A B p dÎ . 

The  ( )( ) ( )3 3, , ,f g n z H A B p d* * Î  ,where
3 1 2A k< -  and

( )
( )

3 2

3

21

A K
B

k

+
>

-
  

With
( )( )( )

( )( ) ( )( )( )( ) ( )( ) ( )

2

2 2 2 2

1 2

1 1 2 1 1 1 1 1

p p B A
k

p B p p B B A p B A

d d

d d d

+ - + - -
=

é ù+ + + + + - + - + - + - -ê úë û

  

THEOREM  7.7.3   Let the function f  defined by (7.1.1), be in the

( ), , ,H A B p d  .Also le ( ) ( )
1

1;p n

p p n p n

n

g z z b z b p N
¥

+
+ +

=

= - £ Îå . 
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Then ( )( )f g z*    belongs to the class ( ), , ,H A B p d . 

PROOF: Since 

             

( ) ( ) ( )( ){ }

( ) ( ) ( )( ){ }

1

1

, , 1 1

, , 1 1

p n p n

n

p n

n

n p B n B A p a b

n p B n B A p a

y d d

y d d

¥

+ +
=

¥

+
=

+ + - + -

£ + + - + -

å

å
  

             
( )B A£ - , by   the  theorem (7.2.1). 

Hence ( )( )f g z*   belongs to class ( ), , ,H A B p d  . 

COROLLARY 7.7.3 Let the function  f  defined by (6.1.1) be in the class

( ), , ,H A B p d  . Also let ( ) ( )
1

0 1; .p p n

p n p n

n

g z z b z b p N
¥

+
+ +

=

= - £ £ Îå   

Then( )( )f g z*  belongs to the class ( ), , , .H A B p d   

THEOREM7.7.4 Let the functions f  and g  defined by (5.1.1) and(5.1.2) 

respectively, belongs to the class ( ), , ,H A B p d  .Then 

                   
{ } ( )

2 2

1

( ) ,p p n

p n p n

n

h z z a b z p N
¥

+
+ +

=

= - + Îå   

Belongs to the class ( ), , ,H A B p d , where 

                

( )
( )

4 3

4 3 4

3

1 2
1

A k
A k andB with

k

+
£ - ³

-
  

( )( )( )

( ) ( ) ( )( ) ( )( ) ( ){ }
2

3 2 2 2

2 1 2

1 1 1 2 2 1

p p B A
k

p B B A p p p B A

d d

d d d

+ - + - -
=

é ù+ + + - + - - + - + - -ê úë û
 

PROOF:    Since ( ), , , , .f g H A B p dÎ  Then 

                 

( ) ( )( ){ } ( )
( )1

1 1 , ,
1p n

n

B n B A p n p
a

B A

d y d¥

+
=

+ + - + -
£

-å  

and 

                 

( ) ( )( ){ } ( )
( )1

1 1 , ,
1p n

n

B n B A p n p
b

B A

d y d¥

+
=

+ + - + -
£

-å  
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( ) ( )( ){ } ( )
( )

2

1

1 1 , ,
p n

n

B n B A p n p
a

B A

d y d¥

+
=

é ù+ + - + -ê ú
ê ú-ê úë û

å  

                   

( ) ( )( ){ } ( )
( )

2

1

1 1 , ,

1

p n

n

B n B A p n p
a

B A

d y d¥

+
=

é ù+ + - + -ê ú£ ê ú-ê úë û
£

å  

Similarly 

                    

( ) ( )( ){ } ( )
( )

2

1

1 1 , ,
1p n

n

B n B A p n p
b

B A

d y d¥

+
=

é ù+ + - + -ê ú £ê ú-ê úë û
å  

Hence 

( ) ( )( ){ } ( )
( ) { }

2

2 2

1

1 1 , ,1
1

2
p n p n p n

n

B n B A p n p
b a b

B A

d y d¥

+ + +
=

é ù+ + - + -ê ú + £ê ú-ê úë û
å

         

(7.7.8) 

( ) ( ), , , .h z H A B p dÎ  if and only if 

( ) ( )( ){ } ( )
( ) { }

2

2 24 4 4

1 4 4

1 1 , ,1
1

2
p n p n p n

n

B n B A p n p
b a b

B A

d y d¥

+ + +
=

é ù+ + - + -ê ú + £ê ú-ê úë û
å

       

(7.7.9) 

Comparing (6.7.9) and (6.7.8),we see that(6.7.9)is true if 

                  

( ) ( )( ){ } ( )
( )

4 4 4

4 4

1 1 , ,B n B A p n p

B A

d y d+ + - + -

-
 

                 £
( ) ( )( ){ } ( )

( )

2
2

1

1 1 , ,1

2 2
p n

n

B n B A p n p u
b

B A

d y d¥

+
=

é ù+ + - + -ê ú =ê ú-ê úë û
å   

or 

                  

( )
( )( )

( )4 4

2

4

2 , ,

1 2 , , 1

n n pB A
y n

B u n p p

y d

y d d

-
³ =

+ - + -
                           

(7.7.10) 

Since	ݕሺ݊) is decreasing functions with respect to  n and the maximum for 

n=1. So (6.7.10)   is satisfied 
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( )( )( )

( ) ( ) ( )( ) ( ) ( ){ }
2

4 4

2 2 2
4

3

2 1 2

1 1 1 1 2 2

p p B AB A

B p B B A p p B A

k

d d

d d

+ - + - --
³

é ù+ + + + - + - - + - -ê úë û
=

        

(7.7.11) 

Keeping A4 fixed in (6.7.11) ,We get 

  

 
 

4 3

4

31

A k
B

k





  and   

4 1B    gives  
4 31 2A k    

.Therefore ( )3( ) 1 2 ,1, ,h z H k p dÎ -   with K3 as in(6.7.11). 

7.8   CONTENTMENT RELATION: 

         With the aid of theorem (6.2.1), we immediately obtain the following 

theorems. 

THEOREM 7.8.1 Let 
1 20 1, 1 1A Ad< £ - £ £ <  and 0 1.B£ £   

Then 

            
( ) ( )2, , , , , , .H A B p H A B pd dÌ   

THEOREM 7.8.2  Let 0 1, 1Ad< £ -£ <  and
1 20 1.B B£ £ £   

Then 

           
( ) ( )1 2, , , , , , .H A B p H A B pd dÌ   

COROLLARY 7.8.3  Let 
1 20 1, 1A Ad< £ - £ £ <  and

1 20 1.B B£ £ £   

Then 

                 1 2 1 1 2 1, , , , , , , , , .H A B p H A B p H A B pd d d    

THEOREM 7.8.3    Let 0 1, 1 1Ad      and0 1B    

Then 

       
( ) 1 2

, , , ,1, ,
1

B A
H A B p H p

B
d d

æ ö- + ÷ç= ÷ç ÷çè ø+
 

More generally, if 1 1A    and   0 1B  ,then 

          , , , , , ,H A B p H A B pd d    

If and only if 

      

     
 

     
 

1 1 1 1B n B A p B n B A p

B A B A

d d           
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7.9  CLOSURE THEOREMS 

THEOREM 7.9.1: Let   ,
1

, 1, 2,3..... ;p p n

j p n j
n

f z z a z j m p N







      if 

 , , ,jf H A B p d  for each j=1,2….,m  then  the  function  

1

( )
p p n

p n
n

h z z c z







    

Where   ,
1

1 m

p n p n j
j

c a
m

 


   also belongs to   , , ,H A B p d  . 

PROOF  Since  , , , .jf H A B p d  Then from the theorem6.2.1,we have 

          
         ,

1

, , 1 1 p n j
n

n p B n B A p a B Ad d





         \ 

For each    1,2,...j m . 

Therefore 

         

       

       
1

,
1 1

, , 1 1

1
, , 1 1

p n
n

m

p n j
n j

n p B n B A p c

n p B n B A p a
m

y d d

y d d









 

    

     



 
 

By the theorem (7.9.1)      

Hence      , , , .h H A B p d   

THEOREM 7.9.2  The class  , , ,H A B p d is convex. 

PROOF: Let the functions f  and g  defined by (7.1.1) and (7.1.2), 

respectively ,be  in the class  , , ,H A B p d .Then it is  sufficiently to show that 

the functions. 

                ( ) ( ) (1 ) ( )h z f z g zm m         (0 1)m    

or equivalently 

                
  

1

( ) 1
p p n

p n p n
n

h z z a b zm m



 



     

 0 1m   is also the  in the class  , , ,H A B p d . 

Since  , , , , .f g H A B p d  Then from the theorem (7.2.1), we have 

                  
         

1

, , 1 1 .p n
n

n p B n B A p a B Ay d d





         

Therefore 
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1

1

1

, , 1 1 1

, , 1 1

1 , , 1 1

p n p n
n

p n
n

p n
n

n p B n B A p a b

n p B n B A p a

n p B n B A p b

y d d m m

m y d d

m y d d



 












      

    

      







  

 ,B A   By  theorem (7.2.1). 

Hence  , , , .h H A B p d
 

THEOREM 7.9.3:  Let   p

pf z z  and 

                 

   
       1 , ,

p n

p

p n

B A z
f z z

B n B A n p n pd y d






 

    
  

Where  

1 1,0 1, .A B p Nd         

Then  , , ,f H A B p d  if and only if  ,it can be expressed in the form 

             
   

0
p n p n

n

f z c f z


 


   

where, 

              0

0; 1.p n p n
n

c c


 


    

PROOF:   Let   us suppose that   

               
 

       0 1

( ) ,
1 1 . ,

p n

p np

p n p n
n n

B A c z
f z c f z

B n B A p n pd y d

 


 
 


  

                       

Where 

                 0

1; 1p n p n
n

c c


 


    

Then 

                
       

1

, , 1 1 .
n

n p B n B A py d d




       

               

 
       1 1 , ,

p nB A c

B n B A p n pd y d


  
      

 

              
      

0

1p n p
n

B A c B A c B A
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Hence the theorem (7.2.1),  , , ,f H A B p d .It follows from the theorem 

(7.2.1), that 

                  

 
       

,
1 1 , ,

p n

B A
a n N

B n B A p n pd y d



 

    
  

Setting  

                 

       
 

1 1 , ,
, .p n p n

B n B A p n p
c a n N

B A

d y d
 

    
 


  

And           
0

1 .p p n
n

c c





    

                 We have  
0

( ) p n p n
n

f z c f z


 


 . 

 This is the complete proof of theorem. 
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CHAPTER 8  

ANALYTIC FUNCTIONS DEFINED BY 

FRACTIONAL DERIVATIVE HAVING TWO 

FIXED POINT 

 

8.1    INTRODUCTION: 

 Let we T denote the functions of  the form  

                    
   1 1

2

0 0




   n n

n n
n

f z a z a z , a ,a                                

(8.1.1) 

Which are Analytic and Univalent in the unit disc  1 u z : z .  

If f  and g  are any two functions in the class T such that the function f is 

defined by (8.1.1) and 

                          
   1 1

2

0 0




    n

n n
n

g z b z b z , b ,b                                         

(8.1.2) 

Then the Quasi-Hadamard Product of f and g is denoted by f g  and   it is 

defined by the power series  

                      
   1 1

2





   n

n n
n

f g z a b a b z                                        

(8.1.3) 
A functions f belonging   the to the class T  is said to Star like Functions of 

order a  and type of b if and only if 

                      

 
 

 
   

1

1 2

zf z

f z
,z u,

zf z

f z

b
a




 
 

                                      

(8.1.4) 

For 0 1a   and 0 1b   .We denote by T (α, β) the class  of all 

starlike functions of order α and β, further more a function f belonging to the 

class T   is said to convex functions of order α and type β  if and only if 

 zf z  (α, β).We denote by C  ,a b  the class of all convex  functions of 

order a and the type β. .In particular for s =1, the class T (α, β)and C ,a b .Let 

T0and T1 be  two subclasses of T  consisting of functions f  such that
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 0 0f z z  and  0 1f z  for 0 1oz ,  respectively. We denote by T  (α,β,z0),  

C (α,β,z0), T1  (α,β,z0), C1 (α,β,z0),  the classes  obtained by taking 

intersections respectively of the classes    T  (α, β)and C ,a b  with Ti  (i=0,1) 

that is 

                          Ti(α,β,z0)=Ti(α,β)∩Ti(α,β)∩Ti(i=0,1)                 (8.1.5) 

And 

                           Ci(α,β,z0)=C(α,β)∩Ti(α,β)∩Ti(i=0,1)                    (8.1.6) 

The class T0 (α,β,z0),  C0 (α,β,z0), T1  (α,β,z0),   and T1(α,β,z0), will 

studied.byGupta,  and Ahmad,  . f ( z )  belonging to the class Ti (α,β,z0) and 

Ci(α,β,z0)(i=1,2).  

We  have introduced a new class 
0M ( A,B,z , , )d m  Analytic  Functions 

defined by  Fractional Derivative having two fixed points as defined below. 

A function f  is defined by (7.1.1) and satisfying 

               
     0 01 1 0 1

of z
u f z , z ,

z
    m                                 (8.1.7) 

is said  to be in the class
0M ( A,B,z , , )d m if  where 1 1 0 1A B ,     m  

and  

                       1
2 zF z z D f ( z ).G  d d d

d Here 
zD f ( z )
d

denotes the Fractional 

Derivative of f ( z )  of order  d  is defined by (8.1.6).  

Thus the condition (8.1.8) reduces, when A=(2α-β), 1B , ,b d   to the 

inequality (8.1.4) and we have 

                 02 1 1 0M , ,z , ,a b b   T 0(α,β,z0),   

and 

          02 1 1 0M , ,z , ,a b b   T  1(α,β,z0),   

In section (8.2), we have obtained the  necessary and sufficient 

condition in terms of coefficient for a function f  belonging to the class

0M ( A,B,z , , )d m .In section 8.3, we have investigated the properties  for the 

class
0M ( A,B,z , , )d m .In sections 8.4.we have determined these  class  

Preserving Integral Operator ܨ is defined by (4.8.1) for the class

0M ( A,B,z , , )d m .In sections 8.5, we have obtained  the radius of convexity for 
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the class
0M ( A,B,z , , )d m .In sections 8.6,we  have obtained the some results 

involving the Quasi-Hadamard Product of two functions to the class

0M ( A,B,z , , )d m .In the sections 8.7,we have some contentment relations 

related to the class
0M ( A,B,z , , )d m .In the sections 8.8 ,we have shown that 

the class 
0M ( A,B,z , , )d m is closed under the Arithmetic Mean and Convex 

linear Combinations.  

Note- Through out  of this chapter, we assume that 

                    
     

 
1 2

1

n
,n

n

d
f d

d

G G

G

 


 
  

8.2 NECESSARY AND SUFFICIENT CONDITION 

THEOREM 8.2.1 : A function f  defined by (8.1.1) belongs to the class

 0M A,B,z , ,d m  if and only if 

         

 
          1

2

1 1 2
1

n
n

,n
B N B A a a B A

n

f d
d

d





      
         

(8.2.1) 

Where 

          
  1

1
2

1 1
n

n
n

a n a zm m






      

PROOF: Let 1z   .Then from(8.1.8),we have 

       
          1 1

f z F z BF z AF z
d dd d     0,  

      =

 
            

 
1 1

1
2 2

1 1 2

1 1

n n n

n
n n

n B n B A
,n a z B A a ,n a z

n n

d
f d f d

d d
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1 1 2
1

n
n
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B n B A a a B A

n

f d
d

d





       
   

 by the  hypothesis.  

Hence, by the Maximum Modulus Theorem,  0f M A,B,z , ,d m  . 

Let we  converse  
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F z F z

BF z F z

d d
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B n B A
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f d
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            1,z u.   

Since  Re z z  for all z ,we have 
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1
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n

n
n
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n
n

n
,n a z

n
Re

B n B A
B A a ,n a z
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f d
d

d
f d

d
     (8.2.2)

 

. 

Choose the values of z on the real axis ,so that  
 
 1

F z

F z

d

d  is real. Clearing the 

denominotor and letting of (8.2.2) and letting z=1 through the real values , we 

obtain 

           

 
          1

2

1 1 2
1

n
n

,n
B n B A a a B A .

n

f d
d

d





      
    

This is the complete proof of the theorem. 

COROLLARY 8.2.1  Let the functions f defined  by(8.1.1) belong to the 

class  0M A,B,z , ,d m .Then

  
             1

0

1

1 1 2 1 1
n n

B A n
a

,n B n B A n z B A n

d

f d d m m d


  

                       

(8.2.3) 

With inequality for     

             
              1

0 0

1 1 2 1

1 1 2 1 1

n

n n

B n B A ,n z B A n z
f z

,n B n B A n z B A n z

d f d d

f d d m m d


        


          
         

(8.2.4) 
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8.3  DISTORTION THEOREM: 

THEOREM   8.3.1 : Let the function f  defined by (8.1.1) belongs to the 

class  0M A,B,z , ,d m .Then 

   
         

   
2 2

1 1

2 3 2 3

2 1 2 2 1 2

B A B A
a z z f z a z z

B B A B B A

d d d d

d d

                           
,z u                                                                                                         (8.3.1) 

And 

           
 

  
   

1 21
3

2 2 1 2

B Aa
z z

B B A

d dd

d dG
 

         
                                                 

          

   
  

   
1 21

3

2 1 2
z

B Aa
D f z z z

B B A

d dd d

d dG
 

           
  

Where 

            
  2

1 0
2

1 1
n

n
n

a n a z ,z u.m m






       

PROOF: In view of equations (8.2.1) and  ,nf d is non decreasing for, we  

                

      
2

2
1 2

2 3
n

n

B B A ad
d d





   
  

                             (8.3.2) 
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n

f d
d
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Which is equivalent to 
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2

2 3

2 1 2
n

n

a B A
a

B B A

d d

d





  


      

Consequently, we obtain 
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1

2 3

2 1 2

n n
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n

f z a z a z a z z a

B A z
a z

B B A
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And 
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2

n
n

f z a z z a
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2

1
2

n
n

a z z a




    

                         

   
   1

2 3

2 1 2

n
B A z

a z
B B A

d d

d

           
  

This is equivalent to (8.3.1). 

Further, by using second inequality in (8.3.3), we observe that 
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2

2
n

z n
n

z D f z a z ,n a z
d d

d f dG




     

                  

 

  
   

2

1
2

2

1
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1 2

n
n

a z z ,n a

B A
a z z

B B A

f d

d
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And 
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2
n

z n
n

z D f z a z ,n a z
d d

d f dG




  
            

                         
 2

1
2

n
n

a z z ,n af d




    

                        

  
   1

2

1 2

nB A
a z z

B B A

d

d

         
 

This is equivalent to (8.3.2). 

COROLLARY 8.3.1 : Let the function f  defined by (8.1.1) belongs to the 

class  0M A,B,z , , .d m  Then the function f  is included in a disc with its centre 

at the origin and the radius R given by 

                                
 

  
   

1
3

1
2 1 2

B Aa

B B A

d

d dG

          
  

8.4  INTEGRAL OPERATOR: 

THEOREM  8.4.1 : Let 1c .   If  f belongs to the class  0M A,B,z , , .d m

Then the function F  defined by the(4.8.1)also belongs to the class 

 0M A,B,z , , .d m  

PROOF: From the definitions (4.8.1) and (8.1.1) ,we have, 
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2

1 n

n
n

c
F Z a z a z

c n






 

   

Therefore 

             

 
          

 
 

        

2

2

1
1 1 2

1

1 1 2
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n
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n

,n c
B n B A a

n c n

,n
B n B A a

n

f d
d

d

f d
d

d









  
      

    

     
 




  

 na B A ,   by  Theorem (8.2.1). 

Hence, F belongs to the class  0M A,B,z , , .d m  

COROLLARY 8.4.1 : If f  belongs to the class  0M A,B,z , , .d m  Then 

                       
     00

z f t
F z dt M A,B,z , , .

t
d m    

 8.5 RADIUS OF CONVEXITY : 

THEOREM   8.5.1  Let the function f defined by (8.1.1) belongs to the class 

 0M A,B,z , ,d m .Then f is convex in the disc z r ,  where 

               

 
 

     
 

1

1

2

1 1 2

1

n,n B n B A
r inf

B An , n

f d d

d

               
  

The result is sharp for the function given by (8.2.4). 

PROOF: To show this result, it is sufficient to prove that 
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Now,  
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Clearly 
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zf z

f z




<,  

If 
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1
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n

n
n

n a z a
 



                                                                                     (8.5.1) 

By the theorem (8.2.1) ,we have 
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1 1 2

1
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,n B n B A
a a

n B A

f d d

d





      
 

    
   

Hence (8.5.1) will  holds, if 

              

 
 

     
 

12 1 1 2

1

n
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,n B n B A
n a z

n B A

f d d

d


      

  
    

  

or   equivalently 

              

 
 

     
 2

1 1 2

1

,n B n B A
z

B An n

f d d

d

                
  

Which   proves   the required   result. 

 8.6   SOME   RESULTS  INVOLVING  QUASI  

HADAMARD PRODUCT: 

In the following theorems, we use the technique of Padmanabhan 

THEOREM   8.6.1     Let the function f  and g  defined by (8.1.1) and(8.1.2) 

respectively ,be in the same class  0f M A,B,z , ,d m .Then  f g z  

defined by (8.1.3) belongs to the class  0f M A,B,z , ,d m . 

Where
1 1 2a k   and  

 
1

1
1

A k
B

k





  

with 

                
   

       

2

2 2

2 3

2 1 2 2 3

B A
k

B B A B A

  

          

d d

d d d
 

The result is sharp. 

PROOF:  Since  0f ,g M A,B,z , , .d m Then from the Theorem (8.2.1), we 

have 
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(8.6.1) 

And 
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(8.6.2)                                    

Where  

             
  1
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1 1
n
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a n a zm m






      and   1

1 0
2

1 1
n

n
n

b n b zm m






      

We find the values of 
1A  and

1B  such that 
1 11 1A B     for 

   1 1 0F g M A ,B ,z , ,d m    . 

Equivalently, we determine 
1 1A ,B  satisfying  
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(8.6.3) 

Combining (8.6.1) and (8.6.2) ,   we using  the Cauchy-Schwarz inequality 
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Where 
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(8.6.3)  is satisfied if  
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Where 
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But from (8.6.4) we get  

                 1 1

1n na b

a b u
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Therefore it is enough to find 
1u  such that 

                 
2

1u u   

Or equivalently 
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,n B n B A
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n B A

f d d
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,n B n B A
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That is 

           2

1 1 1 1 1
1 1 2 1B n B A ,n u B A n .d f d d           

This   yields 
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1 1

1 2

u ,n n B n ,n
A

u n ,n

f d d f d

d d f d

    


   
                            (8.6.4) 

It is easy to verify that 

                      2
1 2u n ,n ford d f d     2n .   

Now the above inequality gives on simplification  
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1 1 2

n ,nB A

B u n ,n

f d

d d f d




    
 for 2n .                           

(8.6.5) 

The right hand side member decreases as ݊ increases and it is maximum for   

n=2. 

So (8.6.2) is   satisfied.  
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1 2 1 2 2 3

B AB A
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(8.6.6)

 

Obviously   k<1 and fixed A1 in (8.6.6),we get 

               

1
1

1

A K
B

k





  

Let 
1 1B   then 

1 1 2A k.  Therefore     0f g z M A,B,z , ,d m   .with k is 

defined as (8.6.6). 
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The result is sharp for the function. 

           
        

2

0

2 1 2 2 3

2 1 2 1 2 3

B B A z B A z
f z g z

B B A z B A z

d d d

d m d d

       
 

        
  

COROLLARY   8.6.1 : Let the function f  and g  defined by (8.1.1) and 

(8.1.2) respectively, be in the class  1 1 0M A ,B ,z , ,d m  .Then  f g z  

defined by(8.1.3) belongs to the class  01 2 1 1M k, ,z , ,m .Where  
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B A
k

B A B A




   
  

THEOREM   8.6.2:  Let the function f defined by (8.1.1) belongs to the 

class  1 1 0M A ,B ,z , ,d m and g  defined by(8.1.2) belongs to the class

 01 2 1 1M k, ,z , ,m .Then  f g z defined by (8.1.3) belongs to the class

 2 2 oM A ,B ,z , ,d m  ,where 
2 11 2A k   and 2 1
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11 2

A k
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with 
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This result is possible for  
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PROOF: Proceeding exactly as in theorem (8.6.1), we require
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   =c for all 2n    

That is  
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(8.6.7)

 

The right hand member decreases as increases and  so is maximum for n=2.So 

(8.6.7) is satisfied.   
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(8.6.8)

 

Clearly 
1 1k .  Fixing A2 in (8.6.8),we get 

             

2 1
2

11

A k
B

k





 , as we require 

2 1B  ,we immediately obtain
2 11 2A k .  Therefore,  f g z  belongs 

 1 01 2 1 1M k , ,z , ,m  with k1 as in  (8.6.8).                                                                                                              

COROLLARY   8.6.2 : Let  0f ,g ,h M A,B,z , , .d m  Then

    3 3 0,f g h z M A ,B z , ,d m     where
3 21 2A k   and 
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The result   is possible for 
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B B A z B A z
f z g z h z

B B A B A z

d d d

d m d d

       
  

        
 

THEOREM   8.6.3 : Let the function f  defined by (8.1.1) be in the class 

 0M A,B,z , , .d m  Also let    1
2

1
n

n n
n

g z b z b z b




   .Then  f g z  

belongs to the class  0M A,B,z , , .d m

 
 

PROOF: 
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B n B A a b
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,n
B n B A a

n

f d
d

d

f d
d

d









     
 

     
 




  

              1a B A,   by the theorem (8.2.1) 

Hence   f g z  belongs to the class  0M A,B,z , , .d m
 

COROLLARY  8.6.3      Let  0f M A,B,z , , .d m
 

 Also let    1
2

0 1
n

n n
n

g z b z b z b




     .Then  f g z  belongs to the 

class  0M A,B,z , , .d m
 

 8.7  CONTAINMENT RELATION: 

The proof of following theorems comes from the   Theorems(8.2.1). 

THEOREM  8.7.1  Let
1 1 20 1 0 1 1 1 0 1, , A A and B B .d m              

Then 

   1 0 2 0M A ,B,z , , M A ,B,z , , .d m d m
 

THEOREM   8.7.2 Let 0 1 0 1 1 1 0 1, , A and A B .d m             

Then 

             1 2 0 1 2 01M A ,B ,z , , M A ,B ,z , , .m d m
 

 

THEOREM   8.7.3  Let 0 1 0 1 1 1 0 1, , A and B .d m           

Then  1 0 0

1 2
1

1

B A
M A,B ,z , , M , ,z , ,

B
d m d m

  
    

. 
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      More generally, 1 1 0 1A and B .       Then

   0 0M A,B,z , , M A ,B ,z , ,d m d m  ,if and only if 

     
 

     
 

1 1 2 1 1 2B n B A B n B A

B A B A

d d           


  
  

8.8 CLOSURE THEOREMS: 

THEOREM  8.8.1      
2

1 2
n

i i , j n , j
n

f z a z a z , j , ....




     

And 
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2

n

n
n

h( z ) c z c z




    

where 

          
 1 1 1

1 1 1

2 3 0 1j n j j j
j j j

c a j,c a , j n , ... , andl l l l
  

  

         

If  0jf M A,B,z , ,d m   for   each 1 2j , ...,  then  0h M A,B,z , ,d m
 

PROOF: If  0f M A,B,z , , .d m Then we   have the theorem (8.2.1) is that 
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f d
d

d





       
    

Therefore 
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n j
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                   1c B A  ,by the theorem (8.2.1)  

THEOREM   8.8.2 Let   1f z z  

And  

             
             

1 1 2 1

1 1 2 1 1

n

n

B n B A ,n z B A n z
f z

B n B A ,n n n B A

d f d d

d f d m m d

        


           
 

,n=2.3…. 
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From the condition (8.1.7), Theorem (8.2.1) is satisfied. Hence f  belongs to 

the class  0M A,B,z , ,d m . Conversely, Let  0f M A,B,z , ,d m  and

  1
2

n

n
n

f z a z a z




   .Then by the theorem (8.2.1),we have
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d f d m m d


  


          

  

Setting   we, have 
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B A n
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where n=2,3….
 

And 

            
1
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1 n
n

l l




    

We have 
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2
n n

n

f z f z f zl l




    

This is the complete proof of the theorem.  
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CHAPTER  9.0
 

ANALYTIC FUNCTIONS DEFINED BY INTEGRAL 

PROPERTIES
 

 
9.1  INTRODUCTION: 

A function f  of  J p  belongs to the class  J A,B, p


 if and only if  

                     

 
 
 
 

1

1

zf z

pf z
,z u,

Bzf z
A

pf z




 


  

Where 1 1A B    .The Class  J A,B, p  

. Now, we  have investigate  a new class   j A,B, f , p,d  of analytic  starlike 

function in terms of  Fractional Integral Operator over the elements of

 J A,B, p


  having  negative  coefficients. 

A functions G  belongs to the class   j A,B, f , p,d ,if  it  satisfies. 

                       
   

   
1

1
z

p
G z z D f z ,z u,

p

d ddG

G
  

 


                                   

(9.1.1) 

For some  function  belonging to   

Here  denotes  the Fractional Integral of of order ,defined by 

                           
   
1

1
z

p
G z z D f z , z u,

p

d ddG

G
  

 


 

Where is Analytic Function in a simply connected region of z-plane 

containing the origin and multiplicity of  is removed by requiring 

 to be real when  

 By giving the specific values of   parameter p, we obtain the following sub 

classes  studied by various researchers in earlier works. 

(i) Taking p=1 in (9.1.1), the class reduces to the class 

 for some  studied by Kummer  

f  j A,B, p .


 z
D f z

d  f z d

f

  1
z

d
z




 log z z   0z .z 

 j A,B, f , p,d

 j k , p, f  f j p,k
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(ii) Taking    ,the class  reduces the integral operator 

              

(iii)Taking p=1 and   in (9.1.1) in the class reduces to 

               

The Integral Operator studied by Libera,. Since the operator defined by (9.1.1) 

may be treated as generalization of the Libera integral operator. 

The present chapter is divided   into ten sections for the systematic 

study if the class .Sections (9.2) provided Lemma (9.2.2) due to  

Goel,  and Sohi, needed to prove the results of succeeding sections of this 

chapter. In section 9.3,we have obtained the necessary and sufficient 

conditions in terms of coefficients for the function G belonging to the class

to the section9.4,we have obtained the contentment relation 

related to the class .In section 9.5,we have obtained the Class-

Preserving Integral Operator of the form. 

                                                                     (9.1.2) 

c>-p, for the class .In section 9.6 ,we have determined the 

radius of convexity for the class . In sections 9.7,we have found 

the Distortion Properties for the class .In Section 9.8 ,we have  

investigated some results involving Modified Hadamard Product of two 

functions belonging to the class .In section9.9, we have 

investigated the closure properties for the class . 9.2  

PRELIMINARY LEMMA: 

In this section, we state  a lemma due to  Goel and  Sohi , S.N needed to prove 

the results of  succeeding section  of  this  chapter. 

LEMMA  9.2.1  A  function  defined by(6.1.1) belongs  to  class

 if and only if 

1d   j A,B, f , p,d

     
0

1 zp
G z f d

z
z z


 

1d   j A,B, f , p,d

   
0

2 z

G z f ,
z

z 

 j A,B, f , p,d

 j A,B, f , p,d

 j A,B, f , p,d

   1

0

z c

c

c p
F( z ) t G t dt

z


 

 j A,B, f , p,d

 j A,B, f , p,d

 j A,B, f , p,d

 j A,B, f , p,d

 j A,B, f , p,d

f

 J A,B, p
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                                              (9.2.1) 

The result is sharp with the   external function. 

                                           (9.2.2) 

 

9.3  NECESSARY AND SUFFICIENT CONDITIONS 

THEOREM 9.3.1   A function   belongs to the class

 if and only if 

                      (9.3.1) 

PROOF: By the definitions   of function G belongs to the class

,if  it satisfies the  relations (9.1.1)  for some  functions  

belongs to  Let  defined by (6.1.1). Then a simple 

computation, we obtain 

                     

Clearly 

                        

Or 

                                          (9.3. 2) 

The required result follows by using (9.3.3) in Lemma (9.2.1) 

NOTE: Throughout this chapter   we assume   that 

      
1

1 p n
n

B n B A p a B A p.





    

   
    1

p nB A p
f z z z ,n N.

B n B A p


  

  

 
1

p p n

p n
n

G z z c z







 

 j A,B, f , p,d

    
 

   
   1

1 1 1
1

1 1
p n

n

B n B A p p n p
c

B A p n p p

d

d

G G

G G






      


    

 j A,B, f , p,d f

 J A,B, p .


f

   
   

   
   

1

1
1

1

1

1 1

1 1

z

p p

p
n

p
G z z D f z

p

n p p
z a z

p n p

d dd

d

d

G
G

G G

G G

 


 




 




   
 

   

   
   

1 1

1 1
p n p n

n p p
c a

p n p

d

d

G G

G G 

   


   

   
   
1 1

1 1
p n p n

p n p
a c ,n N

n p p

d

d

G G

G G 

   
 

   



 

 

106 

 

              

REMARK: Let  , where  function     defined by(6.1.1) 

                                                                           (9.3.3) 

where 

                     
  

Clearly
 

                       

                      for all   

Thus  for all     

And     therefore.                    

                      

  since    

Hence  and thus, we get the   containment relation  

                                                                   (9.3.4)                                               

Since  

                             

The relations (9.3.4)   can also   be written as 
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9.4  CONTENTMENT RELATION: 

THEOREM   9.4.1: If , then  

PROOF:  Let the function G defined by (9.3.3) belongs to the class

.Then the theorem (9.3.1), we have                            

  

Next, since  we have 

                               since   

                              

Therefore 

                      

Using (9.4.1) in (9.4.1), we get 

                       

Hence   is the complete proof   of the theorem. 

With the aid of theorem, we obtain the following theorems. 

THEOREM   9.4.2        Let  and   

                                          Then .  

THEOREM 9.4.3            Let  and   

                                           Then   

COROLLARY 9.4.3:     Let and   
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                                           Then 

 

THEOREM 9.4.4:           Let  and  

                                            Then 

 

 More generally, if and . 

                                         Then . 

If and only if

 

                                            

 9.5   INTEGRAL OPERATOR: 

THEOREM 9.5.1 Let C be a real number such that c>-p. If  G  belongs to

,then the function F  defined by (9.1.2) is also an element  of 

. 

PROOF: Let G   defined by (9. 3.3).Then the definition   of  it is clear that 

                           

Where 

                           

Therefore 

                 

         

  

≤1, by theorem ( 9.3.1) 

Hence    ,  ,  ,   , .J A B f p    

In the following theorem, we consider the converse problem of the above 

problem 
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THEOREM  9.5.2   Let  ܨሺݖሻ be a real number such that c>-p. If 

 , then the function G defined in (8.1.2) is starlike in z<r 

Where 

                          

The result is sharp. 

PROOF:  Let   It follows then the form (9.1.2) that 

                           

In order to established the required result, it suffices to show that 

                               for   

Now 

                               

Thus 

                             if 

                             

Since   ,we have 
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Hence (9.5.1) will be satisfied   if  

               

          ,              for each   

Or if 

                              for each

  

Therefore G   is starlike   

To show   the sharpness of the result, we take 

                      

Clearly   and thus 
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9.6   RADIUS OF   P-VALENT CONVEXITY: 

THEOREM   9.6.1  If .then G is p-valently convex in the 

disc   , where 

The result is sharp. 
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  2

1 , ,inf B n B A p r n p
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n N B A p n

   
  

    
   

 

PROOF:  In order to obtain the required   result, it is sufficient   to show that 

                             for   

Let  G is defined by (9.3.3) .Then we have  

                

There fore 

                if 

                                                                                   

(9.6.1) 

But from Theorem (9.3.1), we have, 

                   

Therefore (9.6.1) will be satisfied if  
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Hence G is convex in   

To sharpness of result, we have 
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                at    

This shows that the result is sharp.  

9.7   DISTORTION THEOREM: 

THEOREM   9.7.1 :    If  and   ,where 

                                                                 

(9.7.1) 

And 

                        

Where 

                          

These inequalities are sharp. 

PROOF:  Let G is defined by   (9.3.3).Then in view of theorem (9.3.1),we 

have 
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and 

                          

Thus inequalities (9.7.1) hold. 

Further 

                                                 (9.7.3) 

                              

And 

                            

                           

We have 

                             

The inequalities (9.7.2) follow now by the using (9.7.3) and (9.7.4)  

The   inequalities are obtained in (8.7.1) and(8.7.2) by taking 
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COROLLARY   9.7.1   If  , then the disc u is mapped by 

G is onto a domain that contains the disc with center at  the origin and radius 

 .The result is sharp. 

9.8 SOME RESULTS INVOLVING MODIFIED 

HADAMARD PRODUCT: 

In the following theorems, we use the technique of   Padmanabhan  

THEOREM  9.8.1 :If G(z)  is defined by (9.3.3) and  

                                                                        ((9.8.1) 

are   elements of  ,then, 

                                                         (9.8.2) 

Is an element of , where  and  with 

                          

PROOF:  Since  Then the theorem (9.3.1), we have     

                                   (9.8.3) 

And 

                                       (9.8.4) 

We wish  to fined  the  values A1,B1 such that -1<A1>,B1≤1, for (G*H)(z) 

belongs to .Equivalently, we  want to  determine A1,B1 

satisfying. 
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(9.8.6) Combining (9.8.3) and (9.8.4), we get using   Cauchy-Schwarz 

inequality. 

                                  (9.8.7) 

Where 

             for each  ,(9.8.6)  is 

satisfied if 
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It is easy to verify that  for   

Now, the above inequality gives by simple calculation 

                       For                             (9.8.8) 

The right hand   member decreases as  n increases and so  its maximum for 

n=1 .So (9.8.7) is satisfied. 

        (9.8.9) 

Obviously   k<1 and fixing A1in the above inequality, we get 

  

Therefore,  with   k  is defined as(9.8.8). 

COROLLARY 9.8.1   Let G is defined by (9.8.3) and H is defined by (9.8.1) 

are elements of , those   is defined by (9.8.2) is an 

element of where 
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THEOREM   9.8.2     Let G is defined by (9.8.3) belongs to the class 

 and H defined by (9.8.1) belongs to the class  

,then  defined by (9.8.2) belongs to the class , 
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PROOF: Proceeding exactly in the theorem (9.8.1),require 
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                    =k1 

Clearly k1<1 

Fixing A2 in(9.8.9),we get 

                2 2 1 11B A k k     

As we require  
2 1B   ,we immediately obtain  

2 11 2A k   . 

Therefore   G H z  belongs to  11 2 1j k , , f , p,d  with  
1k  as  in (9.8.9) 
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THEOREM 9.8.3 :  Let G defined by (9.3.3) belongs to the class 

 j A,B, f , p,d .Also let    
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COROLLARY 9.8.3 :   Let the function G be in the class  j A,B, f , p,d  . 
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Then   G H z belongs to class   J A,B, f , p,d . 

THEOREM   9.8.4 : Let G defined by (9.3.3) and H  defined by(9.1.1) 
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Or 
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d

d




 



  

Since y(n) is  decreasing function with respect to n and so it is maximum for 

n=1 . So (9.8.12) satisfied.   
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2

4 4

2 2
4

2

1 1 1 1 2 1 1

p B AB A

B p B p B A p p p B p B Ad d d



               

              

3k   

Keeping  
4A  fixed in (9.8.13), we get  4 4 3 31B A k k    and 

4 1B   gives 

4 31 2A k   with 
3k  as in (9.8.13).Therefore  F   belongs to  31 2 1j k , , f , p,d  

with 
3k as in (9 .8.13). 

9.9   CLOSURE THEOREMS: 

THEOREM 9.9.1 :   Let     
1

1 2
p p n

j p n , j
n

G z z c z , j , ....; p N .







     If jG

belongs to the class  S A,B, f , p,d  for each class  1 2j . .........,m , then the 

function  
1

p p n

p n
n

H z z d z ,







  where 
1

1
p n p n, j

j

d c
m



 


  ,also belongs to the 

class  j A,B, f , p,d  . 

PROOF: Since  jG j A,B, f , p, .d  Then the theorem (9.3.1), we have 
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1
1p n, j
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B n B A p
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  For each j=1,2……,m 

Therefore 
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1 1

11
p n, j

j n

B n B A p
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m B A p
d

 


 

             
   

1  , by the theorem (9.3.1) 

Hence,  H j A,B, f , p,d . 
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THEOREM  9.9.2     The class  j A,B, f , p,d is convex. 

PROOF: Let G and H defined by (9.3.3) and (9.8.1) respectively belongs to 

the class  j A,B, f , p, .d  Then it is sufficient to show that the functions 

         1 0 1F z z H z ,m m m      . 

Or  equivalently 

    
1

1
p p n

p n p n
n

F z z u c d zm



 



    , 0 1m  is also in the class
p n

c 

.Then the theorem (9.3.1),we have  
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Therefore 
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Hence   F   belongs to the class  j A,B, f , p,d  . 

THEOREM   9.9.3    Let     p

pG z z
      

And 

              

   
      1

p p n

p n

B A p
G z z z

B n B A p r n, p,d





 

  
 
 

Where   G j A,B, f , p,d  if and only if it can be expressed in the form                       

             
   

0
p n p n

n

G z G z ,a


 


  where   
0

0 1p n p n
n

;a a


 


   .
 

PROOF:  Let us suppose   that    
0

p n p n
n

G z G z ,a
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Hence, by the theorem (9.3.1),  G j A,B, f , p, .d Conversely, let G belongs 

to  j A,B, f , p,d .It follows from the theorem (9.3.1),that 
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p n

B A p
c ,n N

B n B A p r n, p,d



 

  
  

Setting 
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and 
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1p p n
n

a a





    

We have 

        
   

0
p n p n

n

G z G za


 



 

This is the complete proof of the theorem. 

                                                        *******  
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CHAPTER 10 

CONCLUSIONS AND FUTURE SCOPE 

 

10.1  SUMMARY AND CONCLUSION  

The study of Certain Sub C lasses of Analytic Function Related to 

Complex Order   is   one of the most fascaniciating aspect. The Analytic  

Function have been played  very important role of Certain Sub Classes of 

Complex Order. The Study of my  research work has been proposed to the 

study of function�.It is differentiabe to every point of �. Here  the  domain � 

means a nonempty  connected sub set  of  complex  plane. It  is a associated  

with symmetric  conjugate  point and defined in the open unit disc Where  is a 

complex plane and mapped  by the univalent function on the unit disc. 

 The purpose of  my study is  to present   an alternative technique  in 

which an  explicit  use  is made  of  integral derivative  to complex order. The 

relevant study of my research work made to easy. We described only those 

aspects of theory in the directions of which we have pursued the study further. 

In a number of cases, our approach is  not only yields a generalizations of 

various known  results but also give many new and refined and best estimates. 

There have been many endeavors to the to the study of various views 

of Analytic Functions perspectives, both exhaustive studies in my research 

work from and ramble studies in journals and periodicals . A pursuit for 

Conjecture has not yet been taken up comprehensively and orderly through 

unverified attempts. It have been made to some there strains and stresses, but   

it deeper produces into the subject have not been made so far. It is many 

considered that the present investigation will be divulging and would dig out   

the   several conjectures and several sub classes of univalent  functions  using 

different techniques  such as  convolution techniques, variation method and 

subordinate techniques. I also introduced   the different families of certain sub 

classes such as ( , , , , )V v A B b .The use of hyper geometric function in 

Bibeberbach conjecture  has  prompted renewed interest  in classes  of 

functions. 
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The study will further investigate injurious sprit of victim 

consciousness in Robertson conjecture. The tools and methodology used in 

research design in technique of Koebe univalent functions. Mapping properties 

of analytic functions.(H.P.F). Radius of p-valent convexity, distortion 

properties for the Class ( , , , )Y A B p  and preliminary for  solving equations in 

different method for the estimations of the operator involved  in the distortion 

theorem, integral operator developed by Goodmann,A.W  and Closure 

theorems for finding numerical solutions of difference differential equations. 

10.2   FUTURE SCOPE OF MY RESEARCH  WORK :  

The   Analytic study of Certain Sub Classes Related  To Complex 

Order is one of the most important areas of analysis and it is closely related to 

the very diverse areas of mathematics.. In the following years, the functional 

theory of complex variables developed widely. The development of various 

aspects of   Analytic Function   theory has been determined by basic research.  

The Certain classes   of linear and nonlinear functions and Partial differential   

equations (PDE), optimization theory, control theory are important. The future 

scope of Certain Sub Classes Related  To the  Complex Order has support to   

find out the numerous applications in theoretical physics, mechanics and 

technology. The important problems in hydrodynamics and aerodynamics  can  

be solved  by using the methods of analytical study . 

 

 

 


